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Neurons have significant potential for the homeostatic regulation
of a broad range of functional features, from gene expression to
synaptic excitability. In this article, we show that dendritic mor-
phology may also be under intrinsic homeostatic control. We
present the results from a statistical analysis of a large collection
of digitally reconstructed neurons, demonstrating that fluctua-
tions in dendritic size in one given portion of a neuron are
systematically counterbalanced by the remaining dendrites in the
same cell. As a result, the total dendritic measure (e.g., number of
branches, length, and surface area) of each neuron in a given
morphological class is, on average, significantly less random than
would be expected if trees (and their parts) were regulated
independently during development. This observation is general
across scales that range from gross basal�apical subdivisions to
individual branches and bifurcations, and its statistical significance
is robust among various brain regions, cell types, and experimental
conditions. Given the pivotal dendritic role in signal integration,
synaptic plasticity, and network connectivity, these findings
add a dimension to the functional characterization of neuronal
homeostasis.
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Central nervous system neurons have significant homeostatic
control of essential functions, such as synaptic excitability (1),

metabolic regulation (2), gene expression (3), and response to
injury or pathology (4, 5). Moreover, molecular homeostasis in the
cytoskeleton contributes to the architecture and survival of den-
drites and axons (6).

Dendrites play a crucial role in signal integration, synaptic
plasticity, and network connectivity (7). In the mammalian cortex,
dendritic size is a primary determinant of the neuron’s electrotonic
properties (8, 9) and number of input synapses (10, 11). Dendritic
size is variable among both neuronal classes and individual cells of
each class. Several factors, both extrinsic and intrinsic to the neuron,
could be involved in the regulation of dendritic size (12). These
factors include genetic control, chemical or electrical signals from
incoming fibers, other local humoral influences, physical con-
straints in the tissue, and competition for limited resources.

If various components of a neuron (e.g., individual dendritic
trees) were each independently regulated, fluctuations in the size of
one component would have, on average, no effect on other com-
ponents. If the trees of a cell were mainly coregulated by common
factors (e.g., local external cues or genetic instructions), however, a
larger-than-average size of one component would predict larger-
than-average sizes of other components in the same cell (e.g.,
people with big hands also tend to have big feet). In contrast, if the
various parts of a cell were mutually regulated by internal compe-
tition, fluctuations in size of one component would tend to be
compensated by opposite deviations in the rest of the neuron,
leading to a form of morphological homeostasis.

The routine 3D digital reconstruction of neuronal morphology
has recently provided the neuroscience community with high-
quality single-cell anatomical data suitable for quantitative analysis
(13). Using a large collection of such data, we made a series of
consistent observations on dendritic size (number of branches, total
length, and surface area) in the rat hippocampus and monkey
neocortex, under a variety of experimental conditions. In particular,
we analyzed three levels of structural organization: (i) the balance

between entire basal and apical arborizations in single pyramidal
cells, (ii) the decomposition of an arborization in individual trees
originating from the soma, and (iii) the partition of branching
subtrees into two daughters and four granddaughters.

We show that, at each of these levels, dendritic size appears to be
under intrinsic homeostatic control, exhibiting significantly higher
global stability than could be expected if the regulation of local
components were not coordinated during development. Fluctua-
tions in dendritic size in a given portion of a neuron are systemat-
ically counterbalanced by the remaining dendrites in the same cell.
As a result, the total dendritic extension of each cell is stabilized for
a given morphological class and anatomical location.

Results
The first level of structural organization we investigated is the
partitioning of individual pyramidal cells of the rat hippocampus
into basal and apical arborizations. The dendritic size of pyramidal
cells depends on their position in the CA3 and CA1 fields (14). For
example, CA3 pyramidal cells have smaller dendritic fields near the
hilus and larger trees close to CA1 (Fig. 1A). An analysis of the
Amaral CA3 data set (see Materials and Methods) showed that both
apical and basal dendrites follow the same trend, with the total
number of their terminations (their degree) increasing as a function
of the somatic position (X) in the field (Fig. 1B). This dependence
was fitted with quadratic functions (polynomials of power between
2 and 5 yielded similar results).

The fluctuation of size in each arborization can be defined as the
difference between the measured value for the given cell and
the expected value for the corresponding anatomical position, i.e.,
the deviation of the experimental point from the fitted line. When
such residual degree was analyzed separately for basal and apical
trees (Fig. 1C), a strong and significant negative correlation was
observed between the two measures (R � �0.55; P � 0.005). If
neuronal size primarily resulted from tight genetic control or from
the competition with surrounding cells for external resources, a
positive correlation would be expected between fluctuations of
basal and apical arborizations. In principle, the observed negative
correlation might be explained by anatomical constraints, such as
the somatic depth within the pyramidal layer. For example, neurons
in which the soma is closer to the stratum oriens might have more
space to grow toward the stratum radiatum, resulting in larger apical
and smaller basal arborizations (and vice versa for somas located on
the opposite extreme of the pyramidal layer). We tested this
possibility directly (Fig. 1D) and found no correlation between
apical and basal fluctuations and the somatic depth (position Y) in
the pyramidal layer (�R� � 0.1; P � 0.1). Thus, the observed negative
correlation between the size fluctuation of basal and apical ar-
borizations in CA3 pyramidal cells appears to be due to an internal
homeostatic mechanism.

To test the generality of this finding, we analyzed the other
archives of pyramidal neurons for which the anatomical position of
the soma is precisely known: another data set from the same
experimental preparation but a different hippocampal region
(Amaral CA1) and a set of neurons from the same hippocampal
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region (CA3) but reconstructed with different experimental tech-
niques (Turner CA3). In both cases (Fig. 1E), we observed a
significantly negative correlation between the residual degrees of
basal and apical arborizations (R � �0.68 and P � 0.001 for Amaral
CA1; R � �0.80 and P � 0.0005 for Turner CA3). We further
characterized fluctuations in the size of basal and apical arboriza-
tion by measuring dendritic length instead of the number of
terminals (Fig. 1F). Negative trends in the correlation between
basal and apical residual length were observed in all three data sets
(R � �0.42 and P � 0.043 for Amaral CA3; R � �0.60 and P �
0.005 for Amaral CA1; R � �0.36 and P � 0.183 for Turner CA3).
Similar observations held for other measures of dendritic size, such
as surface area (not shown in Fig. 1), albeit with lower and less
consistent statistical significance (R � �0.16 and P � 0.446 for
Amaral CA3; R � �0.54 and P � 0.015 for Amaral CA1; R � �0.38
and P � 0.161 for Turner CA3).

We continued this analysis at a lower level of structural organi-
zation, namely the composition of an individual arborization (e.g.,
the basal dendrites of a pyramidal cell) as a set of single trees
stemming from the soma. We first observed that in CA3 pyramidal
cells with a larger number of basal trees, the individual trees tend
to be smaller (Fig. 2A), which is consistent with the general notion
of morphological homeostasis.

What further can be inferred about any mutual dependence of
the size of individual trees in cells with the same number of trees?

Consider the total size of the arborization of each cell (i.e., the sum
of the sizes of all trees in that cell’s arborization). If the size of
individual trees within a cell were positively correlated, cells with a
larger tree would tend to have other larger trees, and cells with
smaller trees would tend to have other smaller trees. In this
scenario, if trees were shuffled among cells, larger and smaller trees
would be mixed, causing on average a reduction in the variance of
the total arborization size in the population. Alternatively, if the size
of trees were independent of each other, tree shuffling among cells
would not change the variance of the total arborization size in the
population. Finally, if the size of trees were negatively correlated
(i.e., cells with a greater-than-average tree would probably also have
a smaller-than-average tree), tree shuffling would cause an increase
in the variance of the total arborization size in the population.

To discriminate among these alternative possibilities, we per-
formed multiple runs of random shuffling of basal trees, among
neurons with the same number of basal trees, within the Amaral
CA3 pyramidal cells. The results, quantified in terms of degree (Fig.
2B), clearly demonstrated a consistent and highly significant in-
crease in the standard deviation of total arborization size (original
standard deviation, 9.1; average standard deviation of 1,000 shuffle
runs, 11.9; percent increase, �30.77%; P � 0.001). The sizes of
individual basal trees within a given pyramidal cell are thus nega-
tively correlated with each other, again consistently with an internal
homeostatic control of dendritic morphology.

Fig. 1. Morphological homeostasis between apical
and basal dendrites in hippocampal pyramidal cells.
(A) Schematic representation of the one apical (Left)
and five basal trees of a pyramidal cell. The numbers at
the bottom are the count of terminal tips (degree).
(Inset) Transversal position of the pyramidal cell in the
hippocampus. The thick bar perpendicular to the cy-
toarchitectonic layers indicates the CA3�CA1 bound-
ary. The position within CA3 and CA1 can be quanti-
fied as a percentage. (B) Apical and basal degree of
Amaral CA3 pyramidal cells vs. their anatomical posi-
tion (X � 100 correspond to field CA2). Each point of
the full lines corresponds to one of the 23 cells. The
dashed lines are quadratic fits. (C) Scatter plot of the
difference between measured and fitted data (resid-
ual degrees). Fluctuations in basal and apical size are
significantly anticorrelated. (D) Residual degree of
basal (�) and apical (E) arborizations as a function of
the somatic depth in the pyramidal layer (no correla-
tion observed). (E) Scatter plot of residual degrees for
Amaral CA1 cells (�) and Turner CA3 cells (�) analyzed
as in panels A–C. A negative correlation is observed in
both cases (see text for R and P values). (F) Scatter plot
of residual lengths for Amaral CA3 cells (●), Amaral
CA1 cells (�), and Turner CA3 cells (�) (values were
divided by 10). A negative correlation is observed in all
three cases (see text for R and P values).
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The analyses of the negative correlation between tree size and the
number of trees per cell and of the percent increase in the standard
deviation of total cell size on shuffling of trees among cells with the
same number of trees (�STD%) were repeated on all available data
sets. In particular, we considered two additional groups of CA3
pyramidal cells (including the group used in Fig. 1 E and F), five
groups of CA1 pyramidal cells (including the group used in Fig. 1
E and F), two groups of dentate granule cells, and four groups of
pyramidal cells in the monkey prefrontal cortex. Moreover, we
repeated both tree-level analyses by using the total length and
surface area instead of degree as measures of size (Table 1).

In all 14 cell classes and for each morphometric measure, the
correlation between tree size and the number of trees per cell was
negative, and in the majority of these cases, this measure was
statistically significant. Interestingly, the average correlation factor
over the 14 groups of cells was very close for the three measures of
size (�0.26 for degree, �0.27 for length, and �0.25 for area). Tree
shuffling among cells with the same number of trees also resulted
in a statistically significant percent increase in the standard devia-
tions of cell size in the majority of neuronal classes and for each
measure of size. This phenomenon was more prominent for degree
and length (an average �STD% of 23 and 19, respectively) than for
area (an average �STD% of 6).

Finally, we moved our analysis to the level of subtrees (see
Materials and Methods). We call a subtree the portion of an

arborization that stems from a given branch (as opposed to a whole
tree, which stems from the soma). A process similar to the tree
shuffling described above can be applied to any bifurcation p in
which two daughter branches, l and r, each have at least two
additional daughters (a and b and c and d, respectively) (see Fig.
3A). The idea of morphological homeostasis implies that fluctua-
tions in the size of the daughters of one branch (e.g., a and b) would
tend to compensate fluctuations of the opposite sign in the daugh-
ters of the other branch (c and d). In this case, randomly swapping
either a or b with c or d would lead to a more symmetric distribution
of dendritic size between the two daughters of p.

This phenomenon can be described by using the topological
measure of partition asymmetry, Ap (15), again using the degree
as a measure of dendritic size. In particular, a quantity we called
excess partition asymmetry, Ep, represents the difference be-
tween the partition asymmetry actually measured in a branch
and the average of the partition asymmetry computed for the
same branch after all possible shuffling of the granddaughter
branches (Eqs. 1–3 in Materials and Methods). If the subtrees of
the daughters of a given branch were mutually independent, Ep
would be, on average, zero. In contrast, if a and b were negatively
correlated with c and d (revealing morphological homeostasis),
Ep would tend to be positive.

For all cell classes analyzed in this study, the average of the excess
partition asymmetry over all dendritic subtrees was systematically

Fig. 2. Morphological homeostasis among individual basal trees in hippocampal pyramidal cells. (A) Analysis of basal tree degree as a function of the number
of trees in the neuron for Amaral CA3 cells. Each point corresponds to an individual tree (small horizontal scattering has been added to improve visualization);
the line represents the averages across a vertical set. The negative correlation is statistically significant (R � �0.25; P � 0.001). (B) Histogram of changes in the
standard deviation of total basal degree in Amaral CA3 cells on random shuffling of basal trees among neurons with the same number of trees. The average
of 1,000 runs is significantly greater than the original value of standard deviation (gray bar). The corresponding percent increase is labeled �STD% in Table 1.

Table 1. Morphological homeostasis among individual dendritic trees in 14 classes of neurons

Database

No.
of

cells

No.
of

trees

Size per no. of tree correlation (P value) �STD% (P value)

Degree Length Area Degree Length Area

1. Amaral CA3 24 167 �0.25 (0.00112) �0.21 (0.00689) �0.22 (0.00366) 11.88 (�10E-5) 11.02 (�10E-5) 9.28 (�10E-5)
2. Amaral CA1 20 116 �0.21 (0.02068) �0.26 (0.00491) �0.26 (0.00435) 20.03 (�10E-5) 21.70 (�10E-5) 19.60 (�10E-5)
3. Barrionuevo CA3 8 53 �0.12 (0.40913) �0.11 (0.41578) �0.24 (0.08552) 30.60 (�10E-5) 56.43 (�10E-5) 7.50 (�10E-5)
4. Gulyas CA1 18 108 �0.18 (0.06170) �0.19 (0.05098) �0.20 (0.03429) 43.92 (�10E-5) 48.49 (�10E-5) 56.63 (�10E-5)
5. Wearne Local Young 20 130 �0.16 (0.07359) �0.16 (0.06147) �0.16 (0.06258) 6.01 (�10E-5) 22.14 (�10E-5) 24.65 (�10E-5)
6. Wearne Local Old 17 106 �0.24 (0.01414) �0.25 (0.01029) �0.24 (0.01453) �24.31 (�10E-5) �19.81 (�10E-5) �20.59 (�10E-5)
7. Wearne Long Young 24 188 �0.20 (0.00511) �0.17 (0.01857) �0.18 (0.01409) 17.12 (�10E-5) 23.62 (�10E-5) 7.75 (�10E-5)
8. Wearne Long Old 19 134 �0.04 (0.64189) �0.06 (0.50890) �0.05 (0.56972) �1.39 (0.03542) �8.47 (�10E-5) �7.41 (�10E-5)
9. Claiborne DG 36 144 �0.36 (0.00001) �0.47 (0.00000) �0.43 (0.00000) 14.01 (�10E-5) 5.06 (�10E-5) 5.05 (�10E-5)

10. Turner CA1 Vivo 24 73 �0.42 (0.00023) �0.46 (0.00004) �0.29 (0.01421) �4.50 (�10E-5) �4.50 (�10E-5) �22.83 (�10E-5)
11. Turner CA1 Aged 15 39 �0.50 (0.00113) �0.51 (0.00093) �0.49 (0.00151) �0.33 (0.56265) 23.99 (�10E-5) 18.07 (�10E-5)
12. Turner CA1 Vitro 10 31 �0.17 (0.35267) �0.20 (0.28530) �0.15 (0.42870) 172.97 (�10E-5) 57.93 (�10E-5) �0.87 (0.76409)
13. Turner CA3 15 69 �0.23 (0.05352) �0.22 (0.07268) �0.26 (0.03165) 0.42 (0.40112) �0.51 (0.25299) �2.56 (�10E-5)
14. Turner DG 19 42 �0.56 (0.00010) �0.58 (0.00006) �0.37 (0.01490) 17.77 (�10E-5) 28.14 (�10E-5) �6.31 (�10E-5)

The size per no. of tree correlation values in the degree column correspond to the analysis in Fig. 2A. The �STD% values constitute the percent increase of
the standard deviation of cell size on random shuffling (corresponding to the analysis of Fig. 2B).
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positive, in most cases with very high statistical significance (Fig.
3B). When length and surface area were used instead of the degree
as a measure of dendritic size, the average excess length and area
asymmetries also revealed systematically positive and largely sig-
nificant values over all 14 available cell groups (Fig. 3 C and D). The
excess partition was also measured from subtrees grouped by their
order (i.e., number of bifurcations from the soma) and degree (size
of the subtree). The excess partition was positive in almost all
subtree groups and, interestingly, failed to reveal any statistically
significant variation with respect to either the degree or the order
of the subtrees (�R� � 0.1; P � 0.5). This finding suggests that the
phenomenon of morphological homeostasis is generally robust for
all subtree sizes and at any distance from the soma.

The results of this analysis are by no means arithmetically trivial
consequences of the definition of asymmetry or of the general
structure of binary trees. To illustrate this, we artificially generated
a set of stochastic neurons in which trees and subtrees were all built
independent of each other (see Materials and Methods). The
average excess partition asymmetry, �Ep	, computed over all 4,128
branches with two bifurcating daughters in this data set, was 0.00,
with the standard deviation 0.20 (the assessment of positivity was
nonsignificant; P � 0.18). The mean partition asymmetry (
SD) in
this data set was 0.79 
 0.32. Additionally, selecting the branching
probability as a function of branch order (16) allowed the manip-
ulation of the mean partition asymmetry within a broad interval
(including 0 and the whole range of biologically plausible values)
while leaving �Ep	 � 0.

Discussion
Neuronal dendrites are instrumental in the formation and main-
tenance of network connectivity, the integration of electric inputs,
and the regulation of synaptic plasticity. It should not be surprising,
therefore, that sophisticated molecular cascades are involved in the
control of dendritic growth (6, 17). In this study, we provided
evidence that the size of dendrites may be under internal homeo-

static control. In particular, fluctuations in dendritic number,
length, or membrane area in one part of a neuron tend to be
counterbalanced in other parts of the same neuron. These obser-
vations are consistent across scales, from overall basal�apical
arborizations to individual (sub)trees of any size. The results are
also considerably robust on the basis of a large data set of �250
neurons from two species, two brain regions and four subregions,
five cell types, several ages, six independent laboratories, and
several different preparation methods. Preliminary analysis of a
small number of cerebellar Purkinje cells indicated positive excess
partition asymmetry (data not shown), but whether the evidence for
morphological homeostasis extends beyond cortical regions and�or
to inhibitory neurons remains to be verified.

These results must be considered in the broader context of
homeostatic control of neuronal functions. For example, reversible
regression of hippocampal principal dendrites induced by chronic
stress produces only small alterations of somatic firing (18) com-
pared with what would be expected given such morphological
effects (19). Thus, cells have a means to sustain damage, as
physiological homeostasis compensates for morphological changes.
More generally, average neuronal activity levels are maintained by
homeostatic plasticity mechanisms that dynamically adjust synaptic
strengths in the correct direction to promote stability (1). Our
findings, complementary to the above, characterize compensatory
phenomena at the morphological level that may be vital for the
functional sustainability of cortical neurons.

These mechanisms may be in effect during early development
as well as in adult neurons, which in the cortex are known to
exhibit morphological plasticity (7, 20, 21). For example, whereas
hippocampal neurogenesis may be essential in learning (22), the
proper control of the new neuron shape and size could be critical
for their functional integration in the preexisting network. Our
analysis demonstrates that the total dendritic size of each cell in
a given morphological class exhibits significantly higher stability
than if trees and their parts were regulated individually and

Fig. 3. Morphological homeostasis in individual subtrees. (A) Schematization of the partition of the degree p of a bifurcating branch into the two daughters
l and r and the four granddaughters a, b, c, and d. (B) Excess partition asymmetry for all data sets (1, Amaral CA3; 2, Amaral CA1; 3, Barrionuevo CA3; 4, Gulyás
CA1; 5, Wearne Local Young; 6, Wearne Local Old; 7, Wearne Long Young; 8, Wearne Long Old; 9, Claiborne DG; 10, Turner CA1 Vivo; 11, Turner CA1 Aged; 12,
Turner CA1 Vitro; 13, Turner CA3; 14, Turner DG). Averages (gray bars) and standard errors (white tops) were calculated over all bifurcations with two nonterminal
daughters in all cells within each class. The numbers of such bifurcations and the P value assessing positivity of the mean are indicated over each bar. (C and D)
A representation of the same analysis performed using length asymmetry and area asymmetry instead of partition asymmetry, respectively.
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independently. Such morphological homeostatic control might
be necessary and sufficient for a neuron to be both adaptive and
functionally sustainable.

An important question relates to the biochemical and biophysical
mechanisms underlying these observations. We have excluded
several possible explanations that are based on extrinsic factors. For
example, the anatomical position of the soma in the cytoarchitec-
tural layer, which is related to the volume available for growth, has
no correlation with the morphological homeostasis in the basal�
apical partition of pyramidal cells (Fig. 1D). Another potential
candidate is the response of a cell to incoming fibers and their
activity. Although this or other extrinsic factors could conceivably
account for one of the observed phenomena in selected cell classes
(e.g., at the level of the basal�apical partition), it is unclear how they
could explain all the results reported here. In particular, local
extrinsic factors would instead lead to an opposite-sign effect, as
nearby components of the dendritic arborization (e.g., subtrees)
would be under similar influences.

A more likely mechanism is based on intrinsic intracellular
factors. A centralized (e.g., genetic) control of growth would result
in correlated, rather than anticorrelated, fluctuations within indi-
vidual cells. The observed results are instead compatible with the
concept of limited intracellular resources that are nonuniformly
distributed along the dendritic tree. Morphological homeostasis
could result from a direct competition among the various compo-
nents of an individual neuron at multiple scales. Although the
metabolic cost of morphological growth may be incurred locally
(e.g., at the growth cone level), the balance would be experienced
globally (at the subtree, tree, and whole neuron level), limiting the
abilities of other parts of the same cell to develop further.

Other studies implicate competition as an important factor in
neuronal development (23). The computational model developed
by van Pelt and colleagues (15, 16) describes dendritic growth as a
stochastic process of segment branching. In this model, the branch-
ing probability is modulated by the number of terminals in the
growing tree, consistent with the idea of competition for limited
resources. Such a lower-level mechanism can be made explicit by
introducing a quantitative dependence of branching on the con-
centration of chemicals produced in the soma and transported to
the terminals either actively or by diffusion (16, 23).

It is tempting to speculate on the nature of the limiting factor that
eventually determines dendritic size and its distribution in the cell
on the basis of the comparison of different morphometric measures
of the observed homeostasis. In the analysis of both the overall
basal�apical arborizations (Fig. 1) and shuffling of individual trees
(Table 1), a stronger effect was observed with respect to the number
of branches than to surface area. This finding could indicate that the
developmental cost associated with branching is a more stringent or
direct determinant of shape than that of membrane expansion.
However, the lower precision and reliability in the measurement of
dendritic diameter compared with the count of terminal tips (13)
could also explain the different statistical significance.

The direct experimental investigation of the mechanisms of
early dendritic growth and branching remains challenging. Thus,
mechanistic inferences, based on the analysis of adult morphol-
ogies such as those formulated here, must be taken seriously. In
particular, the hypothesis that the dendritic-size balance among
the various component of a neuron is due to intrinsic rather than
extrinsic constraints can be experimentally disproved by carrying
out the same quantitative analysis in acutely dissociated cultures
of the same cellular classes. If these homeostatic phenomena are
a secondary consequence of somatic packing, laminated incom-
ing fibers, or parallel arrangement of dendrites, they should all
disappear in a dish. A more direct experimental test could
involve the use of wide-field, time-lapse visualization of micro-
tubule growth (24). We hypothesize that fluctuations in the
growth rate of one branch with respect to the population average
would tend to be compensated within the same neuron. Inter-

estingly, axonal outgrowth in tissue culture clearly shows anti-
correlated behavior in the individual growth cone velocity and
acceleration (25), suggesting that morphological homeostasis
may not be limited to dendritic arborizations.

Materials and Methods
All 3D morphologies analyzed in this study were complete digital
reconstructions of intracellularly characterized, injected, and
stained neurons. In these files, dendrites are represented as
(branching) chains of segments. Each segment is connected to one
other segment in the path to the soma and may be connected on the
other extremity to 2, 1, or 0 other segments (bifurcation, continu-
ation point, or terminal tip, respectively). All segments are de-
scribed in the file by their ending point coordinates, diameters, and
connectivity to other segments (13). The 14 experimental data sets
and 1 simulated data set used in this research are described below.

Amaral CA3 and CA1. Twenty-four CA3 and 23 CA1 pyramidal cells
from the rat hippocampus were used (14). These neurons were
injected and reconstructed from whole slices and kindly provided
by D. G. Amaral (University of California, Davis) for public
distribution. The X somatic positions along the transversal pyra-
midal layer (Fig. 1A Inset) are explicitly reported in the original
reference for each neuron (14). We extracted the Y somatic
positions in the transversal direction perpendicular to the pyramidal
layer from the digital line drawing of the hippocampal boundaries
in each reconstruction file. In particular, we calculated the distance
of the center of the soma from the external boundary of the
pyramidal layer, normalized by the local thickness of the pyramidal
layer. These measures range from �2 to 2, with most somata
centered within the layer (�1 to 1).

Claiborne DG. Thirty-six granule cells from the rat dentate gyrus
used in our previous studies (26, 27) were from the internet archive
of B. J. Claiborne (University of Texas, San Antonio, TX). These
neurons were injected and reconstructed from whole slices (9, 20).

Barrionuevo CA3. Eight CA3 pyramidal cells from the rat hip-
pocampus injected and reconstructed from whole slices (28)
were kindly provided by G. Barrionuevo (University of Pitts-
burgh, Pittsburgh).

Gulyás CA1. Eighteen CA1 pyramidal cells from the rat hippocam-
pus injected in vivo and reconstructed from serial sections were
used (29).

Turner CA3. Fifteen of 18 CA3 pyramidal cells from the rat hip-
pocampus injected in vivo and reconstructed from serial sections
were studied (30). Three cells (60a, 56b, and 48b) were excluded a
priori from analysis because their anatomical locations (posterior�
ventral) were inconsistent with the rest of the set. Reconstructions
were obtained from www.compneuro.org. We measured the X
somatic positions along the transversal pyramidal layer from the
figures from ref. 30. A priori with respect to any data analysis (and
in analogy with the Amaral data sets), we assigned the position
values of 0%, 50%, and 100% in correspondence to the CA3�hilus
boundary, the sharp angle in field CA3b, and the CA3�CA2
boundary, respectively.

Turner CA1 Vivo, CA1 Aged, and CA1 Vitro. Twenty-four CA1 pyra-
midal cells from young rats injected in vivo and reconstructed from
serial sections (Turner CA1 Vivo), 15 CA1 pyramidal cells from
aged rats injected and reconstructed from whole slices (CA1 Aged),
and 10 CA1 pyramidal cells from young rats injected and recon-
structed from whole slices (CA1 Vitro) (31) were studied. Files were
obtained from the same archive as the Turner CA3 cells and
partially edited for morphological integrity (32).
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Turner DG. Nineteen granule cells from the rat dentate gyrus (33)
were obtained from the same archive as the Turner CA3 cells.

Wearne Long Young, Long Old, Local Young, and Local Old. Twenty-
four Wearne Long Young, 19 Wearne Long Old, 20 Wearne Local
Young, and 17 Wearne Local Old pyramidal cells from macaque
monkey prefrontal cortex, reconstructed from whole slices, were
used (21).

Finally, one simulated data set was created by randomly gener-
ating 1,000 tree topologies with the following algorithm. A tree
starts as a single open node. At each step, a random open node is
selected. With an equal probability of 50%, the selected node can
either bifurcate, producing two daughter open nodes, or terminate,
becoming a closed node. The process terminates when there are no
more open nodes or the limiting size is exceeded. The resulting tree
is added to the data set if its degree is within the range of 10–100
and is discarded otherwise.

All statistical analysis was carried out in the MATLAB environ-
ment (MathWorks, Natick, MA) on a Pentium III (667 MHz, 128
Mb RAM). The code is available on request.

Analysis of Subtrees. Consider a bifurcation, p, leading to two
subtrees, l and r, with at least one additional bifurcation each (Fig.
3A). Before the degrees of the four granddaughter branches (a, b,
c, and d) are known, each granddaughter can be assumed to have
the same expected degree m (also unknown). Fluctuations in the
size of the granddaughters can be defined as the deviations of a, b,
c, and d from m.

If the subtrees of a given branch were independent of each other,
fluctuations in a, b, c, and d would be uncorrelated. If, in contrast,
fluctuations in the daughters of one branch (a and b) tended to
compensate for fluctuations of the opposite sign in the daughters
of the other branch (c and d), a random swap of either a or b with
c or d would lead to a more symmetric distribution of degrees
between the two daughters (l and r) of p. This measure can be
expressed by using the following topological definition of partition
asymmetry Ap (15):

Ap �
� l � r �

l � r � 2
�

�a � b � c � d �
a � b � c � d � 2

. [1]

All possible permutations of the set {a, b, c, d} result in three
potentially distinct values of the partition asymmetry. Therefore,
in addition to Eq. 1:

A�p �
�a � b � c � d �

a � b � c � d � 2
,

[2]

A �p �
�a � b � c � d �

a � b � c � d � 2
.

Now, we can define the excess partition asymmetry, Ep, of a
branch as the difference between the actual partition asym-
metry Ap and the average of the partition asymmetry com-
puted for the same branch over all permutations of the
numbers a, b, c, and d (or, equivalently, of their f luctuations
with respect to m):

Ep � Ap � �Ap
�	all permutations � �

2Ap � A�p � A �p
3

. [3]

If the fluctuations in a, b, c, and d are uncorrelated, Ep is, on
average, zero. In contrast, if a and b are negatively correlated
with c and d (revealing morphological homeostasis), Ep tends to
be positive.

The definition of partition asymmetry (and correspondingly that
of excess partition asymmetry) can be extended to other measures
of dendritic size, including total length, L (length asymmetry, Al),
and membrane surface area S (area asymmetry, As):

Ap
l �

�Ll � Lr�
Ll � Lr

,

Ap
s �

�Sl � Sr�
Sl � Sr

. [4]
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