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ABSTRACT A generalization of the Stern theory is derived to treat the simultaneous
adsorption of monovalent cations and divalent cations by single-component phospholipid
membranes, where the ion:phospholipid binding stoichiometries are 1:1 for the monovalent
cations and 1:1 and/or 1:2 for the divalent cations. This study treats both the situation in
which the monovalent and divalent cations compete for membrane binding sites and that in
which they do not compete. The general formalism of the screening/binding problem is
reviewed, and it is shown how the adsorption problem can be isolated from the electrostatics.
The statistical mechanics of mixed 1:1- and 1:2-stoichiometric adsorption (the monomer-
dimer problem) is treated, and the problem of simultaneous 1:1 and 1:2 binding is solved. A
simple expression for this solution, given in the Bethe approximation, is combined with the
electrostatics to yield an adsorption isotherm encompassing both 1:1 monovalent-cation, and
1:1 and 1:2 divalent-cation, binding to charged membranes. A comparison with the simplified
treatment of previous authors is made and the significance of their assumptions clarified in
light of the present result. The present and previous treatments are plotted for a representative
case of Na+ and Ca++ binding to a phosphatidylserine membrane. Criteria are established to
permit unambiguous experimental testing of the present vs. previous treatments.

INTRODUCTION

The interaction of divalent cationf, particularly calcium, with phospholipid membranes has
been a subject of interest for some time (McLaughlin et al., 1981, and references therein).
Such interest arises from the well-known regulatory role played by calcium in many biological
phenomena, as well as from the ability of calcium to induce aggregation and fusion in
phospholipid vesicular dispersions (Papahadjopoulos et al., 1979). The phospholipid
membrane-binding properties of Ca"+ vs. those of other divalent cations have also been
examined (Nir et al., 1978; McLaughlin et al., 1978; McLaughlin et al., 1981; Lau et al.,
1981). It has become clear in such investigations that, particularly for the case of membranes
that are electrically charged, electrostatic forces exert an important influence on the
ion-membrane interaction (McLaughlin, 1977). In its simplest form, such interaction may be
considered in two parts, involving long-range Coulombic and short-range interfacial "bind-
ing" (or adsorption) forces. The former have been treated successfully in terms of the
Gouy-Chapman theory of the diffuse double layer (Gouy, 1910; Chapman, 1913), whereas
the latter generally are treated in terms of a Langmuir adsorption isotherm (Langmuir,
1918), in which the strength of the binding (or adsorption) interaction is expressed by a
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phenomenological association constant. The connection between the electrostatics and the
binding lies in use of the interfacial value of the aqueous ion concentration in the adsorption
isotherm. This interfacial value is determined from the ion concentration in the bulk aqueous
phase by a Boltzmann relation involving the membrane electrostatic surface potential. The
surface potential, in turn, is affected both by ions in the aqueous phase (screening) and ions
that are bound or adsorbed by the membrane (alteration of surface-charge density). The
"total" adsorption isotherm, giving the adsorbed ion density vs. bulk aqueous ion concentra-
tion, including the electrostatic effects, is known as the Stern adsorption isotherm (Stern,
1924).' The Stern theory, as outlined above, has been reviewed by McLaughlin (1977).
Excellent treatments of these topics are also given by Adamson (1976), Aveyard and Haydon
(1973), and Davies and Rideal (1963).

Recently, evidence has been mounting to show that monovalent cations, as well as divalent
cations, can bind to phospholipid membranes. Such effects have been observed particularly for
highly charged phosphatidylserine (PS) membranes (Nir et al., 1978; Newton et al., 1978;
Kurland et al., 1979; Eisenberg et al., 1979; Ohki and Kurland, 1981). The existence of
monovalent-cation binding significantly affects the binding of divalent cations to the
membrane, with regard to the shape of the divalent-cation adsorption isotherm as well as to
the inferred values of the divalent-cation association constants. For example, neglect of the
(then unknown) binding of Na+ to PS phospholipids has resulted in reports of Ca-PS
association constants that are far too low (McLaughlin et al., 1971; Ohki and Sauve, 1978).
The situation in which both monovalent cations and divalent cations bind to phospholipid

membranes is one of considerable theoretical complexity. It is clear that, in order experimen-
tally to determine meaningful divalent-cation:membrane association constants when monova-
lent cations are present, the manner in which monovalent cations interfere with the
divalent-cation binding must be ascertained. This problem is biologically important, since
divalent-cation phenomena in vivo invariably occur in the presence of considerable back-
ground concentrations of Na+ and/or K+.
The statistical mechanics of the monovalent- and divalent-cation adsorption problem

depends strongly on the stoichiometry of association of each type of cation with the membrane
phospholipids. If both monovalent and divalent cations bind with ion:phospholipid stoichiome-
tries of 1:1, then the Stern theory can be generalized in a simple manner to yield the total
adsorption isotherm (McLaughlin et al., 1981). If the divalent cations bind with a 1:2
stoichiometry, as has often been assumed in the past (McLaughlin et al., .1971; Nir et al.,
1978; Bentz, 1981; Ohki and Kurland, 1981), the appropriate generalization of the Stern
theory is more complicated. In previous approaches to this problem, both excluding monova-
lent-cation binding (McLaughlin et al., 1971) and including it (Nir et al., 1978; Bentz and
Nir, 1980; Bentz, 1981; Ohki and Kurland, 1981), the statistical mechanics of the adsorption
process has not been treated properly.2 In this paper we use statistical mechanics to solve the

'More precisely, this should be called the "modified" Stern isotherm as the finite size of the ions in solution is ignored
(McLaughlin, 1977).
2Kolber and van Breemen (1981) and Kolber (personal communication) have treated the case of 1:1 monovalent-
cation and 1:2 divalent-cation binding to membranes of smooth muscle cells, where the binding sites are assumed to
occur as isolated pairs associated with membrane proteins. Their result is equivalent to the q = 1 case of our
treatment (cf. Eq. 48).
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general case of simultaneous 1:2 binding of divalent cations, 1:1 binding of divalent cations,
and 1:1 binding of monovalent cations to single-component phospholipid membranes.3

First we review the general formalism of the screening/binding problem. Then we show
how the nonelectrostatic part of this formalism can be isolated, permitting consideration of the
adsorption problem independent of electrostatics. The statistics of mixed 1:1- and 1:2-
stoichiometric adsorption (the "monomer-dimer problem"4) is treated, and the problem of
simultaneous 1:1 and 1:2 binding is solved. A simple, tractable expression for the solution is
displayed in the Bethe approximation, which is compared to the exact solution. The Bethe
expression is then combined with the electrostatics to produce a generalization of the Stern
theory which encompasses both 1:1 monovalent-cation, and 1:1 and 1:2 divalent-cation,
binding to charged membranes. A comparison with the simplified treatment of previous
authors is made, and the significance of their assumptions clarified in light of the present
result. Isotherms from the present treatment, as well as from previous ones, are then plotted
for a representative case of Na+ and Ca++ binding to a PS membrane, including the cases of
competitive and noncompetitive Na+ vs. Ca"+ binding. Finally, criteria are established to
permit unambiguous experimental testing of the present vs. previous treatments.

THE GENERAL PROBLEM

We begin by considering the membrane surface-charge density which is assumed, in the spirit
of the Gouy-Chapman theory, to be uniformly smeared over the plane of the membrane-water
interface. This surface-charge density has two components: the charge density intrinsically
associated with the membrane phospholipids (intrinic) and the charge density resulting from
ions reversibly bound or adsorbed to the membrane surface (°adsw). We define the net (or
total) surface-charge density as

Onet -aintrinsic + aadsorbed (1)

The charge density ane, is related to the bulk concentrations of ions in solution and to the
electrostatic potential '0 at the membrane surface (relative to that in the bulk solution) by the
Grahame equation (Grahame, 1947), which takes the form

an, , =fG(C+, C++, 'I0) (2)

when only monovalent and divalent salts are present, at bulk concentrations C+ and C++,

3Related problems have been studied in the context of immunology. Dembo and Goldstein (1978), Perelson (1979),
and Perelson and DeLisi (1980) discuss the binding of divalent and monovalent antigens to receptor sites on cell
surfaces. The immunological receptor sites are assumed divalent or multivalent; therefore, large complexes of
cross-linked receptors can be formed. The formation of these complexes is analyzed by rate equations which ignore
correlations induced by the finite size of the antigens and receptors. In the present work the receptor sites are
monovalent. Our emphasis is on the geometrical effects of the competition for sites on the lattice, and on the
electrostatic effects associated with the adsorbed charge. We thank Dr. Alan Perelson for calling our attention to the
work of the Los Alamos group.
4The terms "monomer" and "dimer" refer to molecules that bind to the membrane with molecule:phospholipid
stoichiometries of 1:1 and 1:2, respectively.
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respectively. For the case of 1:1 and 2:1 electrolytes (e.g., NaCl and MgCl2),

~.'I'O A'JC~~ e*I0 -__-e* ++ t -2e4'0 \1/2
f, -l*O |A' C+ -ePk + exp kT 2) + C+ + 2 exp kT+ exp k 3)JJG kxpT+ep kT kTLAJ~~F kT ~)

(3a)

while for the case of 1:1 and 2:2 electrolytes (e.g., NaCl and MgSO4),

___ ~~~~e*I0 -e'I0 2)+2e*0 -2e*
fG=e I* lA' |+(x kT + exp kT -2) + C++(exp kjT + exp kT°2)

(3b)

where A' = (2 eeokT)'1/2; e is the dielectric constant of the aqueous solution; eo is the
permittivity of free space; k is Boltzmann's constant; T is the absolute temperature; e is the
magnitude of the electron charge, and the positive square root is assumed. Eqs. 3 follow
directly from Poisson's equation, which relates electrostatic potential to charge density in the
aqueous phase, and from the Boltzmann distribution, which relates aqueous ion concentration
to local electrostatic potential.
The term aintrinsic in Eq. 1 is simply a constant, which is zero in the case of a neutral

membrane, or is -e * (anionic phospholipid density) in the case of a membrane comprised of
anionic phospholipids, assuming one negative charge per phospholipid. For the case of a PS
membrane at neutral pH, we take (Nir et al., 1978; McLaughlin et al., 1981)

aintrinsic = constant =-(Q)' -1/70 e/A2, (4)

where (2)' e(Q), and (Q) is the phospholipid density.5
The term aadobd is given by an adsorption isotherm whose exact functional form will be

discussed later. We note now, however, that it must depend on the following variables:

Uadsorbcd =fA(Co , Co s KM, KDI, KD2), (5)

wherefA is the adsorption-isotherm function; KM, KDI, and KD2 are the 1:1 monovalent-cation,
and 1:1 and 1:2 divalent-cation, membrane association constants, respectively. CO' and CO"+
are aqueous monovalent- and divalent-cation concentrations. (We limit this discussion to
binding of a single monovalent-cation and a single divalent-cation species. Generalization to
the binding of other ions, including anions, is straightforward.) In accordance with the Stern
theory, the aqueous ion concentrations used in Eq. 5 must be those existing at the
membrane-water interface, which differ from those in bulk solution if the membrane surface
is charged. The Boltzmann distribution gives

CO+ = c exp ) (6a)

'If the membrane phospholipids contain titratable surface groups, a Henderson-Hasselbalch expression involving the
intrinsic pK.'s of such groups and the interfacial pH (bulk pH + eI0/2.303kT) is easily inserted here, giving aj|n|sa
as a function of the bulk pH and I'. In addition, if the membrane condenses or expands as a function of screening
and/or binding, such effects may be included via insertion of a functional dependence of (Q) on the screening and
binding parameters (if such dependence is known) into this and later equations (cf. Eqs. 51 and 52). For the purpose
of this paper, however, we simply use Eq. 4.
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and

co+ = C++ exp ( 2e1I0o (6b)
(kT )(b

Eq. 5 may thus be written

Uadsorbod =fA(C+, C *'0 KM, KDI, KD2) (7)

where it is understood that once a functional form for the adsorption isotherm (Eq. 5) has
been chosen, Eq. 7 is readily obtained by use of Eq. 6 a and b.

Eq. 1 can now be restated in the form

fG(C+, C , 'o) - const. -fA(C, Cf , *o, KM, KDI, KD2) = 0, (8)

where the constant term is that appearing in Eq. 4. This is an implicit equation for '0 in terms
of C+, C+ +, KM, KDI, and KD2 which can be solved numerically for any given values of these
parameters. All information regarding the adsorption problem, within the framework of this
treatment, is contained in these solutions for 1'. For example, the adsorbed charge as a
function of any parameter (say C+ + ) can be found from Eq. 7 once the appropriate values of
1' have been determined from Eq. 8.
The problem is now completely defined once the functional form of the adsorption isotherm,

Eq. 5, is chosen. IffA = 0, then Eq. 8 is the Grahame equation. IffA is a Langmuir isotherm,
then Eq. 8 becomes the Stern equation. If a different isotherm is used, Eq. 8 may be regarded
as a generalization of the Stern equation. For our purposes, Eq. 8 tells us how to insert the
electrostatics (at the level of the Gouy-Chapman theory) once an adsorption isotherm (Eq. 5)
has been selected. Therefore, we may now focus on the adsorption problem independently of
electrostatics, to seek an appropriate functional form for Eq. 5.

BINDING STOICHIOMETRY

The form of the adsorption isotherm depends on the stoichiometry of binding of ions to the
membrane phospholipids. In the case where one molecule of adsorbate (monomer) binds to
one phospholipid (1:1 binding), the appropriate isotherm is of the Langmuir form. Consider
the reversible interfacial reaction

M + X = MX (9)

where M is a monomer in solution, X is an unoccupied phospholipid binding site on the
membrane, and MX is a monomer-occupied phospholipid binding site on the membrane. The
mass-action equilibrium association constant for this reaction is

(MX)
KM [M](X)' (10)

where [ J denotes an aqueous volume concentration or activity, and ( ) denotes an area
concentration or density on the membrane surface. The density of membrane phospholipids,
(Q), is

(Q) = (MX) + (X). (11)
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From Eqs. 10 and 11, we find that the fraction of sites bound, or the lattice coverage OM, is

OM = (MX) = KM[M] (12)

Eq. 12 is the Langmuir isotherm. In the event that two distinct molecular species M and M'
bind competitively to the lattice with 1:1 stoichiometries, the straightforward generalization of
Eq. 12 is

OM + eM, = 1 KM[M + KMM(13)1+ Km[M] + Km, [M'f 13

In the case where one molecule of adsorbate (dimer) binds to two phospholipids (1:2
binding), the reaction to be considered is

D + X2 DX2 (14)

where D is a dimer is solution; X2 is an unoccupied "pair" binding site on the membrane, i.e., a
pair of adjacent unoccupied phospholipid sites; and DX2 is a dimer-occupied pair binding site
on the membrane. We consider here only the equilibrium state of Eq. 14 and not the detailed
manner in which the final state is achieved. The equilibrium association constant for this
reaction is

KD- (DX2) (15)

The lipid density is now

(Q) = 2(DX2) + (X). (16)
By use of Eqs. 15 and 16, the fraction of lipids bound by dimers, or the lattice coverage OD, iS
found to be

O
2(DX2) KD[D] * 2(X2)/(X) (17)

(Q) 1 + KD[D] - 2(X2)/(X)(

Eq. 17 is of a Langmuir form only if (X2)/(X) remains constant as the lattice fills. In
particular, if (X2)/(X) - l/2, one obtains the Langmuir isotherm for dimers:

KD[DI (X2) 1
OD = for -.(18)1 + KD[D] (X) 2.

It has been shown for the case of monovalent-cation binding to negatively charged
phospholipid membranes that the data can be treated in terms of a 1:1 Langmuir isotherm
(Eisenberg et al., 1979). For the case of divalent-cation binding to phospholipid membranes in
which a binding stoichiometry of 1:2 has been assumed (McLau'ghlin et al., 1971; Ohki and
Sauve, 1978; Nir et al., 1978; Ohki and Kurland, 1981), the data have been analyzed in
terms of Eq. 18 or a simple generalization of it to include 1:1 monovalent-cation binding. Our
claim in this paper is that, in general, the conditions of Eq. 18 are not physically valid, so that
1:2 binding cannot be described by a Langmuir isotherm, and the more complex case of
simultaneous 1:1 and 1:2 binding is not obtained simply.
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FIGURE 1 Monomers and dimers adsorbed on a q = 6 lattice. The lattice binding sites are indicated by
dots, 1:1 -bound monomers by filled circles, and 1 :2-bound dimers by bars. In this picture, two empty sites
are unavailable for dimer binding.

THE MEMBRANE LATTICE

If ions indeed bind specifically to one or more phospholipids, then the discrete nature of the
membrane, as an array of binding sites, must be considered.6 We refer to such a two-
dimensional array as the membrane "lattice" which may, or may not, be ordered. In this
paper, we treat only the case of identical lattice sites, i.e., single-component phospholipid
membranes.
We assume each site to have, on the average, q nearest neighbors. A maximally packed

array corresponds to q = 6, the hexagonal (or triangular) lattice as shown in Fig. 1, while the
value q = 4 denotes a square-coordinated lattice, which is quite loosely packed. Thus the
values 4 < q c 6 appear to span the range of packing geometries physically appropriate for
membranes. It will be shown later that our results are insensitive to the choice of q in this
range.

Since a monomer can bind to a single empty lattice site (1:1 binding), while a dimer
requires two neighboring empty sites (1:2 binding), a given lattice site either is empty or is

* *0

* * 0
FIGURE 2 Aq - 4 latticewithN = 12,NM=2,ND-= 1,Nx=8,andNx2 7.

'The apparent inconsistency whereby membrane discreteness is ignored in the electrostatic treatment (Gouy-
Chapman theory) yet retained in the binding formalism has been discussed (Aveyard and Haydon, 1973;
McLaughlin, 1977). The necessity for maintaining lattice discreteness for binding and not for screening results from
the much shorter range of the binding (relative to the Coulombic) interaction.

COHEN AND COHEN Adsorption ofMonovalent and Divalent Cations 629



filled by a bound monomer or half a dimer. We assume that a filled site cannot bind any
further molecules. (This competition between monomers and dimers for empty sites is easily
relaxed. We treat the noncompetitive case later.) Fig. 1 illustrates the statistical complexity of
the manner in which bound monomers and dimers affect the number of unoccupied pairs
available for further dimer binding. It must be appreciated that, on the lattice, a given site X
may participate in several different pair vacancies X2. For example, in Fig. 2 there are seven
vacant pairs capable of binding further dimers.

It is clear from Fig. 1 that as the lattice fills (with either monomers or dimers or both) the
ratio (X2)/(X) does not remain constant. On the empty lattice (X2)/(X) = q/2. The ratio of
empty pairs to empty sites decreases as the lattice fills, approaching zero as the lattice
approaches saturation.7 The constancy of (X2)/(X) required for the validity of Eq. 18, and
hence for use of the Langmuir isotherm, is not maintained.

THE MONOMER-DIMER PROBLEM

We now derive the monomer-dimer adsorption isotherm; that is, we obtain an expression for
the equilibrium lattice coverage of monomers and dimers as a function of [M], [D], KM, KD,
and q.
We assume the membrane lattice to be in equilibrium with the aqueous solution. Molecules

from the solution impinging randomly on the lattice are either monomers or dimers. Thus
there are four reactions occurring on the lattice: adsorption and desorption of monomers, and
adsorption and desorption of dimers. These reactions are represented by Eqs. 9 and 14. We
assume there are no interactions between molecules either in solution or on the lattice and
therefore expect the reactions to obey laws of mass action.8 The respective mass-action
equilibrium constants KM and KD are given by Eqs. 10 and 15. For purposes of statistical
treatment we also write Eqs. 10 and 15 in the form

KM= [MIN/ (19)

and

KD - [DIN /N' (20)

where N is the total number of sites on the lattice;
NM is the average number of adsorbed monomers;
ND is the average number of adsorbed dimers;

7An exception to this statement is the case q = 1, where in the absence of bound monomers (X2 )/(X) - constant = lb
for all degrees of dimer coverage. Even for q = 1, however, (X2)/(X) is no longer constant when monomers are on the
lattice.
8One might think that electrostatic interactions between the lattice and the molecules in solution, which are explicitly
taken into account in our treatment, would invalidate this assumption. However, it can be shown that if these
interactions are treated in a mean field approximation, which is equivalent to the Gouy-Chapman theory, then laws of
mass action are still valid provided bulk concentrations are replaced by concentrations at the membrane-water
interface.
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Nx is the average number of vacant sites on the lattice;
N~X2 is the average number of vacant nearest-neighbor pairs on the lattice;
[M], [D] are, respectively, the number of monomers and dimers per unit volume in

solution, expressed in either molecular or molar units;
KM, KD are constants, independent of (M] and [D], but dependent on tempera-

ture. The units of these constants are, respectively, [Ml-' and [D] -'.
For purposes of interconversion between the above statistical parameters and the surface-
density notation, we note that the membrane area = N/(R) so that

(MX) - (Q) N, (DX2) = (Q) ND (X) _ (2) Nx (X2) (Q) NX2 (21)N ~N' N N

We now want to calculate NM/N and ND/N for given values of [M], [D], KM, KD, and q.
The four unknown quantities NM/N, ND/N, NX/N, and Nx2/N are related by Eqs. 19 and 20.
An obvious additional equation is

NM +N NX (22)

which simply states that every lattice site is either occupied by a monomer or by half a dimer
or is vacant. To make the system determinate we need another equation which should relate
NM/N, ND/N, and NX2/N. This is the equation that involves counting the number of ways a

specified number of monomers and dimers can be put on the lattice.
If there are no adsorbed dimers (KD = 0 or [D] = 0 and thus ND/N = 0), Eqs. 19 and 22

yield

NM KM[M]
N 1 + KM[M]' (23)

i.e., a Langmuir isotherm for monomers (cf. Eq. 12). If there are no adsorbed monomers
(KM = 0 or [Ml = 0 so that NM/N = 0), the adsorption problem for dimers is not soluble in
closed analytic form. However, the counting of configurations of dimers on the lattice has
been combined with sophisticated numerical extrapolation procedures (Gaunt, 1969) to yield
numerically accurate results over the full range of parameters. We shall exhibit the solution of
our problem (which we call "the monomer-dimer problem") in terms of the above solution of
the dimer problem.9 It is instructive to solve the problem two ways: first, by using the law of
mass action (Eqs. 19 and 20) together with Eq. 22 and an appropriate combinatorial result;
and second, directly from first principles of statistical mechanics. The latter method also
enables us to verify that the law of mass action is indeed applicable to the reactions given by
Eqs.9 and 14.

9We use the term "dimer problem" to refer to the problem of a lattice in equilibrium with a solution containing only
dimers and no monomers. Unfortunately, Gaunt (1969) calls this situation "the monomer-dimer problem," using the
word "monomer" to refer to an empty site on the lattice. He does not treat the case in which both monomeric and
dimeric adsorbents are present.

COHEN AND COHEN Adsorption ofMonovalent and Divalent Cations 631



The Dimer Isotherm

In the absence of adsorbed monomers, calculation of the dimer isotherm requires that we
know gN(ND), the number of ways of putting ND indistinguishable dimers on a q-coordinated
lattice ofN sites. (The subscript q is deleted for brevity.) It is convenient for this purpose to
define the function

ZN(Z) E gN(ND) ZND, (24)
ND

usually called the generating function for gN(ND), where z is, at this point, a formal variable
used for bookkeeping purposes whose physical significance will become apparent shortly. The
maximum value of ND in Eq. 24 is qN/2. Gaunt (1969) defines

(Z) lim [N(Z)I (25)

and gives many coefficients g, in the power-series expansion

(z) = 1 + E7gszS. (26)
s-I

We also define'0

F(z) ln'(z). (27)

Now, the average number of dimer vacancies Nx2 is related to the average number of
adsorbed dimers ND by the equation

Nx (N + 1 AgN(ND + 1) (28)N2=(ND±+1) g(D

The proof of Eq. 28 is simply to observe that if we have an arrangement of ND dimers on the
lattice, we can generate an arrangement of ND + 1 dimers in Nx2 different ways, by putting a
single dimer in any of the NX2 dimer vacancies. If we do this for all the gN(ND) arrangements
of ND dimers, we generate each arrangement of ND + 1 dimers ND + 1 times. (See Fig. 3.)
Since there are gN(ND + 1) different arrangements ofND + 1 dimers, we have Nx2 gN(ND) =
(ND + 1) gN(ND + 1), which yields Eq. 28. Note that Eq. 28 is true only when ND is large
(which is the only case of interest); otherwise, it is not correct to assume that almost all
configurations characterized by a given value of ND have approximately the same number of
dimer vacancies Nx2. Therefore, on the right side of Eq. 28 we may replace the factor
(ND+ l)byND.

Eqs. 28 and 20 may be combined to yield

gN(ND + 1) (29)KDDIgNND)

Eq. 29 may now be rewritten in a more useful form which explicitly yields ND/N in terms of
KD, [D], and the (for practical purposes known) function F (z). On very general grounds we

'°Gaunt defines r(z) - (2/q) In Z(z), but we prefer to deal with F (z).
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..I * I I * i
FIGURE 3 The (ND + I)-dimer configuration (a) can be generated in ND + 1 ways by adding a single
dimer (dashed bar) to the ND-dimer configurations b, c, and d. Here ND - 2 and ND + 1 = 3.

know that if the lattice sizeN is large, the summand gN(ND) zND in Eq. 24 peaks sharply in the
vicinity of a certain value ND. This value ND can be determined in two ways: on one hand,
using the peaking property, we can write

- z N g (N )ZND Z (z) d
ND= ND -" In'N(Z) = NzF'(z), (30)2;g9(ND)ZN AMzN() dz

but we can also assert that the largest term in Eq. 24 occurs when the ratio of successive terms
is unity (otherwise the terms are increasing or decreasing), i.e.,

zgN(ND + 1) 1 (31)
gN(ND)

Eq. 31 is of exactly the same form as Eq. 29, with z = KD [D]. But since Eqs. 31 and 30 are
equivalent, we can rewrite Eq. 29 in the more useful form

ND
ND = z F'(z) (32a)

where

z = KD[D]. (32b)

Eq. 32 is the solution of our problem when no monomers are involved (KM = 0 or [M] = 0).
The solution can also be obtained directly from the principles of statistical mechanics. This

is done in Appendix A, where the law of mass action for dimers (Eq. 20) is verified and KD
expressed directly in terms of statistical-mechanical quantities.

The Monomer-Dimer Isotherm
When both monomers and dimers are present, the problem can again be solved either directly
from the law of mass action (Eqs. 19 and 20) or from the principles of statistical mechanics.

In either case, we must introduce the quantity gN(NM, ND) = the number of ways of placing
NM indistinguishable monomers and ND indistinguishable dimers on a q-coordinated lattice of
N sites. (For simplicity we again suppress the q subscript.) What makes the problem soluble
(in terms of the solution of the dimer problem) is the simple relation

gN(NM, ND) = gN(ND) (N ,2ND (33)
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where the first factor on the right is the number of ways of placing the dimers on the lattice in
the absence of monomers and the second factor is the binomial coefficient (N -2ND)!/
NM!(N - 2ND - NM)! which is the number of ways of placing the monomers in the remaining
vacancies. Furthermore, the reasoning that led to Eq. 28 is easily extended to the case where
both monomers and dimers are present, yielding

gN(NM,ND + 1)
NX2 = (ND + I1 _N) (34)NX2(N+ 1) N(NM,ND)

and

gN(NM + 1,ND) (5
Nx = (NM + 1) (_ _N)(35)

Eqs. 35 and 33 yield

NX=N-2ND-NM (36)

which is identical to Eq. 22. Combining Eqs. 33 and 34 we obtain the less trivial equation

NX2=N9gNND+I) (N-2ND-NM\2 (7
gN(ND) N- 2ND ) (

where we have used ND>> 1 and NM »> 1 to simplify several factors. Combining Eq. 37 with
the law of mass action for dimers (Eq. 20), we find

gN(ND+ I) (N-2ND_ NM2KD[D] = 1. (38)
gN(ND) N- 2ND

Similarly, combining Eq. 36 with the law of mass action for monomers (Eq. 19), we get

NM
N- 2ND-NM= KM[M], (39)

and thus

NM KM[M] {1 2ND) (40)
N 1 + KM[M] N

and

N - 2ND
N-2N - = 1 + KM[M]. (41)

N - 2ND - NM

From Eq. 40 it is seen that the monomers bind, via a Langmuir isotherm, to the reduced
lattice comprised of sites unoccupied by dimers. From Eqs. 38 and 41 we find

gN(ND + 1) KD[D]
1. (42)

gN(ND) (1 + KM[M])2
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We have already seen (Eqs. 30 and 31) that Eq. 42 is equivalent to

ND = z F'(z), (43a)

where

(1 + KM[M])2 (43b)

Eqs. 43 and 40 solve the problem, giving ND/N and NM/N explicity in terms of [M], [D], KM,
and KD.
The solution of the monomer-dimer problem by statistical mechanics is given in Appendix

B, where the laws of mass action for monomer and dimer adsorption to the lattice (Eqs. 19 and
20) are verified and expressions for KM and KD obtained in terms of partition functions.

NUMERICAL EVALUATION

We now want to use Eq. 43 to evaluate ND/N as a function of z for all z; that is, we want to
evaluate the expression z F' (z). Gaunt ( 1969) has calculated the first 15 coefficients g, of Eq.
26 for the square lattice, and the first 10 g, for the hexagonal lattice. These coefficients
alternate in sign and increase rapidly in magnitude. Thus, when ND/N is expressed as a power
series in z, the series converges only when z is quite small; Gaunt estimates the radius of
convergence as z I = 0.08895 (square lattice) and z I = 0.05600 (hexagonal lattice). These
values of z correspond to values of ND/N that are only about 20% of the saturation value
ND/N = 0.5. However, Heilmann and Lieb (1972) have shown that there is no phase
transition in the adsorbed dimer system in the entire physical region 0 c ND/N < 0.5. Thus,
the fact that the power series in z has a limited radius of convergence indicates only that we
need a better method of calculation at high densities of adsorbed dimers (large z).
A much more useful series, which contains the same information as Eq. 43a, expresses z as

a power series in ND/N. Gaunt gives 15 coefficients of such a series for the square lattice, and
10 coefficients for the hexagonal lattice." This series contains only positive coefficients (see
Gaunt, Table II) and converges over the entire physical range 0 < ND/N < 0.5. When
ND/N << 1, the first term of the series suffices and we have

N-D(NDND << (44a)
qN N

whence

ND qND >qz (z << 1). (44b)
N 2

"

This corresponds to the dilute-dimer regime and Henry's law of adsorption (McLaughlin et
al., 1978).

"Gaunt's series are in terms of the quantity p = (2/q) ND/N.
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By analyzing the asymptotic behavior of the coefficients, Gaunt has determined that at
high dimer coverage

A

(1 2)NDf
N

(ND 0.5), (45a)

whence

ND I[ -A()y]
(z - ), (45b)

where

y = 7/4, A = 0.3030

,y=2, A =0.149

(square lattice)

(hexagonal lattice).

TABLE I
EXACT SERIES SOLUTION OF EQ. 43A AND COMPARISON WITH THE BETHE

APPROXIMATION (EQ. 46A)

Square (q = 4) lattice Hexagonal (q - 6) lattice

ND/N z(series) z(Bethe) ND/N z(series) z(Bethe)

0 0 0 0 0 0
0.01 0.005180 0.005180 0.01 0.003459 0.003459
0.02 0.010742 0.010742 0.03 0.011206 0.011204
0.04 0.023156 0.023157 0.06 0.025331 0.025310
0.06 0.037575 0.037577 0.09 0.043360 0.043278
0.08 0.054413 0.054422 0.12 0.066712 0.066482
0.10 0.074195 0.074219 0.15 0.097473 0.096939
0.12 0.097587 0.097645 0.18 0.138811 0.137695
0.14 0.125452 0.125579 0.21 0.195705 0.193520
0.16 0.158915 0.159170 0.24 0.276329 0.272189
0.18 0.199466 0.199951 0.27 0.394826 0.387051
0.20 0.249111 0.250000 0.30 0.577329 0.562500
0.22 0.310597 0.312181 0.33 0.876264 0.846886
0.24 0.387766 0.390533 0.36 1.408720 1.346939
0.26 0.486115 0.490885 0.39 2.477977 2.336777
0.28 0.613728 0.621901 0.42 5.067826 4.703125
0.30 0.782881 0.796875 0.45 13.932546 12.750000
0.32 1.012941 1.037037 0.48 91.850988 84.000000
0.34 1.335914 1.377930 0.50 co co

0.36 1.807776 1.882653
0.38 2.533661 2.671875
0.40 3.730072 4.000000
0.42 5.902289 6.480469
0.44 10.466788 11.916667
0.46 22.802101 27.671875
0.48 81.673705 114.000000
0.50 00 00
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Thus, when z is expressed as a power series in ND/N, the high-order coefficients (n > 15 for
the square lattice and n > 10 for the hexagonal lattice) may be replaced by the binomial
coefficients obtained by expanding Eq. 45a. We have summed the resulting series, and the
results are presented in Table I and Fig. 4, which are the solutions of Eq. 43a for the square
and hexagonal lattices.

THE BETHE APPROXIMATION

For most practical purposes it is sufficient to replace the exact numerical solution of Eq. 43a
with the Bethe approximation, which corresponds to a simple approximate scheme for
counting dimer configurations on the lattice (Nagle, 1966). In the Bethe approximation the
expression for z in terms ofND/N is (Gaunt, 1969)

2ND 1 2ND\(2
z =- - ND I, (46a)

q N qN NI

or equivalently,

ND=q(I+ 2qz - VI+ 4(q -1)z 4b

N 4 51+ (46b)

The accuracy of this approximation can be assessed from Table I and Fig. 4. It is clear that
Eq. 46 suffices except (perhaps) very near saturation, where Eq. 45 can be used.

COMPARISON OF BETHE AND LANGMUIR DIMER ISOTHERMS

It is instructive to examine the dimer isotherm in the Bethe approximation (Eqs. 46b and 43b)
further. In the absence of bound monomers (KM[M] = 0), we plot in Fig. 5 the lattice
coverage of dimers (OD = 2ND/N) as a function of qz = qKD [DI for q = 4 and 6 (which span
the coordination numbers of physical interest) as well as for the case q = 1. We have chosen
the abscissa to produce coincidence of all curves in the low-coverage limit according to Eqs.

0.5 0.5

0.4 0.4

0.3- ~ ~~ ~~~~~~~~-0.3-
ND ND
N N

0.2/ SQUARE LATTICE 0.2 HEXAGONAL LATTICE
(q-4) (q 6)

0.1 0.1

a b

0.01 0.1 1 10 100 0.01 0.1 10 100
z z

FIGURE 4 Plot of Table I; solution of Eq. 43a for (a) square lattice and (b) hexagonal lattice. ----, exact
series solution. -, Bethe approximation.
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44b and 43b. It is apparent in Fig. 5 that the q = 4 and q = 6 curves are nearly identical. The
choice of q in this range, therefore, has little effect on the shape of the isotherm.
The case q = 1 is noteworthy. When no bound monomers are present, Eqs. 46b and 43b

give

2ND z KD[DI
D N 1 + 1 +KD[DJ (q = 1, KM[M] = 0). (47)

Thus, by setting q = 1 we recover the Langmuir isotherm for dimers (cf. Eq. 18). It is
apparent, therefore, that the approximation used by previous authors to treat the 1:2 binding
of divalent cations to phospholipid membranes, in the absence of monovalent-cation binding,
is tantamount to treating the membrane as a q = 1 lattice. On such a lattice each phospholipid
has only one nearest neighbor; i.e., all phospholipids are "paired off" into isolated pair binding
sites, even before any dimer adsorption occurs. We consider it unlikely that such a highly
constrained model is applicable to phospholipid membranes.
The q = 4 and 6 isotherms in Fig. 5 clearly differ from the q = 1 (Langmuir) isotherm in

the intermediate and high-coverage regimes. However, even in the low-coverage limit where
the isotherms become coincident, an important distinction remains. When values of KD are
determined experimentally in this regime, the parameter actually obtained is qKD. Therefore,
the assumption q = 1 yields values of KD that are a factor of 4-6 too high. This is because the
assumption q = 1 underestimates the number of dimer binding sites on the empty lattice,
which is qN/2, by a factor of 4-6.
When bound monomers are present, the dimer coverage for the q = 1 lattice is given by

= + KD[D] q481 + z (I + KM[M])2 + KD[D] (q= 1), (48)

where Eqs. 43b and 46b have been used. Eq. 48 differs from the expression used by Nir et al.
(1978, cf. their Eq. 16) to treat dimer binding in the presence of monomers, which is

. -2. - 1 1

le:gI qK[D]D

FIGURE 5 Dimer adsorption isotherms in the Bethe approximation with no adsorbed monomers. Dimer
lattice coverage 0D - 2ND/N = 2(DX2)/(2) is plotted vs. log qKD[DJ where KM[MJ - 0. Isotherms are
shown for the cases q =1, 4, and 6. The q = 1 isotherm is identical to the Langmuir isotherm for dimers
that has been used by previous authors.
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equivalent to

)D= KD[DI 49
1 + KM[M] + KD[DI4

Since the Bethe approximation (Eq. 48) is exact when q = 1 (Nagle, 1966), we see that in the
presence of bound monomers Eq. 49 is not valid, even if one assumes a q -1 lattice.

ADSORBED CHARGE DENSITY

It is now possible to write explicitly the adsorption-isotherm functionfA (cf. Eq. 5) to be used
in Eq. 8. For generality, we include the possibility of both 1:1 and 1:2 binding of C+ + to the
membrane, but C+ binding is restricted to a 1:1 stoichiometry. The monvalent cations are
monomers. The 1:1-bound divalent cations may be treated simply as a second monomeric
species according to Eq. 13. We use the notation KDI to denote the divalent-cation 1:1
association constant (equivalent to KM, in Eq. 13). The 1:2-bound divalent cations are dimers
whose association constant we now call KD2 (cf. Eq. 15) and whose coverage of the lattice
(2ND/N) we call OD2. Because

°adsorbed = e(CO+X) + 2e(Co++X) + 2e(C0++X2), (50)

Eq. 5 becomes

KCO + 2D 2'02 5a
fA(CO+ C0+, KM, KDI, KD2) = ( 1 Km C0 + KDI CO I - 0D2} + (Q OM, (Sla)

where

OD2 = 2z F'(z) (exact solution), (Sib)
or

= q I + 2qz l+q2z ) (Betheapproximation), (51c)
0 2= { +2z 1+4(q -1z (c

and

KD2 CO++
(1 + KM C0 + KDI C0 )2 (51d)

Here we have used Eqs. 21, 40, 43a, 46b, and 43b generalized to the case of two distinct
monomeric species. The first term on the right of Eq. 51a is the sum of surface-charge
densities due to 1:1-bound monovalent cations and 1:1-bound divalent cations, while the
second term is that due to 1:2-bound divalent cations. Eq. 51 a-d (in conjunction with Eqs. 6
and 8) give the solution to the problem of simultaneous 1:1 binding of monovalent cations, and
1:1 and 1:2 binding of divalent cations, to single-component phospholipid membranes.
We also give the solution for the case in which monovalent- and divalent-cation binding are

completely noncompetitive. This solution is relevant if, for example, monovalent cations
intercalate in the head-group region of the membrane rather than binding chemically to
specific phospholipid sites. In this case, assuming that n monovalent cations can associate with
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the membrane per phospholipid, where n > 1,

fA(CO+ Co+, KM, KDI, KD2) = n(Q)' 1 + KMCO+

+ () 1 + KDICO++ II - 0D2} + (Q)'YD2, (52a)

where 0D2 is evaluated as in Eq. 51 b or 51 c, and

KD2 C0 +

(1 + KDICo++)2 (52b)

When KD2 and 0D2 = 0, Eqs. 51 and 52 reduce to the competitive and noncompetitive 1:1
Stern isotherms, respectively, for the case of monovalent and divalent cations binding solely
with 1:1 stoichiometries.12
The analogue of Eq. 51 from the treatment by Nir et al. (1978) is

fA (C0, Co", KM, KD2) = (Q) 1 KMCO + KD2CO0+ (53)

THEORETICAL CURVES

In Fig. 6 we show some plots of '0 vs. log C+ + obtained from Eq. 8 for a PS membrane in 0.1
M monovalent salt. We illustrate the case of no monovalent-cation binding (KM = 0) as well
as the case KM = 0.8 liters/mol (M-'), a value that has been reported for the binding of Na+
to PS membranes (Nir et al., 1978).'3 In Fig. 6 we examine only 1:2 divalent-cation binding to
the membrane and hence set KDI = 0. The isotherms shown are those treated here in the Bethe
approximation (Eqs. 51 and 52) and those of the approximate treatment previously used by
Nir et al. (Eq. 53). For illustrative purposes we choose qKD2 = 100 M- , a 1:2 binding
constant which, as we shall show, is relevant for Ca+ + binding to PS membranes; we also set q
= 5, a value intermediate between the extremes 4 and 6. In Fig. 6, curves A and D are shown
for reference purposes: A is the Grahame curve, representing pure screening behavior with no
ion binding to the membrane (KM = KD2 = 0); D is the monovalent-cation Stern curve,
representing monovalent- but no divalent-cation binding to the membrane (KM = 0.8 M-',
KD2 = 0). Curves B and C are calculated, respectively, from the present treatment and from
that of Nir et al. with KM = 0 and qKD2 = KD2 = 100 M-l.'4 The coincidence of curves B and C
in the dilute C+ + limit is ensured by this choice of the relative KDs (cf. Fig. 5 and Eq. 47).
Curves E and F are the generalizations of B and C where monovalent-cation binding is
included. Curve G is obtained from the noncompetitive version of the present treatment with
KM = 0.8 M-', qKD2 = 100 M-', and n = 1 (Eq. 52).'4 Curves E, F, and G reduce to curve D,

'2Actually, we have permitted n: I adsorption of monovalent cations in the noncompetitive case (Eq. 52).
'3Other recently reported values for KM (Na . PS) are 0.6 M-' (Eisenberg et al., 1979), 0.4 - 1.2 M-'(Kurland et al.,
1979), and 0.6 M-' (Ohki and Kurland, 1981).
'4We employ the notation KD2 to denote the value of KD2 used in the Nir et al. isotherm. We also employ the notation
KD2 and KDI to denote, respectively, the values of KD2 and KDI used in the noncompetitive isotherms.
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FIGURE 6 Theoretical plots of membrane surface potential vs. log C"+ for a PS membrane in 0.1 M
monovalent salt. Parameters are T = 220C, A' - 1/272.7 e M-1/2 A-2, (Q) = 1/70 A -2, divalent salt is 2:1
(e.g. CaC12), KDI - 0. (A, B, C): No monovalent-cation binding (KM = 0); initial surface potential =
-128.1 mV (from Gouy equation). Curve A: KD2 = 0, Grahame equation. Curve B: qKD2 - 100 M',
present treatment, Bethe approximation (q = 5). Curve C: KD2 = 100 M-', Nir approximation (same as
Bethe, q = 1). (D, E, F, G): Monovalent-cation binding (KM = 0.8 M' ); initial surface potential = -78.6
mV (from Stem equation). Curve D: KD2 - 0, Stern equation for 1:1 monovalent-cation binding. Curve E:
qKD2 = 100 M', present treatment, competitive, Bethe approximation (q = 5). Curve F: KD2 = 100 M',
Nir approximation. Curve G: qKD2 = 100 M-1, present treatment, noncompetitive (n = 1), Bethe
approximation (q = 5).
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FIGURE 7 Theoretical plots of (a) membrane surface potential and (b) adsorbed charge density vs. log
C+ for a PS membrane in 0.1 M monovalent salt. Conditions are the same as in Fig. 6, with KM = 0.8
M- . Divalent-cation binding constants are chosen to produce coincidence of 'I' curves in the dilute C+ +
limit as described in the text. Curves D and E are the same as in Fig. 6. Primes denote curves whose KD
values have been changed from those in Fig. 6. In Fig. 7 b the horizontal line at 14.29 X 10- charge/A2
denotes an adsorbed charge density of I charge/70 A2, i.e., membrane neutrality. Curve D: KD2 = 0, Stern
equation for 1:1 monovalent-cation binding. Curve E: qKD2 = 100 MW, present treatment, competitive,
Bethe approximation (q - 5). Curve F': KD2 = 36.3 M ',treatment by Nir et al. Curve G': qKD2 = 4.78
M-', present treatment, noncompetitive (n = 1), Bethe approximation (q = 5). Curve H': KDI = 9.66 M ,

1:1 Stem treatment, competitive.



and curves B and C reduce to curve A, when KD2 = KD2 -KD2= 0; all curves reduce to curve
A when KD2 =KD2 = KD2= KM = 0.

Although our choice qKD2 = KN2 produces coincidence of curves B and C in the dilute
divalent-cation limit, it is clear from Fig. 6 that this choice does not also produce coincidence
of curves E, F, and G in the same limit. When monovalent cations are bound to the lattice, the
above correspondence of KDS no longer holds. To establish a basis for comparison among the
various treatments in the presence of monovalent-cation binding, it is necessary to scale the
various KDs so that the theoretical isotherms coincide in the dilute C+ + limit.
The requisite KD scaling can be accomplished by calculating, for each treatment, the slope

of '0 vs. C+ + in the limit of small C+. The results are given in Appendix C. With reference to
Fig. 6, Eq. C4 a-c show that the initial slopes for curves F and G coincide with that for curve
E (qKD2 = 100 M-1) when KD2 = 36.3 M-' and qKD2 = 4.78 M-', respectively. These
isotherms are plotted in Fig. 7 a (the primes denote rescaled curves), where we also include
the case of 1 :1 divalent-cation binding (curve H') for which Eq. C4a yields KDI = 9.66 M-'. In
Fig. 7 b we plot adsorbed charge density as a function of log C"+ for the same cases,
indicating both the divalent and the total (monovalent + divalent) adsorbed charge.

COMPARISON WITH EXPERIMENTAL DATA: HIGH C` REGIME

A salient feature of curve H' in Fig. 7 a is the fact that, at sufficiently high C+ +, 40 becomes
positive. This feature is characteristic of either noncompetitive, or 1:1 competitive, binding of
divalent cations to the PS membrane. For the competitive case the value of C +̀ at which I0
crosses zero can be shown to equal 1/KD, under quite general conditions, including the
situation in which both 1:1 and 1:2 binding occur simultaneously (S. McLaughlin, per-
sonal communication).'5 Recent measurements of the electrophoretic mobilities of PS
vesicles in 0.1 M NaCl solution, as a function of divalent-cation concentration, show that the r
potentials (and hence '0) indeed cross zero for [Ca++] and [Mg++] in the vicinity of C`+ =

0.1 M (McLaughlin et al., 1981). Hence KDI for the binding of these cations to PS is of order
10 M '. The curve H' in Fig. 7 a closely approximates this situation.
Although the sign reversal of I0 at high C`+ is strong evidence for 1:1 binding, it does not

exclude the possibility of concomitant 1:2 binding, whose effects would be manifest primarily
in the low C`+ regime. In Fig. 8 we illustrate the phenomenon of simultaneous 1:1 and 1:2
binding by plotting a family of isotherms having a fixed KD1 = 10 M` and various values of
KD2. The curves are calculated from Eq. 8 with the adsorption isotherm given by Eq. 51a in
the Bethe approximation (Eqs. 51c and 5 1d). Conditions, including the binding of C+ (KM =
0.8 M-'), are the same as in Fig. 7. It is clear from Fig. 8 that the 1:2 binding does not affect
the value of C+ + at which I0 reverses sign. The concomitant 1:2 binding causes a decrease in
slope of the 1:1 isotherm, extending its domain toward lower values of C+ +.

COMPARISON WITH EXPERIMENTAL DATA: LOW C` REGIME

In the dilute to moderate range of C`+ concentrations, it is evident in Fig. 7a that
experiments which measure I0 (or shifts of '0) vs. log C+ + are not likely to distinguish among

'5This fact is also seen from Eqs. 5la, 8, and 4 whenfG - 0.
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monovalent salt with 1:1 monovalent-cation binding (KM1 0.8Mp), 1:1 divalent-cation binding(KDIae
0 Ma-t ), and simultaneous 1:2 divalent-cation binding.CMn1:iopns arethieste as inFt . 6. All curves are

calculated from thepresent treatment inthe Bethe approximation (q - 5),competitive case.Curve A
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salt is 2:1 (i.e., CaC12). Curve S: KDI -12.0 M-', 1:1 competitive Stern treatment (same as present
treatment with KD2 -0). Curve S*: KDIj 2.64 MW, 1 :1noncompetitive Stern treatment (n - 1); same as

present treatment with KD*2- 0. Curve N: KDN2 48.2 M~', treatment by Nir et al. Curve B*: KD*2- 1.06
M-', present treatment, noncompetitive (n -1), Bethe approximation (q - 5), KD*I - 0. Curve B: KD2 -

29.1 M-', present treatment, competitive, Bethe approxcimation (q - 5), KDI -0. Values of the association
constants for curves S*, N, B*, and B were determined by use of Eq. C4a-c to produce coincidence with
curve S in the dilute C++ limit.
FIGURE 9(b) Same as Fig. 9 a except that KM - 0.05 M-' (i.e., CsCI). All divalent-cation:membrane
association constants are the same as those in Fig. 9 a.
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the various treatments in terms of the shapes, or "best fits," of curves such as E, F', G', and H'.
Experiments in which the amount of adsorbed divalent cation is detected are similarly
incapable of differentiating among the isotherms by curve-fitting in the dilute to moderate
C+ regime. Experimental discrimination among the various treatments in this regime can be
accomplished by examination of the effects of monovalent-cation interference with divalent-
cation binding to the membrane. The extent of such interference is a direct manifestation of
the presence or absence of competition, the binding stoichiometry, and the lattice statistics
which distinguish the various treatments. Experimental divalent-cation isotherms ('' vs. log
C++) for a given divalent cation must be compared under conditions of different C+
concentrations and different monovalent-cation binding strengths (KM). The success of each
theoretical treatment at describing such isotherms with a fixed divalent-cation:membrane
association constant may then be ascertained.
An example is given in Fig. 9. Here we compare the case of Ca"+ binding to a PS

membrane in 1 M NaCl with Ca++ binding to PS in 1 M CsCl. We use KM(Na.PS) = 0.6
M-', KM(Cs-PS) = 0.05 M-' (Eisenberg et al., 1979),16 and KD,(Ca-PS) = 12 M`
(McLaughlin et al., 1981).17 From Eq. C4a-c we determine the KD values required by the
various treatments to fit the same data, in the dilute C+ + regime, as the competitive 1:1 Stern
treatment in 1 M NaCl (i.e., KDI = 12 M-'). The results are shown in Fig. 9 a, where indeed
all curves are nearly identical. In Fig. 9 b we show, using the KDs determined in Fig. 9 a, the
C+ + adsorption isotherms calculated for a monovalent electrolyte of 1 M CsCl. The isotherms
predicted by the various treatments differ enough to permit experimental discrimination.
However, the difficulty of differentiating between the 1:1 and 1:2 noncompetitive isotherms
should be noted.'8

SCALING LAWS

A more general method of discriminating among the treatments is based on the scaling-law
behavior of the various dimer adsorption isotherms. This method requires that experimental
data of '0 vs. log C+ + be obtained for a wide range of C+ electrolyte concentrations, including
the case in which C+ = 0. By use of Eqs. 3 and 8, the value of the adsorbed charge density is
determined for each value of C+, C++, and I'; and by use of Eq. 6a and b, the adsorbed
charge density, orfA, is determined as a function of C0+ and C0++. KM is assumed known, or it
can be determined fromfA vs. C0+ when C0++ = 0. We assume KDI = 0, which leads to simple
scaling laws. If monovalent- and divalent-cation binding are assumed competitive, Eq. 51a
enables us to determine the dimer coverage 0D2 as a function of C0o and C0o +. From Eqs. 5 ib

'6We choose this example because the differences illustrated here are enhanced in highly concentrated C+ solutions
having widely different values of KM.
'7The value KDI = 12 M-' was determined by McLaughlin et al. (1981), for Ca++ binding to PS in 0.1 M NaCl, by
use of the 1:1 competitive Stern treatment. We use this value here for illustrative purposes only. To our knowledge,
data on Ca"+ binding to PS membranes in various 1-M monovalent electrolytes are not yet available.
'8st has been pointed out (S. McLaughlin et al., 1981 and personal communication) that the question of 1:1 vs. 1:2
binding can be tested by incorporation of relatively inert lipids, such as cholesterol or glycerolmonooleate, into the
membrane, thus decreasing the PS density. An increase in the mean PS-PS distance should alter KD2 much more
drastically than KDI.
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and 5 Id it follows that

0D2(CO , CO+') = 0D2 0' (1 + KMCO+)2Y (54a)

The corresponding scaling law for the treatment by Nir et al. (cf. Eq. 53) is

0D2(CO+, CO++) = D2(, + KC+) (54b)

If the monovalent- and divalent-cation binding are assumed to be noncompetitive, then the
dimer coverage is determined from Eq. 52a, and Eqs. 5 lb and 52b yield the scaling law

0D2(CO , CO++) = 0D2(0O, (54c)

Scaling laws also exist when both KDI # 0 and KD2 = 0. However, experimental testing of
these laws requires prior determination of KDI in addition to KM.

In conclusion, we have presented a theory to treat the simultaneous adsorption of
monovalent cations and divalent cations by single-component charged membranes. This
treatment may be used to investigate whether monovalent- and divalent-cation binding are
competitive or noncompetitive, and whether the divalent cations obey binding stoichiometries
of 1:1, 1:2, or both concurrently.

APPENDIX A

Statistical-Mechanical Derivation of the Dimer Isotherm (Eq. 32)
The statistical mechanics of the adsorbed dimers can be approached in either of two ways. We can
regard the adsorbed dimers as an open system, with the dimers in solution acting as a particle reservoir,
in which case the appropriate ensemble for the description of the adsorbed dimers is the "grand
canonical ensemble," or we can treat the entire system (lattice + solution) as a closed system, described
by the "canonical ensemble." We choose to do the latter; furthermore, we assume that the dimers in
solution do not interact with each other (only in this case do we expect the law of mass action to hold),
and that the total number of dimers (which we call ND) is large compared with the number of sites N on
the lattice. We also treat the dimers as distinguishable, although it will be seen that this assumption does
not affect the answer. The probability that there are ND dimers on the lattice and ND - ND dimers in
solution is proportional to Z(ND), where

Z(ND) = (VD) gN(ND)ND!CND dVDND. (Al)

The binomial coefficient

(ND\ - VD! (2

(ND) ND!(JD - ND)! (A2)

counts the number of ways of choosing the ND adsorbed dimers out of a total population of ND dimers;
gN(ND) counts the number of ways of choosing the sites that are to be occupied by the dimers, and ND!
counts the number of ways of assigning ND dimers to ND sites. Finally, c is the partition function for a
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single adsorbed dimer (including a factor of 2 for the two ways in which a dimer can be placed on an
adsorption site) and d is the partition function for a single dimer in solution. If we had treated the dimers
as identical particles, the binomial coefficient and ND! would be omitted, but a factor I/(WND - ND)!
would now be necessary to compensate for the fact that dWDND has overcounted the phase space for the
solution; thus we would still obtain Eq. Al except for the factor WD! which does not depend on ND and
cancels out when the probabilities are normalized."9
The average number of adsorbed dimers is

2 NDZ(ND)ND z NZ(ND) (A3)

Since ND<< ND, we have

( MD-ND)! D(WD ) .. (.(ND - ND + 1) DND (A4)

and thus Eq. A3 becomes

N 2 ND9N(ND)(NDC1d)N MND 2 Ng(ND)(DC/(/d)ND

Eq. A5 is identical with Eq. 30 if we let

*DC (A6)
d

Comparing Eqs. 32b and A6 we see that the law of mass action and statistical mechanics yield identical
solutions of the dimer problem if we make the identification

KD[D] = D (A7)

The translational part of the partition function d includes a factor V(the volume of the solution); thus we
can write

jtDC(*D) (VC [D](C (A8)

where [D] is in molecular units. Eq. A7 thus becomes

Vc (A9)

Eq. A9 makes it clear that KD is independent of [D] but may depend on the temperature.
From Eq. A6 we can prove directly that the law of mass action (Eq. 20) describes the dimer

19It also does not matter whether the two ends of a dimer are regarded as distinguishable or indistinguishable, since
only the ratio c/d appears in the normalized probability distribution. If the two ends are indistinguishable, c is
diminished by a factor of 2; however, d includes as a factor the rotational partition function for a dimer in solution,
which is also diminished by a factor of 2 if the two ends are indistinguishable.
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adsorption reaction (Eq. 14). From Eq. A5, using the peaking property of the summand, we obtain

gN(ND + 1)(NDC/d) (AIO)
gN(ND)

Combining Eq. A10 with Eq. 28 (which is based only on counting), and using Eq. A8, we obtain

ND/N Vc

[D]NX2/N d' (All)

which is the law of the mass action (Eq. 20) with KD = Vc/d.

APPENDIX B

Statistical-Mechanical Derivation ofthe Monomer-Dimer Isotherm
(Eqs. 40 and 43)

We consider the closed system consisting of NM monomers and ND dimers (where NM >> N and ND >>
N). A monomer (or dimer) may be on the lattice or in the solution; there are no monomer-monomer,
dimer-dimer, or monomer-dimer interactions in the solution. The probability that there are NM
monomers and ND dimers on the lattice, and NM- NM monomers and ND - ND dimers in solution, is
proportional to Z(NM, ND) where

Z(NM,ND)== (NM)( ND) gN(NM, ND)NM!ND!aNMbNm-NmcNDd DND (BI )

The explanation of the factors in Eq. BI is identical with that of the corresponding factors in Eq. Al;
gN(NM, ND) is explained in Eq. 33, a is the partition function for a single monomer on the lattice, and b is
the partition function for a single monomer in solution. The average number of monomers on the lattice
is

Z Z NM Z(NM, ND)
Nm NM ND (B2)

Z Z Z(NM, ND)
NM ND

and similarly

ZE NDZ(NM, ND)
N NM ND (B3)

Z Z(NM, ND)
NM ND

If we define

NM -ND 'N-(
A(NM., ND) (NM - NM)! (ND - NDY N(ND) N

) (B4)
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and

w( =') ZA(NM,ND)(b) (d) ' (B5)

then Eqs. B2 and B3 become

(ma\ 89InW (B6)
M (b) d(a/b)

and

ND= (c) d(l/dW (B7)

Since NM >> N and ND >> N we can write

N/M! NNm and NVD! NND(8
(NM - NM)! M (ND ND) NND (B8)

and thus

gN- 2ND) JvMa)NM (NDC)ND
w = 37 gN(9ND) NMN b dJ

ND Nm

= Eg(ND) (1 + N)N 2ND(NDC)ND
ND b d

where

NDC/d (B9)
(1. + NVma/b)2 (9

The binomial theorem was used to perform the sum on NM. Using

lnW= Nln(1 + NMa/b) + NF(z) (B1O)

and Eqs. B6 and B7, we find

NM Nma/b (1 - 2zF'(z)) (Bi1)N I + Nma/b

and

ND = zF'(z), (B 12)
N

where

Z(1 +N a/b)2 (B13)
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Using Eq. B12 we can rewrite Eq. Bi 1 as

NM _ NMa/b (1 - 2ND)
N I1+JVma/bI N

B4

Eqs. B14 and B 12 are identical with Eqs. 40 and 43, which were derived from the law of mass action, if
we make the identifications

KM= - and K d (B15)
b KD =--d

Using the expressions given by Eqs. 35 and 34 for Nx and Nx29 it is readily shown that the law of mass
action (cf. Eqs. 19 and 20) is true, with the above identifications of KM and KD.

APPENDIX C

Slopes of '0 vs. C++in the Limit C+ + 0

We assume that

lim lo = fo + aC++, (C1)

where '0I is the value of '0 when C+ + = 0 and a is the slope that we wish to evaluate in terms of the
adsorption isotherms discussed in the text. The Grahame functionfG (C+,C+ +, I0) and the adsorption-
isotherm functionfG(C+, C++, *4, KM, KDI, KD2) are expanded to first order in C+ + about the values
fG (C,+ 0, '00) andfA (C+, 0, '00, KM, KDI, KD2), respectively. From Eq. 8 it is obvious that

fG(C , C , +0) -fG(C , 0, o00) = fA(C , C + ', KM, KDI 9KD2)

-fA(C+, OS *00. Km, KDI1 KD2) (C2)

The left and right sides of Eq. C2 are the linear terms in the first-order expansions of fG and fA,
respectively, and they contain a as a parameter. The resultant expression can be solved for a, yielding

kT{() - 2e'I'0a
e

exp kT h(C+,9 'I' KM, KDI, KD2)

'I'm A'
X x

2e*'I'xp- 2e*'I'
+w°°0 2 exp XkT+exp kT -(1{C+ (~pe4t0 e0 12)}

|C+(exp kT + exp kT -

x 0oo-Cl e(k epkT ) (Q)'KMCeexpkT
X 1fi ~e'4' -e'I 1/2 -e'foo\21(3
LtC+(exP kT +exP kT -2)} (I+KMC+exp kT

where, for the present treatment,

h(C+9* K, KDI9D2 KDI(2 + KMCOO+) qKD2
h(C ,4'oo,KM,KDI, KD2) = (1 + KMCoO+O)2 (1 + KMCOO+)3 (C4a)
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with

COO' -C+ exp kT

In Eq. C3, X is a parameter that depends on the valence symmetry of the C++ electrolyte. For a 2:1
electrolyte (e.g., MgCl2), X 2; for a 2:2 electrolyte (e.g., MgSO4), X -1 (cf. Eqs. 3a and 3b). For the
treatment by Nir et al. (1978) the expression for a is the same as Eq. C3, but instead of Eq. C4a one
has

KN
h(C , Woo. KM, KD2) = (1 + Km Coo+ )2 (C4b)

For the noncompetitive isotherm,

h(C+,oo,KM, KD, KD2) = 2KDj + qKD2 (C4c)

Under any conditions, a can be evaluated from Eqs. C3 and C4. However, if one is only interested in
finding relative values of the various KDs which produce identical values of a under fixed C+, '0I, and
KM conditions, it is sufficient to equate Eq. C4a-c to one another and to solve for the relative KDs. This is
the procedure adopted for Figs. 7 a and 9 a.
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