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ABSTRACT The space-clamped squid axon membrane and two versions of the Hodgkin-
Huxley model (the original, and a strongly adapting version) are subjected to a first order
dynamic analysis. Stable, repetitive firing is induced by phase-locking nerve impulses to
sinusoidal currents. The entrained impulses are then pulse position modulated by additional,
small amplitude perturbation sinusoidal currents with respect to which the frequency response
of impulse density functions are measured. (Impulse density is defined as the number of
impulses per unit time of an ensemble of membranes with each membrane subject to the same
stimulus.) Two categories of dynamic response are observed: one shows clear indications of a
corner frequency, the other has the corner frequency obscured by dynamics associated with
first order conductance perturbations in the interspike interval. The axon membrane responds
with first order perturbations whereas the unmodified Hodgkin-Huxley model does not.
Quantitative dynamic signatures suggest that the relaxation times of axonal recovery excita-
tion variables are twice as long as those of the corresponding model variables. A number of
other quantitative differences between axon and models, including the values of threshold
stimuli are also observed.

INTRODUCTION

When the membrane of the squid giant axon is electrically "space-clamped" in an experimen-
tal chamber, and stimulated with a depolarizing current of either step or ramp time-course, its
electrical response, at first sight, is quite simple to describe. For a step magnitude or ramp
slope smaller than a certain critical value (- 10 ,uA/cm2 and 2.5 ,uA/cm2/ms, respectively),
the axons respond. with strongly damped, subthreshold membrane potential oscillations.
Above the critical (threshold) values, the axons respond with a single action potential with a
latency that is inversely related to the stimulus magnitude, and is never more than - 6 ms at
6.30C (unpublished observation; however, other investigators have seen trains of impulses of
various durations in response to suprathreshold current steps, e.g., Hagiwara and Oomura,
1958; Best, 1979, Fig. 3). The Hodgkin-Huxley (1952) model describes reasonably well the
latency and action potential wave-form for simulated stimulus magnitudes that are supra-
threshold for the squid axon. (This condition must be added because any nonzero ramp slope
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is suprathreshold for the model, which does not accommodate completely and always begins to
fire repetitively, albeit with very long latency for ramps with very small slopes.) The model
however fires continuously for all suprathreshold step and ramp stimuli with the exception of a
very narrow range of current steps in the vicinity of threshold for which the model responds
with one or two impulses.

There have been a number of attempts to reconcile model behavior with the squid axon
(e.g., Adelman and Fitzhugh, 1975; Fohlmeister, 1975; c.f. also Jakobsson, 1978, for further
references). Although for most of these the new model's adaptation does correspond more or
less with the axon, in no case does the membrane potential trajectory following the spike agree
with that of the axon. For each of these models the postspike undershoot is overly precipitous
and recovery from the undershoot too rapid to agree with the axon's trajectory. Reconciling
the adaptive response alone, therefore, is not sufficient for an accurate description of the
axon's excitation properties.
As a test for both models and axon, we have therefore chosen to study their dynamic

responses to small amplitude sinusoidal signals. A sinusoidal perturbation occurring with a
random phase in the interspike interval influences the timing of action potential occurrence in
a repetitive train which is in turn established by conductance and other membrane parameters
in the intervals. The technique has been applied to neurons which exhibit tonic repetitive
firing (Poppele and Chen, 1972; Fohlmeister et al., 1974, 1977b), and has yielded membrane
conductance parameters as a function of time into the interspike intervals. To apply this
technique to adapting systems, the neuron or model must be able to respond with stable
repetitive firing to a stimulus current density of the form

I(t) = Io{l + a * sin (2irfot)1, (1)

and the simplest response pattern (the one used here) is to establish one impulse per cycle of
the sine wave (one-to-one phase locking). This is illustrated in Fig. 1 (cf. also Guttman and
Feldman, 1978).
The purpose of the locking signal is to establish an indefinitely long repetitive spike train;

tonic neurons may therefore also be tested dynamically without the locking sine wave (see
Appendix). The dynamics themselves are measured with the use of perturbing sine wave
currents of small amplitude superimposed on the current responsible for the repetitive train.
The frequency, fin, of the perturbing sine wave is one of a set of frequencies each of which is
less than the locking frequency, fo; the set of fm covers a range of frequencies extending two
orders of magnitude below fo. This second sine wave produces a pulse position modulation of
the impulses of the steady-state train generated by the locking sinusoid. Because there is no
phase relation between the two stimulus sine waves however, the state of the membrane in
successive cycles of perturbation will be different from the states in all other cycles. Analyzing
a long, modulated impulse train with continuous perturbation cycles is therefore equivalent to
an analysis over a single perturbation cycle of the impulse density response of an ensemble of
membranes each with a different initial condition. (Of course some initial conditions are
favored over others; this is true for the ensemble as well as the continuous impulse train.) For
sufficiently small amplitude perturbations the density of impulses varies sinusoidally with the
period of the perturbing sine wave (Fig. 2). The amplitude of this density modulation is
plotted as a point of a gain curve. Similarly the phase of this impulse density curve relative to
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FIGURE 1 Model membrane potential trajectory (upper trace) in response to the locking-current density
of Eq. 1 with Io = 88 AA/cm2, a = 1.0, and fo = 75 Hz (lower trace). Model parameters correspond to
those of Adelman and Fitzhugh (1975, Fig. 11) except T = 6.30C.
FIGURE 2 Multiple oscilloscope traces of impulses and interspike membrane-potential trajectories
generated by the space-clamped axon membrane in response to the locking current plus 25% modulation.
(A) Traces were triggered on sync pulses associated with the modulation sine wave. Note the modulation
in impulse density with the period of the perturbation sine wave; the latter is also responsible for the
modulation of the postspike undershoots and spike peaks. Io = 79 pA/cm2,fo = 75 Hz,f,. = 64.9 Hz, and
T = 6.50C. Oscilloscope grid is 20 mV/div vertical and 10 ms/div horizontal scale. (B) Scope traces
triggered on impulses. Io = 77 iA/cm2, f0 = 150 Hz,fm 22.8 Hz, and T = 130C. Scale is 20 mV/div
vertical and 2 ms/div horizontal.

the phase of the perturbing sine wave is plotted as a point of a phase curve. A pair of gain and
phase curves, called a Bode plot, is then used like a template for comparison among models
and the axon.

Specific features of the Bode plots (corner frequencies, slope of the gain curves, and phase
advance as a function of fm, etc.) correspond directly to such parameters as magnitude of
conductance in the interspike interval for simple models (e.g., the so-called "leaky integrator"
models, see Appendix), but require additional interpretation for models as complex as the
Hodgkin-Huxley model. For such models and for the axon the dynamics provide a clear
descriptive indication of differences during repetitive discharges under normal current
stimulation. The Bode plots by themselves however do not show the way to reconcile those
differences.

In this report we restrict ourselves to a presentation of axon and model data along with a
preliminary analysis of that data. The existing models do not reproduce the dynamics of the
axon, and certain of the more direct implications stemming from the differences are
discussed.

METHODS

Cleaned, single giant axons from the hindmost stellar nerve of the squid, Loligo pealei, were used in this
study. Intact axons were externally bathed in artificial seawater (Adelman et al., 1973). The axons were
current-clamped by the method described in Binstock et al. (1975) using a sinusoidal current stimulation
rather than short duration square wave currents. A locking sinusoidal current of the form given by Eq. 1
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with a = 1.0 was adjusted to assure the production of one spike per cycle atfo = 100 Hz. (Fig. 1), and
typically this required I0 = 80 ALA/Cm2. A second, small amplitude-modulating sinusoidal current (of
amplitude I0/4) was linearly summed with the locking current to produce a sinusoidal variation of
impulse density over a modulating cycle (Fig. 2). Action potentials produced by the axon and sync pulses
marking each cycle of the modulating sinusoid were treated as all-or-none events that were timed on-line
by a PDP 11/ 10 laboratory computer. Data consisted of clock times (to the nearest 0.2 ms)
corresponding to each action potential and sync pulse for a total of at least 200 events for each
modulating frequency tested. The data were stored on binary magnetic tape for later processing on an
IBM 1800 computer (IBM Corp., White Plains, N.Y.). This consisted of estimating impulse density
sinusoids and computing gain and phase for Bode plots (Fohlmeister et al., 1977a). These functions are
defined in the Appendix. For this study the input modulation was held constant (25%) and the "gains"
reported therefore represent only changes in output modulation. They were computed as 20 log
(modulation amplitude). Model impulse trains were generated by numerical integration using a library
Runge-Kutta routine on a CDC Cyber 74 computer and a continuous system modeling program on the
IBM 1800 computer. An explanation of the basic technique and interpretations of various Bode
signatures are presented in the Appendix.
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FIGURE 3 Gain (upper set of curves) and phase plots (lower set of curves) of space-clamped squid axon
membranes at 6.30C stimulated as in Eq. 2 with Io in the range 72-88 MA/cm2 and I, in the range of 18-22
MA/cm2 but such that I, = I014 always. The dip in the phase curve forfo = 100 Hz occurring in the
neighborhood offm = 14 Hz corresponds to an instability at which the phase vacillates among two or more
preferrential values. Harmonic distortion is therefore correspondingly high at this frequency and
somewhat elevated for allfm < 14 Hz (dashed curve). Some axons do not show this phase dip and continue
a smooth-phase decline towards 900 for lower fi. Two axons generated a phase which tended towards a
2700 advance asfm- 0 (upper dashed curve). Such a phase is also generated by a model of the squid axon
presented in Fohlmeister (1975) which operates with a relatively large K conductance and exhibits strong
adaptation properties. Symbols are representative data from a single axon forf0 = 100 Hz (a), 75 Hz (-),
50 Hz (5), and 25 Hz (0). Curves are the gain and phase averaged from nine axons. Error bars indicate
the maximum deviation from the mean level shown by any data point used in calculating the mean for all
modulation frequencies of a given curve.
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RESULTS

Squid Axon Dynamics

At the operating temperature of 6.30C most healthy axons can be made to phase-lock at the
rate offo = 100 impulses/s in response to sinusoidal current density as in Eq. 1 with a = 1.0.
The minimum value of Io necessary for this response is - 75 ,A/cm2. All axons capable of this
repetitive rate are also able to maintain one-to-one phase locking forfo = 75, 50, 25, and 10
Hz. The minimum required magnitude of Io declines steeply with fo to a plateau of - 30
IiA/cm2 forfo below 50 Hz. A majority of the axons continue repetitive firing over the entire
range of modulation frequencies (no dropped spikes) when the locking signal (Eq. 1) is
modulated by 25%;

I(t) = Iotl + sin (27rfot)} + l, sin (2irfmt + (a), (2)
where I, = (0.25)1 and (p is an arbitrary phase angle. The resulting Bode plots of Fig. 3 are
derived from the data from nine axons.

For very low modulation frequencies, f, all phase curves tend to a phase advance of 900
(relative to the perturbation sine wave) with the exception of an occasional axon firing atfo =
100 Hz which tends towards a 2700 advance. Depending on the firing rate, and in particular
for higher fo, the phase advance increases in the midrange of modulation frequencies,fi, to
reach a maximum somewhere in the area of 10 < fm < 25 Hz. The phase advance again
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FIGURE 4 Representative data from a single axon. Gain and phase plots of the space-clamped membrane
of the squid axon at 13.20C stimulated as in Eq. 2 with IO = 78 MA/cm2 and I, = 19.5 MA/cm2. Note the
general shift in the dynamics to higher locking frequencies,fo, as compared with the data at 6.30C (Fig. 3).
fo = 150 Hz (-), 100 Hz (A), and 75 Hz (I).
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decreases to well below 900 as fm approaches fo. The midrange phase advance is invariably
accompanied by a direct increase in the slope of the gai., curve, which is a constant 6
dB/octave for the lower modulation frequencies.

Further dynamics data of the squid axon were obtained for a wide range of temperatures
and found to be strongly temperature-dependent. Representative data from one axon,
obtained at 13.20C, is plotted in Fig. 4. The overall dynamic characteristics appear to simply
shift to higher frequencies,f 0 andfm, for higher temperatures.
The axon is able to maintain a phase-locked impulse rate of 150 impulses/s at 120C and

200 impulses/s at 180C. These dynamic response properties are consistent with the strong
temperature dependence (Qlo = 2.7-3.0) of the rate constants of the excitable conductance
channels and indicate that the dynamics are a direct function of the channel kinetics.

Hodgkin-Huxley Model Dynamics

The Hodkin-Huxley (1952) model for the excitation kinetics of the squid axon membrane will
phase-lock to the "stimulus current" of Eq. 1 for values of 10 < Io < 20 AuA/cm2 in the range
of 50 < fo < 120 Hz at 6.30C. Larger values of '0 continue to produce phase locking and
increase the upper bound offo to 200 Hz when 10 = 75 ,uA/cm. However, because of the
inherent repetitive firing properties of the model (Fig. 5) double spiking begins to occur for the
smaller values of fo (cf. also Holden, 1976). This is particularly true if one attempts to
modulate sinusoidally a one-to-one phase-locked impulse train at even lower frequencies, fo.
For example, at the frequencyfO = 25 Hz it is possible to maintain the one-to-one condition
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FIGURE 5 Impulse frequency vs. stimulus current density for the Hodgkin-Huxley (1952) model under
constant current stimulation at 6.30C. Note that 55 impulses/s is the practical lower bound of the
repetitive firing frequency range. Dashed curve represents the reciprocal of the interspike period between
the pair of spikes generated near the onset of the step stimulus in this range. The bracketed ranges of
current density (abscissa) are defined by the type of impulse response that is generated after the onset of a
step stimulus of that magnitude.
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with 20% modulation (II = 0.73 .uA/cm2) and with Io = 3.66 ,gA/cm2. "Double spiking" and
dropped spikes occur when Io is changed by - 10% from this value, however. Further, the
model dynamic response for lowerfo is qualitatively different from that at the higher locking
frequenices (Fig. 6).
The phase curves of the model data again approach a 900 advance for smallfi, but then

begin a decline for modulation frequencies in the midrange (5 < fm < 30 Hz" cf. Fig. 6) and
for fo > 55 Hz. Simultaneously, the slope of the gain curves begins to decrease from the
asymptotic rate of 6 dB/octave as they begin to round the "corner frequency" (defined in
Appendix). For the model, the theoretical recognition points for a corner frequency are not
fully realized because the dynamic resonance sets in which leads to an additional gain
enhancement and phase advance as the modulation frequency, fm, approaches the impulse
frequency fo. The amount of dynamic interaction between the "corner" and "resonance"
phenomena depends both on the separation between the corner frequency andfo, and on the
width of the resonance. Fig. 6 shows that these dynamic phenomena become more clearly
separated for higher impulse frequencies,fo, for the Hodgkin-Huxley model.
The dynamics associated with the resonance are algebraically additive with those of the

corner frequency (see Appendix). To determine the resonance alone the dynamics must be
measured in the absence of the locking signal. This is possible, and has been done for the
Hodgkin-Huxley model, because that model fires repetitively at both 75 and 100 impulses/s
under the appropriate level of constant current stimulation (Fig. 5). The corner frequency,
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FIGURE 6 Gain and phase plots generated by the Hodgdin-Huxley model at 6.30C. IO 20 MA/cm forfO
= 100 Hz (e), 10 uA/cm2 for 75 (O) and 50 Hz (A), and 3.66 MA/cm2 for 25 Hz (0). I, = 5 MA/cm2 for
fo = 100 Hz, 2.5 uA/cm2 for 75 and 50 Hz, and 0.73 MLA/cm2 for 25 Hz.
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determined by subtracting out the resonance, is found to be 15.5 ± 0.5 Hz at 6.30C for both of
these impulse frequencies.

At the lower locking frequenciesfo < 55 Hz the model dynamics change in quality (Fig. 6,
dashed curves). In this range-which is outside the "natural" impulse frequency range for the
Hodgkin-Huxley model under constant current stimulation (Fig. 5)-the dynamics begin to
resemble those of the axon at the opposite end of the range of locking frequenciesfo. For the
model, this dynamic response implies the presence of significant conductance perturbations as
a first order response to the perturbation current component of the stimulus (see Discussion).

Dynamics of the Model Modified to Include the Effects ofK+ Accumulation
in a Periaxonal Space

A modification of the Hodgkin-Huxley model which takes into account a recurrent elevation
of the K+ ion concentration at the external surface of the axolemma (due to periodic increases
in K+ membrane current as a result of impulses) as well as modified rate constants for the
model state variables n and h (see Adelman and Fitzhugh, 1975 for details) was subjected to
dynamic analysis for two widely separate values of IO. The magnitudes of Io = 11-22 ,uA/cm2
and fo = 88 ,uA/cm2 correspond to the stimuli used to produce one-to-one phase-locking
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FIGURE 7 Gain and phase plots generated by the fully modified Hodgkin-Huxley model at 6.30C. Model
parameters are those of Adelman and Fitzhugh (1975, Fig. 11). The value of IO is 11 MA/cm2 for
50 sfo - 100 impulses/s, and 22 ,A/cm2 forfo = 150 impulses/s. Perturbation amplitude is 25% of IO for
all curves (II = 0.25 IO).fo = 150 Hz (e), 100 Hz (o), 75 Hz (I), and 50 Hz (A).
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behavior in the Hodgkin-Huxley model and the squid axon, respectively. This so-called "fully
modified" model is both sufficiently sensitive to produce one-to-one phase locking for the
smaller values of Io, and sufficiently adaptive to prevent double spiking for the larger value of
Io0

Inspection of the Bode plots (Fig. 7 and 8) shows that the model dynamics are qualitatively
different for the two magnitudes of Io. For the smaller values the dynamic response resembles
that of the Hodgkin-Huxley model (Fig. 6). For the larger value of Io = 88 ,gA/cm2 the model
dynamics are superficially similar to those of the squid axon (Fig. 3). Despite such similarities
there are important differences in the dynamics which will necessitate specific changes in the
model.
A comparison of the dynamics of the Hodgkin-Huxley model and of the fully modified

model stimulated with the smaller values of Io (Figs. 6 and 7) shows gain and phase curves of
almost identical form with similar curves corresponding to different locking frequencies, fo.
Thus the Hodgkin-Huxley model curves forfo = 75 Hz are virtually identical to the curves for
fo = 100 Hz generated by the fully modified model. Similarly, interpolating between the
curves generated by the fully modified model forfo = 100 and 150 Hz shows that dynamics
forfo = 133 Hz correspond to those generated by the Hodgkin-Huxley model forfo = 100 Hz.
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FIGURE 8 Gain and phase plots generated by the fully modified Hodgkin-Huxley model at 6.30C with 10
Z 88 gA/cm2 for all values of fo. Model parameters are from Adelman and Fitzhugh (1975, Fig. 11).
Perturbation amplitude is 25% (I, = 0.25IO).fo = 200 Hz (0-), 150 Hz (v), 100 Hz (0), 75 Hz (-), and 50
Hz (A).
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This shift in the frequencyfo corresponding to similar dynamics is therefore 33%. Both this
dynamic shift and the ability of the fully modified model to phase-lock at 150 impulses/s with
Io = 20 ,uA/cm2 is a direct consequence of the relatively smaller K conductance in the
interspike interval generated by this model during sinusoidal stimulation in comparison with
the unmodified Hodgkin-Huxley model (see Discussion).
A comparison between axonal dynamics and those of the fully modified model stimulated

with IO = 88 ,uA/cm2 (Fig. 3 and 8) reveals the following differences: (a) The decline of the
phase lead to well below 900 as the perturbation frequency fm approaches, fo, which is a
general feature of the axonal dynamics, is absent in the model dynamics. (b) Scanning across
the separate curves corresponding to separate values of the locking frequencyfo one observes
more or less abrupt changes in the dynamics occurring between certain adjacent values of fo.
For the axon this occurs betweenfo equal to 75 and 100 Hz, and for the fully modified model
between 100 and 150 Hz. For the higherfo in each case the gain decreases dramatically at the
low end of modulation frequenciesfm (towards the left side of the plots). Interspike intervals
are -10.6 ms whenfo is 75 Hz, 7.3 ms for 100 Hz, and 4.0 ms for 150 Hz if one subtracts the
width of the spike (-2.7 ms at 6.30C) from the firing period. Large changes in the dynamics
imply that the time-course of system variables during the interspike interval changes
qualitatively as a function of the frequencyfo. Computed membrane conductance trajectories
for the fully modified model phase-locked tofo = 75, 100, and 150 Hz show this feature in Fig.
9 A; B, and 10 B. Note also in frames C and D of Fig. 9 that the axonal impulse- and
membrane-potential trajectory responses to locking signals of 75 and 100 Hz correspond
closely to those of the model with fo = 100 and 150 Hz, respectively (with all systems
operating at 6.30C).

A B

FIGURE 9 (A, B) Membrane potential (dark solid curve), g,, (defined in Eq. 3, light solid curve) and gK
(light dashed curve) generated by the fully modified Hodgkin-Huxley model at 6.30C in response to the
"locking signal" current density (Eq. 1) with Io = 88 giA/cm2. Vertical bar represents units of 2
mmho/cm2 for the conductance curves and 24 mV for membrane potential. Horizontal bar is 10 ms. (A)
fo = 150 Hz. (B) fo = 100 Hz. (C, D) Oscilloscope traces of the axonal membrane potential in response to
the modulated locking-current density (Eq. 2) at 6.30C. (C)fo = 100 Hz. Impulse peaks are decreasing in
response to the particular modulation phase present, and do not indicate a deteriorating axon. (D)fo = 75
Hz. Note the similarity in the membrane potential trajectories between frames A and C and between
frames B and D.
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A

FIGURE 10 Membrane potential (dark solid curve), gm (light solid curve) and gK (light dashed curve)
generated by the fully modified Hodgkin-Huxley model at 6.30C in response to the locking signal current
density (Eq. 1) forfo = 75 Hz. (A) IO = 11 A/cm2. (B) Io = 88 ,A/cm2. All other parameters are as in
Fig. 9.

DISCUSSION

Categories ofDynamic Response

The dynamical data presented in the foregoing fall into two qualitatively different categories.
The first category is characterized by a phase advance of more than 900 in the midrange of
modulation frequencies and gain curves with slope everywhere >6 dB/octave, the second
category with phase advances falling below 900 in the midrange with a simultaneous decrease
in gain slope to <6 dB/octave. All "simple" models-those without voltage-dependent
conductances and operating with a fixed, defined threshold potential (e.g., the "leaky
integrator" models and the "gaussian-gm" model of the Appendix)-fall into the second
category. Such models are nonadapting and always respond with tonic repetitive firing when
stimulated with an adequate constant current. They begin to break the one-to-one phase-
locked condition by double spiking or missing spikes when one attempts to extrapolate to
locking frequency and stimulus conditions which "should" otherwise produce a midrange
phase increase and direct steepening of the gain slope.
The Hodgkin-Huxley model, when "locked" to an impulse frequency >55 Hz by an

adequate stimulus also produces dynamics of the second category. This range of impulse
frequencies (above 55 Hz) is also the range of repetitive firing for the model when stimulated
with constant current (Fig. 5). The cumulative evidence on repetitively firing systems
therefore points to the tentative conclusion that all such systems produce dynamic responses
that fall into the second category.
The inverse statement that second category dynamics imply a repetitively firing model is

not true as shown by the dynamics of the fully modified model in Fig. 7. It is true, however,
that the model is more oscillatory in response to a current step to 22 ,g.A/cm2 as shown by the
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generation of a second partial spike which is absent for a step to 88 ,uA/cm2 (Adelman and
Fitzhugh, 1975, Fig. 1 1). The dynamics appear to recognize this trend to impending repetitive
activity.

Repetitively firing systems and the second category in general are characterized by the
absence of dynamic phenomena which, if present, would completely obscure those indications
of a corner frequency which are definitive of the second category. There exist, however,
strongly adapting systems that are either capable of producing (the fully modified model) or
invariably produce (the squid axon membrane) a dynamic response of the first category. Such
a response may be interpreted as the total obscuration of the corner frequency by dynamic
phenomena which are not necessarily related to the resonance. Instead, these additional
phenomena are first order dynamic responses to a stimulus-induced modulation of conduc-
tance parameters.

Membrane Conductance Perturbations and Summing Phenomena
For the leaky integrator model (see Appendix) both the corner frequency and the resonance
width increase when the model membrane conductance g,m, is increased. In fact, the corner
frequency equals gm/2irCm. For the more complex models we define the conductance:

g (E, t)defgK(E, t) + gNa(E, t) jE EKIK,t)} (3)

This conductance, gm, simply casts the equation,

CmE = gK(E, t) {E - EK(IK, t)} - gNa(E, t) {E -ENa} + I, (4)

into the form of the leaky integrator Eq. A4 with time-varying and voltage-dependent gm and
EK according to the particular complex model to be analyzed. (EK varies only according to
changes in periaxonal space K+ concentration.) The conductance, gm, is the proportionality
"constant" relating the ionic (noncapacitative) portion of the membrane current to membrane
potential referenced to EK: g,,, = (INa + IK)I(E - EK). gNa and gK are true electrical
conductances; however, the final term in Eq. 3 acts as a negative conductance which leads to
the regenerative properties of the membrane potential during the rising phase of action
potentials.

Because the locking signal is stereotyped the conductance time-course may be determined
and, when not perturbed by I,, is a function only of Io and fo for a given model. The
conductance time-courses of unperturbed, phase-locked impulse trains generated by the "fully
modified" model are shown in Fig. 10 for IO = 11 and 88 AuA/cm2 andfo = 75 Hz. Note the
elevated conductance until just before an impulse with IO = 88 ,uA/cm2. This conductance
elevation late in the interval is the result of the stimulus current as compared to the naturally
generated early conductance peak as a part of the impulse response (Fig. 10 A).

Consider first the case of the just adequate stimulus, IO in the approximate range of 10-22
mA/cm2. For a given complex model showing dynamics of the second category the resonance
width in the gain increases as the locking frequency fo is increased. This may be seen by
shifting the curves in Fig. 6 and 7 horizontally to superimpose the values offo (in Fig. 6 only
for fo = 75 and 100 Hz). Furthermore, the high fm phase bulges to a greater advance for
higher fo. As fo increases, both the average conductance level increases and each impulse
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occurs nearer to the foregoing conductance peak. These dynamic changes agree completely
with those of simple models when their conductance parameters are changed (cf. Appendix
Fig. 13). They strongly suggest that conductance perturbations as a result of the presence of
the "small amplitude" modulating sine wave are insufficient to be recognized to first order in
the dynamics, and are therefore likely to be small.

Consider next the case of the fully modified model driven with IO = 88 ,gA/cm2 (Fig. 10).
Although the conductance level is high throughout the interspike interval as an indirect result
of the large current, the phase enhancement in the midrange offm and the direct steepening of
the gain curve cannot be attributed simply to an increase in resonance width. As shown by the
dynamic response of the gaussian-gm model in the Appendix (Fig. 13), an elevated conduc-
tance is not sufficient by itself to generate dynamics of the first category. The midrange phase
and gain increase however are a natural signature of certain summing phenomena which
include summing (recurrent) inhibition (Fohlmeister et al., 1977a) and summing conductance
increases (Fohlmeister, 1979). Summing in this context means that an impulse does not reset
the pertinent state variables to fixed initial conditions at the beginning of each interspike
interval, but in effect adds an amount to the value just before the impulse. The variable
subsequently relaxes. The mean value of the summing variable changes from interval to
interval because its level is frequency dependent and frequency is modulated.
Summing phenomena- and stimulus-induced conductance modulations, when present, both

lead to periodically varying conductance levels. ("Conductance level" may be defined as the
conductance at a fixed time, say 5 ms, after each impulse which is updated in each interval.)
We will argue in the following that both types of phenomena are probably present in varying
degree for both the axon and complex models when they exhibit first category dynamics. A
difference between the action of a summing variable and a stimulus-induced modulation lies
in the phase relationship of the phenomenon to the modulating stimulus sine wave: the
summing peak will occur at the times of peak impulse frequency whereas a stimulus-induced
modulation will follow the phase of the modulating current. However, it appears that this
phase difference in the conductance modulation is unimportant to the generation of first
category dynamics. Because it is impossible to derive closed form mathematical expressions
for the transfer function (gain and phase) of complex models, the following discussion is based
on what is known from the dynamic behavior of a summing variable in the context of simple
models. The perturbation frequency, fi, at which the phase peak occurs is a function of the
relaxation time of the summing variable (Fohlmeister et al., 1977a, Fig. 7) in such a way that
a shorter time constant corresponds to a higher peak frequency, f. Note that the phase peak
for the fully modified model firing atfo = 150 Hz (Fig. 8) occurs at =fm = 35 Hz and for the
axon forfo = 75 and 100 Hz (Fig. 3) in the range off. = 15-20 Hz. The relaxation time of the
summing variable is -2.5 ms for a phase peak of 35 Hz and -5 ms for a peak at 18 Hz. These
times are in the range of relaxation times of the K conductance and the Na-inactivation
parameter h, and therefore suggest that additional processes with longer relaxation times may
be operating in these membrane subsystems. The degree to which anomalous sodium channel
inactivation effects (see Jakobsson, 1978 for references) or a slower K-channel process might
affect the dynamics awaits further analysis.

Consider now the question of a summing phenomenon-vs. stimulus-induced conductance
modulations. Following the onset of a locking signal of the form I(t) = IO( - cos2irfot)
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applied to the axon withfo = 100 Hz and the fully modified model with Io = 88 ,uA/cm2 andfo
= 150 Hz we noted a transient decrease in spike height with a duration of at least four
impulses, and no adjustment of the impulse locking phase after the first impulse. This spike
height transient is evidence for an impulse-induced perturbation of conductance parameters
with the property that the parameters are reset to values that depend on the state before the
impulse, a state that is changing throughout the transient. This behavior indicates the
presence of a significant summing phenonemon in these cases. Stimulus-induced conductance
modulations are probably the dominant cause for most other cases of first category dynamics
shown in this report. For the Hodgkin-Huxley model phase-locked to fo = 25 Hz, the phase
peak at fm - 7.5 Hz (Fig. 6) is unlikely to be the result of a summing phenomenon. The
interspike interval is simply too long in relation to the relaxation times of all model state
variables for any significant "memory" of the state in previous intervals. Indeed, no such
memory is indicated by the dynamic response of the model at higherfo for which the required
memory would be shorter and which is of the second category.
A similar conclusion holds also for the dynamic response of the fully modified model

stimulated with Io = 88 ,uA/cm2 at locking frequencies fo < 100 Hz. The spike height
transient noted forfo = 150 Hz is largely absent for the lower locking frequencies. On the
other hand significant conductance level changes as a result of the modulating sine wave itself
may be inferred from the spike height modulation which is entirely in phase with the stimulus
(Fig. 2 A).

Finally, the fully modified Hodgkin-Huxley model operates with an implicit summing
variable, EK, as a logarithmic function of KS, the K+ concentration in the periaxonal space. KS
is periodically elevated above the value just before each spike by the K+ current associated
with the impulse. Bode plots were obtained with conductance channel rate constants of the
fully modified equations with Io = 88 ,uA/cm2, but holding KS fixed at 12 meq. These plots did
not show any significant changes in the quality of the fully modified model dynamics. It
follows that the summing properties of the variable KS are not responsible for the first category
dynamics of this model; its influence is sufficiently indirect so as not to generate a specific
signature in first order dynamics.

Dynamic Response to Adequate and Excessive Stimulation
A model driven with a just adequate stimulus shows the greatest amount of structure in gain
and phase whereas an excessive stimulus results in a "stiffening" of the dynamic response.
This stiffening is clearly seen in the model phase curves which tend to flatten throughout the
range of values of fm (Fig. 8). Dynamic analysis therefore is richer in information when
carried out with a just adequate stimulus.
An important feature of the axon's phase-which is not shared by the fully modified model

when stimulated with the "excessive" value of Io = 88 ,uA/cm2-is the decline in phase
advance to well below 900 forfm in the vicinity off0. This decline in phase which occurs for all
values off0 for the axon may be related to a relatively high threshold in relation to the stimulus
magnitude Io. Note that all model systems driven with a just adequate stimulus show a similar
phase decline (Fig. 6 and 7) whereas when stimulated with an excessive value of IO the phase
advance remains >900 asfm --fo (Fig. 8). Bringing the levels of adequate stimulus into line is
therefore considered necessary for further model development based on dynamic analysis.
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APPENDIX

A statistical analysis of nerve-impulse trains produced by sinusoidally modulated current stimuli has
been used in connection with certain well-defined models to describe the behavior of membrane
properties in the interspike interval (see Fohlmeister et al., 1 977a, for references). In this section we will
summarize the basic approach and the important results of previous studies employing the approach that
are applicable to the squid axon preparation.
A train of action potentials can be induced in a repetitively firing neuron by a constant depolarizing

current, IO (a = 0 in Eq. 1), or by a sinusoidal current having a frequency equal to the impulse repetition
rate,fo (Eq. 1). For the second type of stimulus, the amplitude of the sinusoid (equal to aIO in Eq. 1) must
be sufficiently large so that the impulse repetition rate follows the sinusoidal frequency when the latter is
changed within a neighborhood offo-that is, the impulses must be phase-locked to the stimulus sinusoid
(Fig. 1). The two methods of producing a repetitive discharge are not equivalent dynamically and may
lead to different measures of membrane properties. In both cases, calculations are made from measured
impulse occurrence times when the steady-state repetitive discharge is modulated by adding to the
stimulus current a sinusoidal perturbation with frequency fm <fo and of small magnitude so that the
modulation is of the order of 10-25%. When the unperturbed stimulus is as in Eq. 1, the total stimulus
current density then has the form

I(t) = Iofl + a - sin (2irfot)} + II sin (2irfmt + (p) (Al)

of which Eq. 2 is a special case with a = 1.0 ((p is an arbitrary phase angle).
Estimates of impulse density over a single perturbation cycle are made at a number of different

perturbation frequencies (see Fohlmeister et al., 1977a for details about methods of estimating impulse
density). The amplitude, A, of the modulation is defined as one-half the total change in impulse density
over a single cycle. This value is converted into a "gain" in decibels, where

defGain ..20 log10kA (A2)

The constant k has a value of 1 with units of (amplitude)-'. The phase of the impulse density is
determined with respect to the modulating sinusoid and is given in degrees of lead (+) or lag (-). Gain
and phase are plotted as functions of log modulation frequency,fm, to form Bode plots. Those plots show
certain features that relate specifically to the membrane parameter

lyd, gm/1Cm (A3)

for the interspike interval. Based on previous studies of models and sensory neurons we have made the
following interpretations of the Bode plot curves.

Sinusoidal Perturbation ofa Constant Stimulus
Consider first the case in which a tonic repetitive activity is induced by a constant current (a = 0 in Eq.
Al). A typical Bode plot is illustrated in Fig. 1 1. The gain curve is flat for low modulation frequencies up
to at least (0. l)f0o. For higher frequencies, the gain increases, approaching a resonance peak at fm = fo.
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FIGURE 11 Gain and phase for a typical case of tonic repetitive activity induced by constant current.
Curves are calculated from the analytical solution for a repetitively firing model (Fohlmeister et al.,
1977a) for I/fo = 3.0.

The half-width of the resonance depends both on a weighted mean value of y in the interspike interval
designated and on the value offo such that a given curve is completely defined by I/fo. Thus, the value
of is determined from the gain curve by fitting it to calculated curves for known values of I/fo as shown
below. In the case of Fig. lIthe resonance corresponds to I/fo = 3. Lower values will lead to narrower
resonances and reduced phase shifts.
The phase curve depends further on the time-course of y(t) in the interspike interval although its

general features always include a phase lead that increases with increasing modulation frequency. The
phase curve is useful in testing specific hypotheses about the temporal structure of y(t) but not in
determining a value of y. In general the phase lead for highfm is small when y is large only very early in
the interval, and increases when y is weighted more heavily later in the interval.

Sinusoidal Perturbation of the Locking Sinusoidal Stimulus
The second case to consider is the one in which a repetitive activity is induced by sinusoidal current
stimulation at the frequency fo. The conditions necessary for one-to-one phase locking are discussed in
Rescigno et al. (1970) and Poppele and Chen (1972). The modulation is provided by the second sinusoid
of Eq. Al, and the impulse train is analyzed with respect to this sinusoid. Because the type of modulation
is different in this case, pulse position modulation instead of pulse frequency modulation, the Bode plot
gives an entirely different gain and phase behavior (Fig. 12) which is, however, superimposed on the
behavior described in the preceeding subsection.
The gain curve increases with a slope of 6 dB/octave to a "corner frequency" atfm wo/2ir. At that

frequency the gain is 3 dB down from the flat gain level at the higher frequencies (see dashed curves in
Fig. 12). The phase is +900 at the lowest modulation frequencies and it shifts toward 00 at the higher
frequencies (note dashed phase curves in Fig. 12). The phase equals +450 at the "corner frequency"
fm = cwo/2wr. Note that these features are obscured more or less by the addition of the resonance behavior
observed in Fig. 11. The degree of interaction depends on the values of fo and co0 that apply in a
particular case.

Effect ofModel Parameters on Bode signatures
As suggested in the above sections, the parameter y determines many features of the Bode signature.
Models employing a constant y (i.e. a constant conductance g,,,) in the interspike interval, referred to as
"leaky integrator" models, follow the linear equation for E in the interspike interval:

E=- y(E-EK) + IICM (A4)

BIOPHYSICAL JOURNAL VOLUME 30 198094



VI
q)

q)

9t0
9oR

I
0.05 0.1 0.5

MODULATION FREQUENCY (FRACTION OF f)
1.0

0

FIGURE 12 Gain and phase for a typical case of tonic repetitive activity induced by a locking sinusoidal
current. (A) Calculated for I/fo = 1.0 and showing a clear separation between the corner frequency and
resonance. (B) Calculated for j;/f0 = 3.0 such thatfo is less than the minimum stable firing rate for the
model with constant current stimulation; (note Fig. 5). In this case the corner frequency is no longer
apparent. Dashed curves represent the corresponding dynamics with the resonance subtracted out showing
the corner frequencies clearly.

This equation is supplemented with threshold and reset conditions (fixed values of E) to produce impulse
trains. The leaky integrator is used to calibrate the resonance width at fm of. The of any more
general model is simply defined to be equal to the particular value of y of the leaky integrator model
which generates the same resonance width in the gain. Thus, -= y for the leaky integrator by
definition.
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FIGURE 13 Gain and phase plots generated by the simple gaussian-gm model forfo = 100 Hz (, o) and
75 Hz (v, A). Parameters are go = 0.25, g, = 6.5 mmho/cm2, t' = 3.0 ms and a = 8.165 ms for (-, v) and
go = 0.25, g, = 5.0 mmho/cm2, t' = 5.0 ms and a = 6.742 ms for (0, A).
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The value of w0 has been shown to be equal to the value of -y for these models. It therefore follows that
wy=0w for this case. For more complex models we define y - wo to be the "equivalent y". In general ye
(as well as j) is a function off0 for complex models. When -y(t) is not constant, -. Ye in general
(Fohlmeister et al., 1974).
The leaky integrator is a special case of a more general class of models for which y(t) is defined to be a

specific function only of the time since the last impulse. Members of this class, which are called "simple
models" in this report, are distinguished by the condition that y(t) is independent of (not a function of)
membrane potential or stimulus current except for the establishment of its initial value, 'y(O), in each
interspike interval. As a nontrivial example of this class of models-one which is referred to in the
discussion section-we have analyzed the dynamic response of the gaussian-gm model for which

gm (t) = go + g e-(t' t)2/ff2 (A5)
For this model y(t) peaks at time t' milliseconds after each impulse, but is otherwise independent of the
stimulus or membrane potential. The dynamics of this model were determined for the case of the locking
stimulus for impulse frequencies,fo, pertinent to the squid axon (Fig. 13). The importance of these plots
derives from the recognition that the resonance width is not so large as to completely obscure indications
of a corner frequency despite the large conductance in the midrange of the interspike intervals. In this
respect the model agrees with the dynamics of the leaky integrator (cf. Fig. 12 A).
The presence of a process that can accumulate or summate from one interval to the next leads to

adaptive behavior, which also provides a characteristic signature in the Bode plot that is further
superimposed on the behavior already described. This can be illustrated by referring to the example of a
negative feedback that results from a hyperpolarizing current generated in response to an action
potential (Fohlmeister et al., 1977b). In that example, a current of magnitude Ih is induced after each
spike and then decays with time constant r. As long as the charge Ih * r is sufficiently large so that a
significant fraction of the current continues to flow at the end of the interspike interval, that fraction is
added to the current Ih induced by the succeeding spike. Because the current is hyperpolarizing, the
effect is to produce successive lengthenings of the interspike interval. The signature of this kind of
adaptation in the Bode plot is illustrated in Fig. 14. The magnitude of the effect depends on the ratio
IhII, (Fohlmeister et al., 1977a, Results); for a givenfo, its frequency response depends on the value of r
(Fohlmeister et al., 1977a; Fig. 7). There is a phase advance forfm <f0/2 and a phase lag forfo/2 <fm <

fo. The gain is highest atfm = f0/2 being reduced at the low and high frequencies in the interval (O,f0).
These features in the Bode plot are produced by any process leading to the functional equivalent
(adaptation) of the summating negative feedback described above. They may involve accumulating
conductance changes (Fohlmeister, 1979) or additive changes in threshold, for example. Fig. 15 shows
how the adaptive behavior further modifies the Bode signatures induced by -y. In this case the effects
shown in Fig. 14 are added to the Bode signatures of a leaky integrator model in which repetitive firing
was induced by a locking signal (Fig. 12 B).
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FIGURE 14 Isolated gain and phase components associated with adaptation for which IhII= 0.4, r = 4.5
ms andfo = 100 Hz.
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FIGURE 15 Gain and phase for a typical case of tonic repetitive activity of a model in which adaptation as
in Fig. 14 has been added to the model response illustrated in Fig. 12 B.
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