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TO MEMBRANES IN THE HUMAN BODY IN A
STATE OF TENSIONj By ROBERT H. WOODS, M.B.
(Dub.), Throat Surgeon to the Richmond Hospital, De-
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IT will first be necessary to state the theorem which I intend
to apply.
On a section of a cylinder of radius r containing fluid under

a pressure of P lbs. per square inch let us take two diametri-
cally opposite points A B and find the tensions per inch run of
the cylinder at these points.
The total pressure acting on the semi-circumference of a ring

an inch wide will be P7rr. But the stress or tension at A and
B is not represented by this total pressure, but by the sum of
the resolved parts of its components in a direction at right
angles to the diameter AB. The sum of these components is
equal to the pressure on an area formed by the diameter of the
cylinder multiplied by unity or = 2Pr, but since an equal share
is borne by A and B, the tension or stress at either point is:

To Pr or Poc T
r

This is for the simple case of a surface curved circularly in one
direction. If the surface be curved in a direction at right
angles to this, the second radius of curvature being rl, we have

Pz T(-+±).(a)

From whence it is seen that the tension of a membrane
enclosing a fluid under a given pressure is not a fixed quantity,
but is greater the greater the radii of curvature of the mem-
brane. The truth of this may be put to a practical test by
distending a large and a small bag of the same material with a
fluid, the pressure of which is gradually raised. It will always

1 A paper read before the Royal Academy of Medicine in Ireland on January
15, 1892.
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be found that the larger of the two will be the first to burst,
while the smaller will remain intact under a very much higher
pressure.

If, now, we apply this to the heart, we see that the muscle
of the heart in the distended state of the organ must, on
account of the larger size of its cavity, and necessarily greater
radii of its walls, make a much greater effort at contraction, in
order, by means of the tension of the walls, to raise the con-
tained blood to the pressure of that in the aorta, than when the
ventricle is more contracted, as e.g. at the middle or end of
systole.

Again, the thinner the heart-wall is,-that is to say, the fewer
muscle fibres there are on cross section,-the more will each
fibre have to exert itself to bring about a given tension; and
when it is considered that the wall of the heart is thinnest
when the organ is most dilated, it will be seen that this must
form another and not unimportant factor in contributing to
the difficulty of commencing systole.

Let us now go a little more accurately into these points.
If we apply the fact that the surface area of a sphere varies

as the square of its radius, and bear in mind that the total
number of muscle-fibres is a constant quantity, we see that the
number of muscle-fibres per unit of area on 'the heart-wall
varies inversely as the square of the radius,-that is, suppos-
ing for a moment the heart to be a sphere. Hence, for a given
exertion of muscle-fibre the tension will vary inversely, as the
square of the radius, or

To-s
Still regarding the heart as a sphere, the formula (a) above,

Pot Tl+)r ri
now becomes

2T
r

But T Xc - as just shown, therefore
r2

PX
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Thus we arrive at the somewhat startling result that the
pressure varies inversely as -the cube of the radius when the
exertion of each individual fibre is taken as constant, or if we
regard the pressure as constant, the exertion or pull of each
muscle fibre must vary as the cube of the radius of curvature.
So that if we suppose the heart to be in two conditions, the
first condition having a certain diameter, and the second a
diameter twice as great, the heart will have to exert itself
eight times as much in the second position as in the first, in
order that the same pressure may -be -exerted vn the contained
blood.

This enormous disadvantage under which the heart in the
beginning of systole labours, is surely more than sufficient to
demand extra mechanism to overcome it; and it now remains
to be considered how it had best be done.
The difficulty could easily be disposed of by heaping on layers

of muscular fibres outside those which were barely sufficient in
the contracted condition; but this would be attended by the
disadvantage of more required room, and of having the extra
fibres acting at a time when they were wholly unnecessary, i.e.,
towards the middle and end of systole, which would not be in
accordance with the principle of least action enunciated by Dr
Haughton in his great work on animal mechanics, and shown
by him to be universal in the animal economy. Some cheaper
way must, then, be sought. It is found in the columnae carneaw,
and, as I hope to show, in the musculi papillares also. These
muscles, which stretch across the cavity of the heart from wall
to wall, exert their influence more immediately on the blood by
pulling more directly on the ventricular wall, and consequently
are more efficient than if they lay on the outside of the wall
itself. On account also of the rapidity with which their origins
and insertions approximate the one to the other, their force
must diminish towards the middle, and fade away, towards the
end of systole; thus compensating in a singularly beautiful way
for the disadvantage at which the heart-wall is placed at the
commencement of its contraction.

It may be objected that placing muscles inside the heart
canity would necessitate its enlargement for the purpose of
making room for them. But a little consideration will show
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this is not the case. For suppose the heart a sac with smooth
walls, it would be quite impossible for it to contract so as to
obliterate or even almost obliterate its cavity when expelling
blood under considerable pressure, owing to the difficulty of
approximating the origins and insertions of the fibres, especially
of the innermost layers, so that the only difference their pre-
sence makes consists in diminishing the quantity of residual
blood in the heart.
The urinary bladder is no exception to this, but rather an

illustration. For the last quantity of urine is got rid of not
by the exertion of the bladder wall, but by the Vs8 a tergo of
the abdominal muscles and the pumping of the accelerator
urinee muscle, aided to some extent by gravity. Here, too, the
resistance to be overcome is negligible, being nothing more than
that offered by the friction of the urine against the walls of the
urethra. The bladder, furthermore, as shown by frozen sections,
is in the contracted condition not spherical, but somewhat T-
shaped, which it could not be if its walls were in contraction at
the end of the act of micturition.
The musculi papillares are usually considered as having only

to do with controlling the mitral and tricuspid valves. But
they must also aid in expelling the blood. For the exertion
necessary to prevent the valves from flapping back into the
auricles must also react on the ventricular wall Add help it in
its effort at contraction. They must then be looked upon awi
having the double function of controllers of the valves and true
working muscles of the contracting heart itself.
Another and a very interesting example of similar, though

less complete, prominence ors ridging of muscular fibres on the
inside of a contractile sac, for the purpose of exerting greater
pressure on the contained fluid, is exhibited as a pathological
condition in the urinary bladder in cases where the outflow of
urine is gradually resisted, as in the bladder of enlarged prostate.
Here the innermost fibres raise themselves up from the wall
hypertrophy, and by their peculiar disposition increase their
efficiency. I am inclined to regard this as an attempt on the
part of the bladder to simulate the construction of the heart by
providing, when the necessity arises its own column carneae;
and if this be so, it cannot fail to strike one as being an
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unusually elegant example of the wonderful resources of Nature
when combating disease.

In cases of valve disease the heart becomes dilated to allow
for regurgitation, in order that the quantity of blood thrown
into the aorta may as nearly as possible be kept normal, and so
the blood-pressure kept up. There is, however, reason to believe
that in spite of this the blood-pressure in most cases falls a little.
Concomitant with dilatation we have hypertrophy. What is the
cause of this hypertrophy, especially if the blood-pressure be
lower than before? The reason is because the tension required
in the ventricular wall to raise the blood, even to a lower
pressure, is greater when the heart is pathologically dilated,
and so its wall-curvature more gradual, than when of normal
size, and the curvature sharper.

It is a well-known fact that the apex of the heart is its
thinnest part. The reason is simple. It is because here the
curvatures of the wall are sharpest, and, as above shown, the
tension required to resist or cause a given pressure in the
ventricle will be less than where the curvature is more gradual.
The same reason explains why, when the heart bursts, as in
buffer accidents, without any part having been specially
diseased, the thinnest part is not always chosen as the seat
for rupture.

This question of tension in the walls of a sac containing fluid
under pressure explains the absence from fusiform aneurysms
and varicose veins of any effort to heal spontaneously; for the
more the vessels dilate, the higher the tension in their walls
rises, and the more incapable they are of contracting to diminish
their calibre.

In fact, when we take into consideration the comparatively
great radii of curvature of the sac of an aneurysm, and the con-
sequently great height of the tension in its walls which the
blood-pressure in its interior must give rise to, and bear in mind
the diseased condition of its walls, we cannot help wondering
that they do not more frequently burst than they are known
to do.

Let us now for a moment regard the uterus in labour, and I
think we shall see the real reason why letting a quantity of
liquor amnii flow away precipitates parturition. It is because
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this act diminishes the capacity, and so the radii of curvature of
the uterine walls, and thus enables the organ to exert a greater
pressure on its contents than in its former more dilated con-
dition.
The "atony" of the uterus, where the quantity of liquor amrnii

is excessive, is, I believe, to be explained in the same way-that
is, the too great curvature of the walls of the uterus,-and is
not to be attributed to the overstretching of the muscular fibres;
for it is not easy to conceive that the liquor amnii can increase
so rapidly as not to give time for the muscular fibres to adapt
themselves to the change. Whether this reason is the only one
I am not prepared to say, but that it is a very important one no
one can deny.

It will be admitted that the thickness of the heart at any
place bears a direct proportion to the relative tension at that
place. Hence it follows that in the equation (a) above, we
ought to be able to substitute t the thickness of the walls, for T
the tension. The equation will then be

Pa t(i+!)
r1

or if the pressure be constant, t +
I will also be constant; or,

in general terms, the thickness varies as the radii of curvature.
I have experimentally put this to the test in the following

way. Some hearts were obtained, and the auricles having been
ligatured, the aortic and pulmonary valves were destroyed, and
glass tubes tied into their orifices. The ventricles were then
dilated with spirit under a head of about 12 in., and so left
until they were hardened. Points on the ventricular surface
were then selected and marked with labelled pins, and the
curvatures in two directions at right angles to one another
estimated for each point. The heart was finally cut, and the
various thicknesses at the marked points measured.
One heart was an adult's, another a child's about twelve

months old. A third, adult heart, I compressed so as, as far as
possible, to imitate the contracted condition of the organ,
and see if here the relationship held; but in this case the
measurements of the curvature were not so reliable, as it
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was difficult to make sure that the walls were uniformly com-
pressed, and indeed I have reason to believe that I did not very
well succeed.

I have tabulated the results (see below), and I think they
show the theorem to be correct within the limits of experimental
inaccuracy. It will readily be understood that these measure-
ments are not very easy to take; for in the one case the
curvature sometimes changes so rapidly that only a small line
can be taken as a segment of a circle, and in the other case the
attachments of the columnae carneae do not always leave it clear
at exactly what point the true heart-wall stops and the columnaw
themselves may be said to begin.
On the whole, however, the results more than realized my

anticipations, and may, I think, be taken as proving the point.
There were two points taken on the left ventricle of the

adult heart-one near the anterior, and the other near the
posterior interventricular groove; but here the formula did not
hold good, and the results were so much at variance with the
rest that I had to omit them. This is confirmatory of the pro-
position; for it shows that where the conditions were disturbed
by the proximity of the interventricular septum, there, as might
have been anticipated, the relation between curvatures and
thickness did not hold.

Another point of interest is brought about by-these tables,
viz., that the pressure in the left heart is about three and a half
times as great as in the right in the child's case, and about six
and a half times as great in the case of the adult.

This latter result, I have since found out, corresponds almost
exactly with the experimental observations of Knoll on the
rabbit. His exact proportion was 1: 68, The proportion in
the child's case is, I have reason to believe, not correct, as the
ventricles were not in a similar condition.
There is good reason to believe that the pressure in the aorta

of an adult is a little over 9 feet of water. This being so, the
pressure in the pulmonary artery would be 17 inches.

This accounts for the fact that the left ventricle is more
rounded on section, the mean curvature of its walls sharper, and
their thickness greater than the right.
The left ventricle is the model of what a ventrie1 ought to

3.68
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be. The right could, I think, be improved upon. The work
could be more cheaply done by having another (free) heart,
consisting of a simple auricle and ventricle, in-stead of having
one ventricle tacked on to the outside of another. For this
would admit of the wall-curvature being sharper, and so the
required tension smaller. Whether the exigencies of space and
the shape of the organs would admit of such an arrangement I
can't say, for of course these elements, and perhaps others too,
would enter into any plan of remodelling.
The thickness of the walls of the systemic arteries diminishes

the further we go away from the heart, but more rapidly than the
blood-pressure, the reason being that the bore also diminishes,
and so the radius of curvature; and hence the required tension
in the arterial walls diminishes proportionately.

ADULT HEART (normal).

Under pressure 12 in Right Ventricle.

mm.
60
65
32
75
30
55

11

mm).
60
80
75
90
45
90

t
mm.
1*5
2-0
1'25
2-2
1.0
20

*050
*055
*055
*054
*055
-058

*0545 = average.
Left Ventricle.

36
32
70
30
28
70
80
32
55
70
24
60

60
80
36
80
60
40
40
80
16
24
70
24

8'0
8-5
9.5
85
7.0
8-5
100
8.5
5(0
6-0
6-5
60

.35

.37
*39
*38
*36
*33
*37
*34
*40
*33
*36
*35

*36 = average.

Label of
point chosen.

z1

C2
d2
a2
e2
Ao

1
z

xi

01

81
ml

t1
V1
2?i
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CHILD'S HEART (normal).

Underpressure 12 in Right Ventricle.

Label of r r1 t t(I +
point chosen. mm. mm. mm. \r r1,

el 50 22 2X2 14
cl 40 20 2-0 *15
Al 18 55 2'5 *18
di 880 30 3'0 '14
il 60 20 2-0 *13
bi 55 16 2'5 *20
a, 80 24 3'0 *16
11 10 40 1-2 *15

6 18 .7 *15

'166 = average.
Left Ventricle.

o 18 22 6'0 '60
n 24 16 55 '57
Iv 38 22 7'5 '54
1 14 34 5'5 '56
t 50 14 6'4 h58
q 20 55 7'0 '50
8 12 36 5'25 '61
p 10 65 5'0 '58
r 12 22 4'5 '57
w 22 10 4'0 '58
y 9 18 .3-0 -50

'56 = average.


