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ABSTRACT A theory of membrane viscoelasticity developed by Evans and Hochmuth in 1976
is used to analyze the time-dependent recovery of an elongated cell. Before release, the
elongated cell is in static equilibrium where external forces are balanced by membrane elastic
force resultants. Upon release, the cell recovers its initial shape with a time-dependent
exponential behavior characteristic of the viscoelastic solid model. It is shown that the model
describes the time-dependent recovery process very well for a time constant in the range of
0.1-0.13 s. The time constant is the ratio membrane surface viscosity n:membrane surface
elasticity u. Measurements for the shear modulus x of 0.006 dyne/cm give a value for the
surface viscosity of red cell membrane as a viscoelastic solid material of n = uz, = (6-8) X
10~* poise - cm.

INTRODUCTION

Viscoelastic behavior of red cells is observed when the red cell disk is extended (e.g., by pulling
at diametrically opposed points on the rim of the cell) and then released. After release, the cell
(and its membrane) recovers its original biconcave shape in =0.1 s. Because the interior
cytoplasm of the red cell is a liquid, the ability to recover its original shape after removing
applied forces is the result of elastic energy storage in the membrane (Hochmuth et al., 1973;
Evans, 1973; Evans and Hochmuth, 1978). The elastic forces depend only on the amount of
deformation and thus can support static loads on the cell. On the other hand, viscous
dissipation within the membrane and in the media adjacent to the membrane limit the rate at
which the cell recovers its original shape. It can be shown that the loss of mechanical power
resulting from dissipation in the cytoplasm and outside aqueous environment is much smaller
than the rate of change of elastic energy storage (see Appendix and Evans and Hochmuth,
1976a). Therefore, the time rate of recovery is related to the membrane elastic and viscous
force resultants.

For displacements on the scale of cellular dimensions and times >10"° s, we can neglect
the inertia of the materials involved (see Appendix). The dominant forces that depend on time
derivatives of deformation are viscous forces. Consequently, the time-dependent response of
membrane deformation to applied forces is limited by the viscous dissipation within the
membrane. Dissipative effects in a material are peculiar to the regime of material behavior
that is being investigated, i.e., solid, semi-solid, and plastic or liquid (Prager, 1961; Evans and
Skalak, 1979). These regimes characterize the material behavior only approximately but they
provide an important starting point. The red cell membrane exhibits elastic solidlike behavior
for periods of time on the order of 5 min or more (Evans and LaCelle, 1975) provided that
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membrane extension ratios are <<3—4:1. In other words, the membrane can support static
forces at constant deformation without undergoing shear flow. For periods of time in excess of
5-10 min or for membrane extension ratios > =3-4:1, the membrane passes through a
semi-solid transition to plastic or liquid-like flow (Evans and Hochmuth, 1976b). In this
paper, we will present data on viscoelastic recovery of elongated red cells and correlate this
data with a first order viscoelastic constitutive relation for the red cell membrane. The results
will yield an intrinsic time constant for viscoelastic recovery of red cell membrane as a solid
material. Also, with the elastic shear modulus data, the coefficient of surface viscosity of the
red cell membrane can be determined from the recovery time constant, again for the solid
domain of material behavior.

MEMBRANE VISCOELASTIC RECOVERY

The constitutive behavior for a viscoelastic solid may often be quite complicated. However, the
first-order formulation simply involves the parallel superposition of two quantities—one that
accounts for elastic energy and the other that represents mechanical energy storage loss by
viscous dissipation. Such a material that behaves according to this simple supposition principle
is called a Kelvin-Voigt solid. The parallel superposition embodies the physical observation
that the membrane deformation is both recoverable (memory) and time dependent. The
viscoelastic model for a membrane material differs from that for a conventional solid in two
ways: (a) rheological behavior is described by surface force resultants (tensions) and surface
deformation because the membrane is a continuous material only in its surface plane; (b) the
membrane surface deformation can be large and still recover elastically (Hochmuth et al.,
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FIGURE | Deformation and rate of deformation at constant area of a plane element undergoing a large
(finite) extension along one of the principal axes. 7, and T, are principal membrane tensions
(force/length). ¥, and V, are the principal rates of deformation expressed in terms of the extension ratio A.
The lines of maximum shear occur at +45° to the principal axes.
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1973; Evans, 1973). Thus, finite deformation strains (rather than “infinitesimal” or linear
strains) are used in the constitutive relation. Fig. 1 illustrates the membrane force resultants
(force/unit length) and surface deformation that characterize an element of membrane
material. Because the red cell membrane greatly resists area dilation (Evans and Waugh,
1977), the deformations occur at essentially constant element surface area. Thus, only a single
extension ratio is required to specify the deformation. The extension ratio, A, and the principal
tension, T, are defined by the direction of extension. In this principal direction no shear
resultant or shear strain component exists. However, at +45° to the direction of extension, the
shear resultant and shear deformation are maximum:

T, —T,
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where T is the maximum shear resultant in the membrane (proportional to the difference in
principal tensions), ¢, is the finite deformation shear strain at constant surface area, V; is the
rate of shear deformation in the membrane surface and ¢ is time. (See Evans and Hochmuth,
1976a and 1978; and Evans and Skalak, 1979 for further details.) Elastic constitutive
equations involve functional relationships between T, and ¢. The first-order hyperelastic
relation for a membrane is

TS = 2pe, = g(xz -7, (4)

which has been experimentally verified in detail by Evans (1973), Evans and LaCelle (1975),
Waugh (1977), Waugh and Evans (1979), and Brain et al. (1978). The intrinsic material
property, u, is the surface elastic shear modulus. Similarly, nonconservative or viscous
constitutive equations involve functional relationships between T, and V,. The first-order
viscous relation between shear resultant and rate of shear deformation is given by Evans and
Hochmuth (1976a):

Ti=2V,=— —, 5

n N 31 (5)
where the coefficient of viscosity for surface shear is 7. Eq. 5 describes the material behavior
of a “Newtonian” surface liquid.

The first-order constitute equation for a viscoelastic membrane solid is simply the sum of
Eqgs. 4 and §,

L2

A ot (6)

TS=T:+T:=§(V—A")

This is the membrane material analogue of the Kelvin-Voigt solid. Eq. 6 can be normalized by
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the membrane shear modulus to give a dimensionless form:

T, 1 ., ., dln A

Z—zo\ A )+t07’ (7
where 1, = n/u is the material time constant that characterizes extensional response to force
changes in the membrane. Eq. 7 is nonlinear in the extension ratio, A, because large (“finite’)
deformations of the membrane are involved.

In any situation where the forces applied to the membrane are zero, the membrane force
resultants must also be zero. For such a case, the time-dependent recovery of the membrane
extension ratio would be determined by Eq. 7 with the shear resultant equal to zero (Evans
and Hochmuth, 1976a). The solution is given in terms of the extension ratio, A,,, which occurs
at the instant when the forces are set to zero:

A) =

A+ e 12
] , (8)

A — e

where

AL+

A= .
A — 1

For small deformations (A - 1), Eq. 8 reduces to the exponential recovery relation for a linear
viscoelastic solid.

In the Appendix, we demonstrate that the mechanical power loss resulting from viscous
drag on the membrane by the cytoplasm and extracellular fluid is much smaller than the
mechanical power produced by membrane elastic forces when the recovery time is greater
than a few milliseconds. Thus, after the elongated red cell is released, the elastic energy stored
in the membrane is dissipated by viscous mechanisms within the membrane. The net
membrane force resultants are zero and the extensional recovery of each membrane material
element can be modeled to first order by the viscoelastic recovery (Eq. 8).

EXTENSIONAL RECOVERY OF HUMAN RED BLOOD CELLS

The purpose of this study is to use Eq. 8 to measure the time constant, ¢... This is accomplished
by measuring the rate at which a red cell disk recovers its biconcave shape after the removal of
an external force of deformation applied at equal and opposite points on the red cell rim.
Because accurate values for the surface elastic constant, u, have been determined (+15%,
e.g., Waugh, 1977, Waugh and Evans, 1979; and Brain et al, 1978), a measurement for
t. (1. = n/u) permits the calculation of the surface viscosity, 7, in the solid material domain.
This provides an assessment of the surface viscosity of a biological membrane at the
macroscopic (i.e., continuum) level.

In the recovery of elongated red cells, we observe the extrinsic geometry of the cell as a
function of time. We measure the overall length and width of the plane image of the cell.
However, the intrinsic deformation at local points in the membrane is not uniform. The time
dependence of the local deformation in the membrane will follow the viscoelastic recovery at
the material point because the forces from the adjacent fluids can be neglected (see
Appendix). Consequently, we can describe the evolution of the material deformation over the
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cell membrane envelope by the following equation:

A + e 11/2
Ax, 1) = X((-}g—j%_—;l , (9)
where 7 = t/t. = ut/nand
A2 +1
A(x) = %

Here, the deformation, A, throughout the membrane surface is a function of the position, x, on
the membrane. If Eq. 9 were linear, we could simply integrate over the cell surface (from one
end to the other) to determine the instantaneous length and width of the cell.

The red cell experiment involves extension and subsequent recovery of the whole red blood
cell that is pulled at diametrically opposed positions on the equatorial rim. Fig. 2 is a time
sequence of photographs that show a cell returning to its undeformed shape. During the
extension and recovery process the extension ratio is nonuniform over the membrane surface
and is difficult to determine analytically because it involves the solution of nonlinear equations
of membrane equilibrium over the entire membrane surface. However, most of the upper and
lower surfaces of the red cell membrane are essentially shaped like flat disks with only axial
tension along the direction of extension. Thus, it is possible to investigate the effects of the
nonuniform extension in the plane of the disk (Evans and Skalak, 1979). This approach was
used by Evans (1973) to investigate the elastic behavior of fluid shear deformed red cells that
form point attachments to glass. With this approach, the numerical procedure is to cut the
disk into finite strips normal to the axis of extension. The initial dimensions of the strips are
determined by force equilibrium and constant area deformation. The initial force equilibrium
states that the axial force must be constant throughout the disk along the direction of
extension. The local extension ratio is then related to the axial force with the elastic

O RO

FIGURE 2 Comparison of the recovery of a membrane disk with a red blood cell. In this particular case,
the time constant ¢, for the red blood cell is 0.10 s. Note at maximum extension that the width of the cell is
slightly less than that of the flat disk, indicating that the cell is “rounding-up” to some extent. Note also
the slight asymmetry in the red cell.
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FIGURE 3 Comparison of the recovery curve for a membrane strip with that for a membrane disk initially
deformed by pulling at diametrically opposite points. L is the overall length of the disk or strip at any time
1. L,, and L, are the initial (maximum) and final lengths of the disk or strip. The time constant ¢, is the
ratio of membrane surface viscosity n to membrane surface elasticity p:?, = n/u.

FIGURE 4 Schematic of the chamber in which red cells are deformed. Cells that adhere to both the top
surface (shown) and the bottom surface are deformed by gently aspirating a portion of the rim into a
micropipette and then slowly withdrawing the micropipette until the cell is released. After release, the cell
recovers its undeformed shape as shown in Fig. 2.

constitutive relation (Eq. 4). (Note that the axial tension, T, is twice the shear resultant T
[Eq. 1] and that the local axial tension multipled by the local width of the strip is equal to the
axial force. The force resultants in the direction normal to extension are assumed to be small
because buckling or “rounding-up” of the cell is not observed for the extensions applied to the
cell.) The end elements of the disk at the attachment points are integrable singularities as
analyzed by Evans (1973) and are represented by triangular elements of appropriate
dimensions in the deformed state. The extension ratio increases rapidly close to the
attachment location; consequently, the regions proximal to the locations where the cell is
pulled recover faster than the central portion of the cell, as is evident from Eq. 8 or 9. The line
drawings in Fig. 2 are the computer solution to the extension and disk recovery as prescribed
by Eq. 9; the rapid recovery of the ends can be seen here. The overall length of the disk also
recovers faster than the case of uniform extension of a membrane “strip”’; the comparison is
shown in Fig. 3 with the lower curve giving the time dependence of the end-to-end distance of
the deformed disk. However, the difference between the strip recovery (Eq. 8) and the disk is
observed to be small. Consequently, we use the simpler strip relation to model the time-
dependent recovery of the cell within the experimental uncertainties.

MATERIAL AND METHODS

Red Cell Recovery Experiments

Fresh blood was drawn into a heparinized vacutainer. After the initial centrifugation, the plasma and
buffy coat was removed by aspiration. The cells were washed once in phosphate-buffered saline (PBS;
6.375 g NaCl; 3.143 g Na,HPO,; 0.738 g KH,PO,; 2.0 g penicillin-G, catalog No. PEN NA, Sigma
Chemical Co., St. Louis, Mo.) and resuspended at a volume concentration of 0.05% in the same PBS
solution as above plus 0.1% by weight of bovine serum albumin (BSA), and 0.1% by weight glucose. The
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red cell suspension was injected into a reservoir (Fig. 4) made of two cover slips and a parafilm gasket.
The bottom surface was a 24 X 60-mm No. 1 cover slip, and the top surface was a 22 X 30-mm No. 1
cover slip. The walls were formed by several thicknesses of Parafilm (American Can Co., Marathon
Products, Neenah, Wisc.) cut in the shape of a block “U.” The cells were allowed to settle and
subsequently attach to the lower or upper surface for 20 min, and then a native plasma solution
(centrifuged at 19,000 rpm for 15 min to remove platelets and then diluted 1:10 with PBS) was gently
injected into the reservoir to displace two reservoir volumes. This prevented additional cell attachment.

Cell deformation was produced by aspirating a small portion of the rim of the red cell into the tip of a
micropipette and gently withdrawing the micropipette (Fig. 4); then, the rim of the cell was released and
the cell returned to its original biconcave shape (Fig. 2). The pipette extension of the cell took only a few
seconds and the recovery tenths of a second. The pipettes (11-10-L, Frederick Haer and Co., Brunswick,
Mass.) had a nominal 0.5-um i.d. The working diameter of =0.7-1.0 um was obtained by breaking the
end of the pipettes against the square edge of a microslide. This created a square-edged tip. The
micropipettes were filled with the same PBS solution that the cells were washed with. The aspiration
pressure was achieved by lowering a water-filled reservoir (which was open to atmosphere and attached
to the pipette by Tygon tubing, U.S. Stoneware Co., Akron, Ohio) below the level of the microscope
stage. The micropipette was mounted in a de Fonbrune micromanipulator (Orion Research Inc.,
Cambridge, Mass.).

Red cell recovery was observed with a Zeiss inverted microscope (Carl Zeiss, Inc., New York) with
Zeiss bright field optics (63X, 1.25 N.A. Neofluor oil immersion objective and a 1.4 N.A. oil immersion
condensor). The recovery process was recorded on either video tape or 16 mm film. In the first case, a
Panasonic camera (WV241P, Panasonic Co., Franklin Park, Ill.) and a Javelin X-400 stop action video
tape recorder (Javelin Division of Apollo Lasers, Los Angeles, Calif.) with a 0.01 s video timer (G-77
time-date generator, Odetics, Inc., Anaheim, Calif.) was used. The video scanning rate was 60/s,
producing a “data point” every 16.7 ms. Cell length was measured with a Vector Calculator (Vista
Electronics, La Mesa, Calif.) that imposed two (manually) movable cursors on the video screen and
displayed a number proportional to the distance between the two cursors.

When necessary for better image and time resolution, 16 mm Tri X reversal film and a high-speed
camera (Hycam; 400 ft., Red Lake Laboratories, Santa Clara, Calif.) at nominal framing rates between
100 and 200/s were used to record the recovery process. Time was marked at the edge of the film with
light “dots” flashed at a rate of 100/s. Exposure times with the 1/2.5 shutter were between 1/250 and
1/500 s. The developed film was displayed on white paper with an L & W stop action projector (Red
Lake Laboratories). Measurements were made directly, one at a time. At 200 frames/s, a data point is
produced every 5 ms.

RESULTS AND DATA CORRELATION

Typical changes in length of a cell with time during the recovery process are shown in Figs. 5
and 6. In Fig. 5, cell recovery was recorded on 16 mm film at 185 frames/s (5.4 ms/frame),
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FIGURE 5 Viscoelastic recovery of a red cell compared to that of a membrane strip and disk where the
resting length of the strip and disk is set equal to the cell length at 0.3 s (three time constants).
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FIGURE 6 Viscoelastic recovery of overall cell length and maximum cell width. The simultaneous length
and width measurement are made on the same cell. The time constant ¢, is calculated from the length data
and then applied to the width data.

whereas in Fig. 6 cell recovery was recorded on video tape at 60 pictures/s. Fig. 6 shows, also,
the change in width of a single cell during the recovery process. In all experiments the initial
cell length was taken as the length of the cell at that instant when the rim is just free from the
micropipette. However, the final length of the cell is not easily identified because the
projections formed at the attachment locations recover only after several seconds have
elapsed. To obtain the first results of this section, the length of the cell at 0.3 s (approximately
three time constants) was arbitrarily picked as the resting length, and the least squares fit of
Eq. 8 to the data over the range of 0 < ¢ < 0.4 s was determined by computer for an optimum
value of the time constant, z..

Fig. S illustrates the results for a single cell recovery; the upper curve is Eq. 8 for z, = 0.088
s and A,, = 1.54. The data for less than one time constant appear to recover somewhat faster
than the theoretical curve for a strip. However, the results for the disk (lower curve in Fig. 5)
closely match the experimental results for the entire range, ¢ < 0.3 s. In addition, the disk
analysis provides the comparison of theory and experiment shown in Fig. 2. Note, however, at
t = 0, that the minor axis of the deformed red cell in Fig. 2 is slightly less than that of the
deformed disk; this is the result of the curved membrane contour. The width recovery data is
shown as the lower curve in Fig. 6, along with the corresponding length data for the same cell.
For the width recovery, the extension ratio is given by the inverse relation, \ = W, /W, which
also correlates with Eq. 8. Using this approach, 46 initial recovery experiments were
performed at room temperature, with 28 being recorded on video tape and 18 on high-speed

TABLE 1
VALUES FOR THE TIME CONSTANT AT ROOM TEMPERATURE (25°C), DETERMINED FROM
CELL LENGTH RECOVERY MEASUREMENTS

Mean + SE Pulls Cells Donors
s
Inclined slide, top surface (Fig. 4) 0.096 + 0.013 19 4 2
Level slide, bottom surface 0.101 + 0.013 27 8 3
Overall 0.099 + 0.013 46 12 4
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film. The results are identical in either case with cells attached to the upper glass surface in
some cases and with cells attached to the lower glass surface in the other cases (Table I).

It is apparent in Fig. 2 that the major portion of the cell membrane recovers with an
exponential-like behavior that is well modeled by Eq. 9. However, the membrane material at
the attachment locations shows a much slower recovery phase at long time periods (after
several ¢.). Thus, an absolute measure of the length is compromised by this small uncertainty.
At the attachment points, such large extension ratios exist that the rheological equation is
inappropriate; indeed plastic flow of a small microfilament of membrane eventually occurs at
the glass attachment location (Hochmuth et al., 1973; Evans and Hochmuth, 19765).
Because the attachment locations represent less than a few percent of the cell membrane area,
we developed a procedure designed to eliminate the effect on absolute length dimension. This
approach is suggested by the results in Fig. 6 for length and width data that recover in a
complementary manner. For a simple membrane material element or strip, the length divided
by the width is the extension ratio squared, which is dimensionless. Here, the viscoelastic
recovery is simply

[~
N——
8

-

+

WI

I'LV=(W (10)

where

)~
Wlm W)
The length (L):width (W) ratio is subscripted by ( ),, for initial values and ( ), for long
times. The L:W ratio does not have to approach unity. With Eq. 10, the least squares fit to the
L:W ratio vs. time is found for optimum values of time constant, ¢., and final aspect ratio,
(L/W) . Typical experimental results are shown in Fig. 7. To fit Eq. 10 to the data shown in
Fig. 7, the values for the two parameters, (L/W),, and ¢, are chosen to minimize the sum of

the squares of the errors between the viscoelastic model (Eq. 10) and experimental values for
L/W. Thus, for N data points the following functional is minimized by choosing optimum

values for (L/W), and t.:
Nor(L L 2
2 L Y I
€ Z [( W)cxpr (W)lheo /N,

where € is the root mean square error per datum point. For the four sets of results shown in
Fig. 7, the values for e range from 0.013 to 0.020. This error corresponds to errors in length
The rearrangement of Eq. 10, viz.,
L L Ly _ (L
() (61 (5.5

and width measurements of =0.1 um. Thus, the errors are within the limits of optical
L\ _(L L
w Wl \W
L
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FIGURE 7 Cell recovery data in terms of the L:W ratio for four different cells. The values of ¢, and
(L/W),, for the theoretical curve (Eq. 10) are chosen to give a least-squares fit to the data.

shows that data from different experiments can be “collapsed” onto a single exponentially
decaying curve as shown in Fig. 8 for the four sets of results from Fig. 7. Although not shown,
the experimental results for ¢ > 4.0 fall on the horizontal axis plus or minus the typical error
per point € (+£0.02).

For the 16 experiments to date that have been analyzed in terms of the L:W ratio, the time
constant is determined to be =~20% greater than that based simply on length recovery data,
i.e, t. = 0.123 = 0.020 s. Thus, the method of data analysis and correlation does not
significantly affect the time constant that is obtained. As is observed in Fig. 5-8, the
viscoelastic model correlates well with the observed cell recovery.
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FIGURE 8 Data from Fig. 7 replotted according to Eq. 11.
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DISCUSSION

From the analysis in the Appendix, it appears that neither inertial forces nor external viscous
forces will interfere with the recovery process. This, along with the results presented in Figs.
5-8, indicates that the time-dependent recovery process is adequately modeled by the Kelvin
superposition principle (Eqgs. 8 and 10) with the elastic and viscous constitutive components
given by Egs. 4 and 5.The nonuniform distribution of extension has little effect on the
predicted time dependence of the cell shape recovery; also, the simple disk extension model
correlates well with the projected cell images. If the attachment point effects are excluded,
error analysis indicates that the distribution in data about the time-dependent recovery curve
is within the limits of optical resolution.

The linearization of the viscoelastic model (Eq. 8) results in the classical Kelvin-Voigt
model in which a linear elastic spring and viscous dashpot are in parallel. Thus, the linearized

version of Eq. 11 is
L) _ (L
w We

(). ~ ().

This equation also provides a good fit for the data shown in Figs. 7 and 8 except for the first
few data points (excluding ¢ = 0) where the value for L/W is on the order of 2:1 and,
therefore, higher order (nonlinear) terms cannot be neglected.

Our finite deformation viscoelastic model is especially useful when extension ratios are
quite large as in the recent interesting experiments of Sung and Chien (1978). In these
experiments, Sung and Chien aspirated a portion of the red cell membrane into a pipette
(Evans, 1973) and then studied the time-dependent recovery within the pipette of the
aspirated portion upon removal of the suction pressure. The analysis of the experiment of
Chien et al. (1978) with the viscoelastic model (Evans and Hochmuth, 1976a) for over 100
red cells gives a value for the recovery time constant of 0.13 = 0.05 s, which agrees with the
data presented in this study. Because the results obtained by the two different mechanical
experiments give essentially the same result, we conclude that the recovery time constant is an
intrinsic property of the red cell membrane material, independent of the cell geometry and
external dissipation. In addition, the experimental observation shows that the viscoelastic
constitutive relation models the recovery process for the large range of material éxtension
involved during the recovery phase and, therefore, we can determine the coefficient for
membrane surface viscosity in this solid material domain.

Clearly, the red cell membrane is a heterogeneous and complicated material capable of
different types of material behavior. For the range of forces (membrane shear resultants) and
times in the present experiments the membrane behaves as a viscoelastic solid. Within the
limitations of microforce experiments on cells, the recovery behavior of the membrane is
adequately described by a Kelvin-Voigt superposition. However, the membrane can exhibit
other types of material behavior. For example, for relatively large shear resultants (or
extension ratios) Hochmuth et al. (1973) have shown that the membrane will yield and
deform plastically (i.e., permanently). We have modeled this plastic flow behavior by
assuming that the membrane behaves as a two-dimensional Bingham plastic (Evans and

= e“/’c.

HOCHMUTH ET AL. Red Cell Extensional Recovery and Membrane Viscosity 111



Hochmuth, 19765). In addition, “moderate” membrane deformations (below the plastic yield
point) that are imposed for long periods of time (on the order of 10 min) result in membrane
“creep” (Evans and LaCelle, 1975). A material that creeps is often called a viscoelastic fluid.
In this case a “Maxwell model,” which consists of elastic and viscous terms in series (so that
the sum of the finite deformation of the individual elastic and viscous components would equal
the total deformation of the membrane), would be used to model the deformation process
(Evans and Skalak, 1979).

The viscoelastic model described in the present paper is specific to the domain of solid
material behavior. Longer times or larger forces result in semi-solid relaxation behavior
(creep) and plastic flow, respectively. In the solid material domain, our experiments and those
of Sung and Chien (1978) can be used to determine a value for the membrane surface
viscosity. Thus, because u =~ 0.006 dyne/cm (25°C) (Waugh, 1977; Waugh and Evans, 1979;
Brain et al., 1978) and ¢, =~ 0.10-0.13 s, then n = ut, = (6 — 8) X 107 poise - cm.
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APPENDIX

The purpose of this appendix is to show that the rate of dissipation in the bulk hemoglobin phase is small
compared to that in the plane of the membrane; thus, dissipation in the hemoglobin solution does not
retard the recovery process. In addition it is shown that the inertial forces experienced by both
membrane and hemoglobin solution during the recovery process are extremely small when compared to
the viscous forces.

Dissipation in Cytoplasm and Membrane

During the recovery process, the rate of dissipation in the hemoglobin solution contained inside the cell is
simply the rate at which work is done on the boundary of the system (i.e., the membrane). The rate of
doing work is the mechanical power, W. For a local region of a Newtonian fluid (e.g., the hemoglobin or
extracellular solutions), the mechanical power per unit volume is given by the medium viscosity times
the square of the local rate of shear deformation. In the red cell extension and recovery experiments, it is
observed that the projected cell area, 4., remains essentially constant throughout the experiment.
Because the interior volume is constant, the mean cell thickness, 6, is essentially constant during the
experiment. Consequently, fluid layers between the upper and lower cell surfaces experience deforma-
tion that is geometrically similar to the cell projection. Therefore, the rate of shear deformation in the
cell interior is approximately the same as the rate of shear deformation, ¥, in the membrane surface.
With this approximation, we estimate the mechanical power dissipated inside the cell to be on the order
of

WHb~’7Hb - VA, - 0), (A1)
where 7y, is the viscosity (poise) of the hemoglobin solution. The mechanical power that is dissipated in
the membrane is estimated by a similar relation for the upper and lower disk surfaces,

W, ~nVi(24,), (A2)

where 7 is the surface viscosity (poise-cm) of the membrane. For a viscoelastic solid that is represented
by the parallel addition of elastic and viscous processes, the coefficient of viscosity can be replaced by the
recovery time constant times the elastic shear modulus; therefore, Eq. A2 becomes

W, ~ (1 - w)ViQ2A,). (A3)

The ratio of mechanical power dissipated in the cytoplasm to that dissipated in the cell membrane is
given by the quotient of Eqs. Al and A3,

WHb ﬁHb * 5
Dy Maw - 0 A4
W, " 20w (A4)

The hemoglobin solution viscosity is on the order of 10" poise; the elastic shear modulus is 6 X 107°
dyne/cm; and the cell thickness is on the order of 2 X 107* cm. Therefore, the ratio is inversely
proportional to the measured recovery time,

Wy 1077
w,, t

Thus, for time constants greater than a millisecond, membrane dissipation exceeds the dissipation in the
hemoglobin solution. Because the extensional recovery time constant was measured to be 107" s, the
dissipation in the hemoglobin solution inside the cell is negligible compared to the membrane
dissipation.

In the discussion given above, we have shown that dissipative effects within the internal cytoplasm can
be neglected in comparison to that in the membrane. In addition, the extracellular fluid appears to have
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no effect on the recovery process because the viscosity of the extracellular fluid is =0 that of
hemoglobin. Also, if the extracellular fluid retarded the recovery process, then the cell shape would be
asymmetric (teardrop shape) during the recovery phase. Also, the time of recovery would be greatly
influenced by the distance of the cell membrane from the nearby surface. The results in Table I indicate
that the proximity of the glass surface does not affect the results.

Inertial Effects

The “Reynolds number,” Re, provides a measure of the ratio of inertial (momentum) forces to viscous
forces. Small values for the Reynolds number indicate that momentum effects are not important and
lead to what is often called “Stokes flow” or “creeping flow.” Because the Reynolds number is directly
proportional to some characteristic distance or displacement, deformation processes at the cellular level
are almost always at very low Reynolds numbers. For the characteristics velocities (e.g., 1 pmin 0.1 s or
1073 cm/s), densities (10™° g/cm? for membrane and 1 g/cm’ for hemoglobin), distances (107 cm) and
viscosities (107 poise-cm for membrane and 10™' poise for hemoglobin) in these experiments, the
Reynolds numbers are

_pVD 1 X 102X 107
Rey, = — = 10~
m

=10"¢

and

_ 107X 107X 107*
1073

Re,, =107"°

Clearly, inertial forces play no role in the recovery process.
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