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ABSTRACT A theory is presented for the mechanics of the left ventricle. A linear continuum description of the
myocardium is developed, which incorporates anisotropic elastic effects due to the fiber direction field. The relation
between fiber tension and fiber strain contains a time-dependent activation function that drives the ventricle around its
cycle. The theory is applied to a simplified geometry consisting of a thick-walled finite cylinder in which fibers spiral on
helical paths and terminate on planar end surfaces. The helix pitch angle varies continuously through the wall. The
ventricular cycle is analyzed by specifying the pressures at which the aortic and mitral valves open and close. Key
quantities are tabulated which permit a simple determination of the properties of the model under changes of wall
thickness, fiber angles, muscle parameters, preload, afterload, etc. It is shown how the active muscle parameters can be
inferred from a measurement of the end systolic pressure-volume line.

I. INTRODUCTION

The basic goal of this work is to explain the pumping action
of the left ventricle of the heart in a mechanical way. It is
shown how cardiac muscle fibers cooperatively act to
pressurize and displace blood into the circulation in a cyclic
manner. The theory is formulated as a problem in con-
tinuum mechanics in which the myocardium is represented
in a way that can be interpreted as a fluid-fiber con-
tinuum.
The general linear theory developed in section II is

applicable to any assumed geometrical configuration of the
left ventricle. A fiber direction field is introduced to
account for the fiber geometry as measured by Streeter
(1979). A stress tensor is used, which was originally
suggested by Peskin.' It incorporates the fiber direc-
tion field that gives rise to anisotropic elastic effects.
The quasi-static equilibrium approximation is used at each
instant of time. A linear relation between fiber stress and
linearized fiber strain is used. The instantaneous elastic
modulus includes a time-dependent activation function to
account for the heartbeat. Strain rate or other path-
dependent effects are omitted. This setting leads to a
theory which is consistent with the observation of Sagawa
(1978) and his co-workers that over a significant physio-
logical range there exists an essentially linear relationship
between end systolic chamber pressure and chamber vol-
ume and that this relationship is independent of preload
and path. Nonlinear effects, such as finite deformation and
a stress-dependent elastic modulus, are quantitatively
important during diastole (Mirsky, 1979). To include such
effects here would inappropriately complicate the theory at

'Peskin, C. S. Unpublished notes on cardiac fiber geometry.

its present level of development. The intent here is to obtain
a qualitative understanding and to develop some confi-
dence that essential mechanisms are included.

In section III the theory is applied to a simplified
geometry. The thick-walled finite cylinder model used
previously by Feit (1979) and Arts et al. (1979) is recon-
sidered. In this model the fiber helix angle varies continu-
ously through the wall, and the fibers terminate on planar
end surfaces. Feit's analysis is confined to the end diastolic
state which was assumed to be passive. An exponential
stress-strain relation was used, and finite deformation
effects were included for the case when the twisting degree
of freedom was artificially suppressed. The deformation of
the cylinder was calculated numerically for a prescribed
chamber pressure. The calculation of Arts et al. is a
simulation of the entire ventricular cycle, which was
accomplished by specifying the ventricular volume as a
function of time. The computation included the effect of
twist and finite deformation, and used a nonlinear alge-
braic stress-strain relation. Time-dependent activation was
not included in the calculations, which were strictly numer-
ical from the outset. The present linear theory, when
applied to the same configuration, admits a straightfor-
ward analytical solution. The displacement field includes
elongation, dilation, and twist of the cylinder about its axis.
The ventricular cycle is analyzed by specifying the pres-
sures at which the aortic and mitral valves open and close.
A constant chamber volume constraint is satisfied during
the isovolumic contraction and isovolumic relaxation
phases. Key dimensionless coefficients are tabulated that
permit a simple determination of trends in the model under
changes of wall thickness, fiber geometry, muscle fiber
parameters, preload, afterload, etc. An important advan-
tage of the present model is the ease with which numerical
results can be obtained for different parameter values.
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Section IV discusses how the results of the theory relate
to experimental observations.

II. GENERAL THEORETICAL
DEVELOPMENT

A Continuum Description
of the Myocardium

The cardiac muscle tissue, or myocardium, is a complex interwoven
structure composed primarily of cardiac muscle cells arranged in a more
or less parallel weave as shown in Fig. 1. Each cell has several branches to
other cells, but nonetheless a sense of direction or grain is preserved. We
shall denote the local grain direction by the unit vector T and refer to it
also as the local "fiber" direction with the understanding that individual
continuous muscle fibers do not really exist. In the space external to the
cells a dense capillary network is present which also runs primarily in the
grain direction. Thus T should be relevant in any discussion of myocardial
blood flow at the capillary level. From the point of view of efficient oxygen
exchange between blood and cells, this parallelism is a desirable feature.
It is also not difficult to imagine that the capillary blood flow is strongly
dependent on the state of deformation of the cardiac cells, a fact which is
well known to cardiologists. A collagen matrix that does not have a
directional character also is present in the extracellular space (Borg and
Caulfield, 1981). The collagen struts have a diameter of -.0.1 m and are
an order of magnitude finer than the cardiac cells and capillaries. These
struts appear to be quite slack in the stress-free state. The main function
of the collagen seems to be that of connecting cardiac cells to each other
and to capillaries and thus of preserving the fiber directions. At large
deformation the collagen no doubt is recruited and contributes to the
nonlinear stiffening of the tissue.

Streeter's measurements of the direction field T' provide a basis for
constructing an anisotropic continuum theory for the myocardium.
Although only T? itself is needed in the mechanical description, it is
conceptually useful to integrate the direction field and determine the fiber
paths. The compact region of the left ventricle has a shape which can be
roughly described as a thick-walled, truncated, prolate spheroid. In a
section through the wall (Fig. 2) the projection of the direction field onto a
meridional plane defines a continuum of nested closed curves. If these
curves are then rotated about the axis of revolution of the spheroid, they
define a system of nested toroidal surfaces. A fiber path lies on one of
these toroids and winds around its surface in a helical manner. The sketch
in Fig. 2 is based on a computation (Chadwick, 1981) which utilizes
Streeter's measurements and assumes axial symmetry. The complexity of
the fiber paths led early anatomists into the mistaken belief that the
myocardium consisted of separate muscle straps, because the method of
dissection went against the grain. But now it is generally agreed that the
myocardium functionally behaves as a continuum (Fox and Hutchins,
1972).

FIGURE 2 Fiber paths. Fibers spiral on toroidal shaped surfaces.

State of Stress in Myocardium
The myocardium is a complex mixture of fluid and elastic components.
The fluid phase, both intracellular and extracellular, accounts for 90% of
the tissue (Mirsky, 1979). There exist very general methods of continuum
mechanics to deal with mixtures of fluid and solids, fluidlike solids,
solidlike fluids, etc., but ultimately one has to postulate something about
the nature of forces that act on material volume elements. Here we shall
proceed in the more direct latter manner, and in so doing the nature of the
idealizations will be clearer. Consider then the tetrahedral-shaped volume
element as shown in Fig. 3, which has three orthogonal faces and a slanted

p
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FIGURE 1 Schematic of myocardial tissue. M, myocardial cell; C,
capillary; CS, collagen strut;rfiber direction field.

FIGURE 3 Tetrahedral-shaped volume element of tissue showing stresses
acting on its surfaces.
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face whose unit normal isin. The element is oriented in such a way that the
local fiber direction is normal to the face in the x, y plane. Because the
element is mostly fluid, it is not unreasonable to postulate that a normal
tissue pressure denoted by p acts on the three orthogonal faces as in any
fluid at rest. In the plane of the faces we have neglected all shear stresses
which could conceivably arise because of sliding action of cells and fluid,
or shear of the collagen matrix. Also, no distinction is made among the
pressures in different phases, such as intracellular pressure, capillary
pressure, etc. Only one pressure is used here and it represents a mean
value. To distinguish among these different pressures would require a
much more complicated theory. The face in the x, y plane also experiences
a tensile stress Tdue to the action of the fibers. The stress vector7a nacting
on the slanted face can be found by requiring the element to be in
mechanical equilibrium in the limit its volume tends to zero, with the
result

An= - p-ff+ T(Y --f)EY (1)

A stress tensor a exists having the property a,n = a * n where a is in-
dependent of -. The component form is

or = -pbjj + TrjTj (2)

This form of the myocardial stress tensor was evidently first proposed by
Peskin.'

Quasi-static Mechanical Equilibrium
At each instant of time the ventricular cycle is idealized as a sequence of
mechanical equilibrium states, i.e., the effect of inertia will be neglected.
Moskowitz (1981) has addressed this point and concluded that the
difference between dynamic and quasi-static stresses is not significant for
the case he analyzed, the late rapid-filling stage. If gravity and inertial
forces are neglected the condition of local equilibrium is

V *=0 (3)

or

Vp=V(TV .*+- VT) + T(i.V)Y.

fiber strain which will be denoted by e. Let dso and ds be the infinitesimal
distances between two neighboring points on a fiber in the unstrained and
strained states, respectively. Then e is defined by

ds - dso
d=-hmds0-O ds0

(6)

i.e., the fractional change of length of a fiber. In terms ofif and r, this
limit works out to be

E = [(E * V] * E (7)

Note that in this linearized theory T is the unstrained direction field and is
a known quantity.

Relationship between Tension, Fiber
Strain, and Activation

Sagawa (1978) has reviewed experimental studies pertaining to both the
pressure-volume relation of the intact ventricle and the length-tension
relation of isolated papillary muscle. The intact ventricle actually has the
simpler behavior in that the pressure-volume relation shows no significant
path or rate dependence over a wide physiological range. If we suppose
that intact myocardial fibers have this same property then fiber stress can
be related to fiber strain independent of stress or strain history. However,
a complicating feature is the degree of activation of the fibers. As a guide,
consider the behavior of isometric contractions of papillary muscle. If the
tension is recorded at fixed length as a function of time, and this is
repeated at different muscle lengths, then a family of curves of tension vs.
strain can be obtained with time as a parameter. Two such curves are
sketched in Fig. 4. The lower curve represents the passive state and has a
linear region characterized by a passive modulus E. The upper curve is he
locus of tension at maximal activation vs. strain. It also has a significant
linear region whose slope E* is an active modulus, with E* > E. The
intercept To is the maximal isometric tension at zero strain. Thus, for the
linear regions

Ef passive state
T = E*,e + To maximally active state(4)

(8a)
(8b)

This gives the relation between the pressure gradient, the tension, and the
fiber direction fields. As Peskin (1975) has pointed out, the pressure
gradient vector locally lies in what is called the osculating plane of fiber,
which is the plane determined by the local tangent vector and principal
normal vector of the fiber. The vector (7 * V)7is the rate of change of the
fiber tangent vector with respect to the arc length along the fiber, and is
the principal normal. Eq. 4 states that in general a pressure gradient can
exist in a direction tangent to a fiber if there is either a tension gradient
along the fiber or the fiber direction field has a nonzero divergence. Also if
the fibers have a curvature, then a component of the pressure gradient lies
along the principal normal. This latter situation has often been applied in
various forms to the mechanical analysis of the heart wall and has been
referred to as the law of Laplace in the physiology literature.

Fiber Strain

In addition to the pressure and tension fields that specify the state of stress
we also introduce the displacement vector iu which specifies the state of
deformation. iu is measured relative to some reference configuration free
of stress. Since the myocardium is essentially incompressible, any arbi-
trary volume element must deform in such a way that its volume remains
unchanged. This neglects the effect of changing myocardial blood volume.
The linearized tissue incompressibility constraint is then given by

V * i = O. (5)
A quantity of importance in the theory to be developed is the linearized

The tension-strain relation at intermediate times (or degree of activation)
is also essentially linear (Brady, 1979). The entire family of tension vs.
strain relations can be represented by a linear combination of Eqs. 8a and
8b by introducing an activation function f# (t).

T= [(I -,)E + E*)]e +3To. (8c)

In the ventricle S(t) is a dimensionless periodic function of time (deter-
mining the heartbeat) oscillating between zero and unity. Note than when
= 0 and I# = 1, Eqs. 8a and 8b are recovered, respectively. To account

for nonsimultaneous activation of all fibers, the activation function can be
made to depend also on the spatial coordinates. Nonhomogeneity of the

FIGURE 4 Tension-strain behavior of cardiac muscle.
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myocardium, if it exists, could be accounted for by allowing E, E*, and To
to depend on the spatial coordinates.

Eq. 8c has a simple interpretation at the sarcomere level. It states that a
passive linear spring (e.g., the sarcolemma) is in parallel with an active
tension generator (the contractile proteins). In cardiac muscle, opposing
actin filaments overlap each other. If either the cross-bridges cannot
attach in these regions of opposing actin overlap or cross-bridges can
attach equally likely to actin filaments attached to opposite ends of the
sarcomere, then these regions do not contribute to active tension genera-
tion. If we assume that the active tension is proportional to the length of
actin-myosin overlap excluding the overlap of opposing actins, then we
obtain a stress-strain law having the same form as Eq. 8c. In other words,
the linear decrease of opposing actin overlap with increasing sarcomere
length accounts for the linear increase in active tension with increasing
strain. The overlap length of interdigitating actin filaments is -0.15 ,um at
the resting (zero passive strain) sarcomere length of - 1.90 jrm. A linear
increase in active tension can be expected until there is no opposing actin
overlap, i.e., for strains - 0.15/1.90, which is -8%. This figure agrees
with what is found experimentally (Braunwald et al., 1976, p. 82).

Left Ventricular Cycle
The beating ventricle goes through a sequence of mechanical changes that
are conveniently represented on a chamber pressure-chamber volume
diagram as shown in Fig. 5. Point 0 is the reference state from which all
other states are measured. It is the strain-free state defined by the
chamber volume V0 which exists at zero chamber pressure. Pressure is
measured relative to the pressure acting on the outside surface of the
ventricular free wall. Also the pressure is assumed to be uniform inside
the chamber. A normal physiological loop consists of the counterclockwise
sequence 4-1-2-3-4 with the leg 2-3 along the dotted path. Other types of
loops can be made to occur in the laboratory (see Sagawa, 1978, for a
review). The leg 2-3 along the solid path is an isobaric ejection which
occurs when the ventricle ejects into a constant pressure reservoir. If
ejection is prevented either by clamping the aorta or preventing the aortic
valve from opening by use of an occluding balloon, then the ventricle
contracts isovolumically and cycles between points 1 and 2'. The normal
physiological loop consists of four distinct legs: diastolic filling 4-1 (open
mitral valve, closed aortic valve); isovolumic contraction 1-2 (both valves
closed); systolic ejection 2-3 (open aortic valve, closed mitral valve); and
isovolumic relaxation 3-4 (both valves closed). The "corners" of the loop,
i.e., the points 1, 2, 3, and 4, are characterized by the opening and closing
of the two valves. These points are quite well defined if the valves are
functioning normally. The activation parameter (3(t) would be falling
toward zero during isovolumic relaxation and diastolic filling, and rising
toward unity during isovolumic contraction and systolic ejection.

Several important ventricular performance indices are available from
the pressure-volume loop. The stroke work is the area enclosed by the
loop. The stroke volume is the quantity of blood ejected by the ventricle
VI - V3. Ejection fraction is the normalized stroke volume, (VI - V3)/ VI.
Also, the end systolic pressure-volume relation as indicated by the line
5-3-2' in Fig. 5 has been experimentally studied by Sagawa and his
co-workers. Its slope and intercept Vd are thought to be indicators of the

2'
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FIGURE 5 Ventricular pressure-volume diagram.

FIGURE 6 Finite thick-walled cylindrical model of left ventricle. Fibers
are on cylindrical surfaces and helix angle varies continuously through the
wall.

inherent contractility of the ventricle. We will show, in fact, that the
active muscle parameters E* and To determine the locus of end systolic
states.

III. APPLICATION TO A THICK-WALLED
FINITE CYLINDER MODEL

For this configuration, as shown in Fig. 6, the analysis is
straightforward and an explicit analytical solution can be
found. The cylinder has length L, inner radius Ri, and outer
radius Ro. The upper surface (z = 0) is assumed to be
fixed. On this surface radial displacements are allowed, but
axial and circumferential displacements are zero. The
bottom surface (z = - L) is assumed to be a free plane
which can translate vertically and twist as a rigid body
about the axis of the cylinder. Radial displacements are
allowed to occur to maintain the cylindrical shape. The
parameters of the model are summarized in Table I.
The fiber direction field will be taken to be

TABLE I
VENTRICULAR PARAMETERS

Opening
Reference Fiber and closing
geometry characteristics pressures of valves

Ri inside radius E passive elastic pl(Rj) Mitral
Closes

modulus (dyne/
cm2)

R. outside radius E* maximally ac- p2(Rj) Aortic
tive elastic mod- Opens
ulus (dyne/cm2)

Lo length T. maximum ac- p3(R;) Aortic
tive tension gen- Closes
erated at zero
strain (dyne/
cm2)

v0 maximum fiber (3 activation func- p4(Rj) Mitral
helix angle tion (dimension- Opens

less)
a= R/Ri
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E= cosy (R)-te + sin-y (R)V!. (9)
Thus, the fibers form regular helices on cylindrical sur-
faces. The axial pitch angle y(R) varies continuously
across the wall of the cylinder. A small radial component of
the direction field has been neglected in Eq. 9 which makes
the helices wind on the toroids sketched in Fig. 2.

Axisymmetric Solution
Eqs. 4, 5, and 7 can be written in cylindrical coordinates
(see Chadwick, 1981) using Eq. 9 as the fiber direction
field. When all theta derivatives vanish it follows that
pressure, tension, and fiber strain fields are functions of
time and the radial coordinate only. The displacement field
u with components (UR, UO, UZ) has the form

UR = -/2 C (t)R + C2(t)/R

uo = -zROo(t)/L (10)

UZ= C,(t)z

with Cl(t), C2(t), 00(t) arbitrary functions of time. C(t) is
the axial strain, 00(t) is the twist angle of the bottom plane,
and C2(t) is related to ventricular compliance. The tension
field is given by Eq. 8c where the fiber strain is

E(R, t) = C,(t)[I - Cos2 y (R)] + COs2% y (R)

- L(t) siny(R)cos-y(R) (11)

The pressure field is obtained from the tension field by

& ~~~dr
p(R, t) = f T(r, t) cos2 y (r)- (12)

which satisfies the condition that the pressure vanish on the
outside radius of the cylinder. Three further conditions of
constraint are needed to determine the three arbitrary
functions of time. The bottom plane must be in vertical
force equilibrium, which leads to

&
T(R, t) [ 2 sin2 y (R) - cos2'y(R) ] R dR = 0. (13)

Also, the bottom plane must be in moment equilibrium

TABLE II
C, /(P,/E)

a60

a 50° 550 600 65° 700 750 800 850 900

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

58.304
30.070
20.489
15.594
12.590
10.542
9.050
7.909
7.007
6.276

36.332
18.834
12.927
9.926
8.093
6.847
5.939
5.246
4.696
4.249

23.598
12.274
8.466
6.539
5.366
4.572
3.995
3.555
3.206
2.922

16.047
8.364
5.787
4.487
3.698
3.166
2.780
2.486
2.253
2.064

11.499
6.002
4.161
3.234
2.673
2.294
2.021
1.813
1.649
1.516

8.729
4.560
3.164
2.463
2.039
1.754
1.548
1.392
1.268
1.168

7.023 5.950
3.670 3.110
2.548 2.160
1.985 1.683
1.645 1.396
1.417 1.202
1.252 1.063
1.127 0.958
1.029 0.875
0.949 0.808

5.245
2.741
1.904
1.484
1.230
1.060
0.937
0.845
0.772
0.713

TABLE III

C12/(P1/E)

a 500 550 600 650 700 750 800 850 900

1.1 36.306 29.520 26.709 25.987 26.384 27.386 28.714 30.213 31.799
1.2 20.551 16.791 15.234 14.846 15.089 15.674 16.443 17.310 18.225
1.3 15.305 12.593 11.470 11.205 11.406 11.862 12.455 1-3.121 13.822
1.4 12.685 10.525 9.634 9.439 9.627 10.026 10.539 11.112 11.714
1.5 11.114 9.308 8.568 8.422 8.610 8.981 9.453 9.977 10.526
1.6 10.067 8.517 7.886 7.781 7.973 8.333 8.783 9.280 9.800
1.7 9.321 7.967 7.423 7.353 7.555 7.911 8.351 8.835 9.339
1.8 8.764 7.568 7.097 7.059 7.274 7.632 8.070 8.548 9.045
1.9 8.332 7.270 6.862 6.854 7.083 7.449 7.889 8.367 8.863
2.0 7.989 7.042 6.691 6.711 6.956 7.332 7.779 8.262 8.761

about the cylinder axis, which gives

J T(R, t) sin y (R) cosy (R)R2 dR = 0. (14)

The remaining condition is more subtle and depends on
how the boundary conditions are specified during the
course of the cycle. The difficulty is due to the fact that
during ejection 2-3 the ventricle is coupled mechanically to
the aorta and during filling 4-1 the atrium and ventricle are
coupled. To actually include these coupling effects, which
would have to also include the mechanics of valve opening
and closure, greatly complicates the theory and calcu-
lation, and will not be dealt with here. Arts et al. (1979)
avoided the problem by specifying the chamber volume as
a function of time. If the same procedure were to be
followed here, it would be equivalent to specifying C2(t),
because V(t) = VO (1 + 2C2(t)/R,2) to an accuracy consis-
tent with linear theory. Then Eqs. 13 and 14 are sufficient
to determine C,(t) and 00(t), and hence the entire solution.
However, another approach has been taken here that is
aimed at determining the mechanical state of the ventricle
at the four corner points of the p-V loop of Fig. 5. At state
1, end diastole, the activation function ,B is assumed to be
zero, and the preload pressure p1(R,) is specified. Then Eq.
12, evaluated at R = R;, provides the additional equation
for the determination of Cl, C2, 00. The solution to the
resulting system of three linear algebraic equations is given
in Tables II, III, and IV, where C11 = C,, C12 = C2/R?, and

TABLE IV

C,3/(P/E)

a60

'a500 55° 600 650 700 750 800 85' 900

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

-0.293
-0.273
-0.252
-0.231
-0.211
-0.192
-0.175
-0.159
-0.145
-0.132

-0.560
-0.525
-0.488
-0.452
-0.417
-0.384
-0.354
-0.326
-0.300
-0.276

-0.585
-0.550
-0.514
-0.479
-0.446
-0.414
-0.384
-0.357
-0.331
-0.308

-0.532
-0.501
-0.471
-0.441
-0.412
-0.385
-0.359
-0.335
-0.313
-0.293

-0.464
-0.438
-0.412
-0.387
-0.363
-0.341
-0.319
-0.300
-0.281
-0.264

-0.403
-0.381
-0.359
-0.338
-0.318
-0.299
-0.281
-0.265
-0.249
-0.235

-0.351 -0.307
-0.333 -0.291
-0.314 -0.275
-0.296 -0.260
-0.279 -0.246
-0.264 -0.232
-0.248 -0.219
-0.234 -0.207
-0.221 -0.196
-0.209 -0.186

-0.264
-0.251
-0.237
-0.224
-0.212
-0.201
-0.190
-0.180
-0.170
-0.161
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C13 = ORj1/L. The computations are carried out for a linear
distribution of fiber helix angles

-y(p; y, a)= 1o (1 + a-2p)

p = R aRi;a = RO/Ri

1 cp-a

(15)
so that -y = yo on the inside surface, y = -yo on the outside
surface, and -y = 0 at midwall (Fig. 6). The coefficients are
tabulated as functions of the ventricular geometry as
specified by yo, a.
The remaining corners of the cycle can be expressed as

linear combinations of the end diastolic state 1 and an
auxiliary state 5 (Fig. 5) which is clamped isovolumic
contraction from zero preload. This state lies on the end
systolic pressure-volume line which is assumed to charac-
terize states with activation parameter A set at unity (see
Discussion for further significance of state 5). The isovol-
umic constraint implies C2 = 0 for state 5. Then Eqs. 13
and 14 result in two linear algebraic equations for the
determination of C, and 00. Tables V, VI, and VII give C51,
C53, and p5(Ri) as functions of yo and a, where C51 = C,
and C53 = OORj/L for state 5.
To determine state 2, the end of isovolumic contraction,

we specify p2(Rj) which is the aortic diastolic pressure or
the pressure at which the aortic valve opens. However,
there is also the isovolumic constraint so that C2 = 0 for
state 2 relative to state 1. Eqs. 13 and 14 then determine
the constants. Eq. 12 evaluated at R = Rj then determines
the value of A which is consistent with the specified p2(Rj).
In other words, specifying the chamber pressure at the
instant of aortic valve opening determines the value of the
activation parameter. State 2 is given by relations

!2 =U++ (EE (16)+E (1- f)E uS

= (5 + | (E E)3T) (17)

p2(R) = Op5(R) + [I + (E* E)JP(R) (18)

TABLE VI

C531(ToIE* )

a 50" 55" 600 650 700 750 800 85" 900

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

-0.148
-0.266
-0.361
-0.435
-0.492
-0.536
-0.568
-0.592
-0.608
-0.619

-0.150
-0.271
-0.368
-0.445
-0.504
-0.550
-0.585
-0.611
-0.629
-0.642

-0.142
-0.258
-0.350
-0.424
-0.482
-0.528
-0.563
-0.590
-0.610
-0.624

-0.129
-0.234
-0.3 19
-0.388
-0.442
-0.486
-0.520
-0.546
-0.566
-0.581

-0.116
-0.210
-0.287
-0.349
-0.399
-0.439
-0.471
-0.496
-0.516
-0.531

-0.104
-0.188
-0.257
-0.314
-0.359
-0.396
-0.426
-0.449
-0.468
-0.482

-0.094
-0.170
-0.233
-0.284
-0.326
-0.359
-0.387
-0.409
-0.426
-0.440

-0.086
-0.156
-0.213
-0.260
-0.298
-0.329
-0.354
-0.374
-0.390
-0.403

-0.079
-0.143
-0.196
-0.238
-0.273
-0.302
-0.325
-0.343
-0.358
-0.369

where

A = -P2(R) - pl(Rj)
p5(R,) + (E*- Ep)(Rj)

(19)

Eq. 19 has a simple physical interpretation. It states that
the value of the activation parameter at the time of aortic
valve opening is the ratio of the difference between aortic
diastolic pressure and preload pressure and the difference
between the clamped end isovolumic pressure (P2') and
preload pressure.

State 3, the end of ejection, is on the end systolic
pressure-volume line (,B = 1) and is given by

_p3(R;)- p5(R) E1
ui3 = d5 + p,(Rj) E* ul

T3 =T5+ pPR -(Rp5(Ri))T,

p3(R) = p5(R) + [P3(R.)-ps(Rj)1 p(R)
I.p1(R1)j

(20)

(21)

(22)

where p3(Rj) is the specified chamber pressure at aortic
valve closure.

State 4, the end of isovolumic relaxation, is determined
by specifying p4(Ri), the pressure at which the mitral valve
opens. However, there is also the isovolumic constraint so
that C2 = 0 for state 4 relative to state 3. Again Eqs. 13 and

TABLE V
C5 /(To/E*)

-yo

a 50° 55" 60" 65" 700 75" 80" 85" 90"

1.1 1.657 1.038 0.465 0.025 -0.276 -0.470 -0.593 -0.672 -0.726
1.2 1.660 1.047 0.477 0.037 -0.265 -0.461 -0.586 -0.667 -0.721
1.3 1.664 1.059 0.494 0.055 -0.249 -0.448 -0.575 -0.659 -0.715
1.4 1.668 1.074 0.514 0.076 -0.230 -0.432 -0.563 -0.649 -0.708
1.5 1.674 1.091 0.537 0.100 -0.208 -0.414 -0.548 -0.638 -0.700
1.6 1.679 1.108 0.561 0.125 -0.186 -0.395 -0.533 -0.626 -0.691
1.7 1.685 1.125 0.586 0.151 -0.162 -0.375 -0.517 -0.613 -0.681
1.8 1.690 1.143 0.610 0.177 -0.138 -0.355 -0.501 -0.601 -0.672
1.9 1.696 1.160 0.635 0.203 -0.115 -0.335 -0.484 -0.588 -0.662
2.0 1.701 1.176 0.658 0.228 -0.091 -0.314 -0.468 -0.575 -0.652

TABLE VII

P5(Ri)ITo

a 500 55" 60" 65" 700 75" 800 85" 90"

1.1 0.045 0.056 0.062 0.063 0.063 0.060 0.058 0.055 0.052
1.2 0.087 0.106 0.118 0.121 0.119 0.115 0.110 0.104 0.992
1.3 0.125 0.153 0.169 0.174 0.171 0.165 0.157 0.150 0.142
1.4 0.160 0.195 0.215 0.222 0.219 0.211 0.201 0.191 0.182
1.5 0.192 0.234 0.253 0.266 0.262 0.253 0.241 0.230 0.218
1.6 0.223 0.270 0.298 0.306 0.302 0.292 0.279 0.265 0.252
1.7 0.252 0.304 0.334 0.344 0.339 0.328 0.313 0.298 0.283
1.8 0.279 0.335 0.368 0.379 0.374 0.361 0.345 0.328 0.312
1.9 0.304 0.365 0.400 0.411 0.406 0.392 0.375 0.357 0.339
2.0 0.328 0.392 0.430 0.442 0.436 0.421 0.403 0.383 0.364
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14 determine the constants, and Eq. 12 determines (3. State
4 is given by

(E* p3(R) - p5(Ri) E -

U4 (3E*+ (1- )EU pl(RI) E* u

T4 =(T5 + IE* -(3) + I[3(P (R)5(Ri) T

30

20(23)

(24)

p4(R) = flp5(R) + (E -(3) + P]
[P3(Ri) -p(Ri)] p,(R) (25)

where

E
p4(R;)- [p3(R) - p5(Ri)]

E . (26)

p3(R;)-E [p3(R) - p5(R;)]

Note that at state 4 , > 0, in general, so the filling process
4-1 is not passive. This is consistent with the observation
that ventricular pressure is falling while ventricular volume
is increasing during the rapid-filling phase.

Numerical Results
Results are summarized in Table VIII for the following
example: Ri = 1 cm, Lo = 4.77 cm, a = 1.6, -y = 700, V0 =
15 ml, E = 3 x 105 dyn/cm2, E* = 22.3 x i05 dyn/cm2,
To = 2.5 x I05 dyn/cm2, pi = 10 mmHg, P2 = 80 mmHg,
p3 = 85 mmHg, and p4 = 15 mmHg. These parameters are
thought to be representative for the canine left ventricle.
The symbols used in the table are AL/L4 = axial strain,
AH/Ho = fractional increase in wall thickness, AR/Ro =
fractional increase in outside radius, 00 = twist angle of
lower plane, (3 = activation parameter, and V = ventricular
volume. All of the entries in Table VIII can easily be
obtained by use of only a pocket calculator and Tables
II-VII.
The distribution of fiber strain and sarcomere length

TABLE VIII
GEOMETRICAL AND ACTIVATION CHANGES IN

EXAMPLE CALCULATION

State

1 2 3 4

%AL/4L 10.20 8.29 1.81 2.76

%AH/HO -27.25 -26.30 - 9.36 - 9.84

%AR/RO 17.05 18.00 7.55 7.08

00, degrees - 4.14 -16.42 -15.03 8.89

,19 0 0.579 1 0.138

V, milliliters 25.6 25.6 19.0 19.0

10

(%)

0

2

3

1.1 1.2 1.3 1.4 1.5
p

2.47

2.28

2.09

s(1U)

1.90

1.71

FIGURE 7 Distribution of fiber strain and sarcomere length through
ventricular wall for the different equilibrium states. (p = R/Ri).

across the wall is shown in Fig. 7 for the same example.
The relationship between the two quantities is e = (s -
so)lso where s is the sarcomere length in the strained state
and so is the unstrained length which is taken to be 1.9 ,um
uniformly throughout the wall. Note that the sarcomere
length is maximal in the subendocardial layer throughout
the cycle. The corresponding tension and pressure distribu-
tions are shown in Fig. 8 and Fig. 9.

Ejection fraction is plotted in Fig. 10 as a function of
dimensionless preload pressure p1/E and a dimensionless
parameter t = (p5 - p3 )/E*. The parameter is a combina-
tion of afterload pressure p3 and the active muscle parame-
ters To and E*. For fixed a and yo, the ejection fraction as a
function of preload and afterload pressures, and active and
passive muscle parameters, collapses onto a single surface

EF=f(p,/E, ¢).

It is apparent from Fig. 10 that the ejection fraction is a
monotonic, increasing function of its arguments, at least
for the plotted range of physiological interest. Thus the
ejection fraction increases with increasing preload pressure
(a demonstration of Starling's law), increasing active
tension at zero strain, or decreasing passive stiffness,
decreasing afterload pressure and decreasing active stiff-
ness provided p5 > p3. If p5 < 3 then decreasing the active
stiffness decreases the ejection fraction. Changing the

5'
4

T 3
(105 dyn/cm2)

2

3

1 - 4

1 1.1 1.2 1.3 1.4 1.5 1.6
p

FIGURE 8 Distribution of fiber tension through ventricular wall for the
different equilibrium states.
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I.

1,

p

(mmHg)
FIGURE 9 Distribution of tissue pressure through ventricular wall for the
different equilibrium states.

geometrical parameters a and yo results in a different
ejection fraction surface. For example, with an increase in
a as in hypertrophy the surface lies under the surface for
smaller a. Therefore for fixed pi/E and t an increase in a
results in a lower ejection fraction. However, an increase in
a increases p5 so that r increases even if To, p3, and E* are
fixed, and this increase in r is enough to increase the
ejection fraction.

Calculated pressure-volume loops are shown in Fig. 11
at different preload and afterload pressures for the case of
isobaric ejection. Values of the geometrical and muscle
parameters are the same as used previously.

IV. DISCUSSION

It is interesting to examine some of the effects due to
variation in the maximum helix angle parameter yo. It is
apparent from Table VII that p5 is maximized when 'yo is
.650, i.e., the cylinder has the maximal capability to

generate pressure in a clamped isovolumic contraction at
this helix angle. Streeter's measurements show that this
angle is observed in canine ventricles. The theory may also
resolve a controversy concerning the normal geometrical
changes during isovolumic contraction. Both lengthening
of the external major axis with shortening of the external
minor diameter (isovolumic ellipticalization) and short-

1.0
0.9
0.8
0.7

0.6 E
0.5
0.4

1.0// ~~~~~~~~~~~~~~~~~~0.3
0.9/ ~~~~~~~~~~~~~~~~~~~0.2

0.8/ 0.1

0.7
0.6 0.8

EF -1

FIGURE 10 Ejection fraction surface. r = (p5 - p3)/E*.

V (ml)

FIGURE 11 Calculated pressure-volume loops for isobaric ejection from
different preload and afterload pressures.

ening of the external major axis with lengthening of the
external minor diameter (isovolumic sphericalization)
have been observed experimentally (Rankin et al., 1976).
In terms of the notation of the present paper, the former
would occur if C51 > 0 and the latter would occur if C51 < 0.
Referring to Table V, we can see that C51 changes sign if
650 < yo < 700, which is within the normal physiological
range for canine ventricles. Thus normal variation between
different animals could account for the different observa-
tions. Rankin et al. also found that both patterns could be
observed in the same dog depending on the end diastolic
volume. That could represent the nonlinear effect of a
changing fiber direction field with large diastolic deforma-
tions.

There are some experimental observations that tend to
validate the basic ideas of the theory and specifically some
of the predictions from the cylindrical model. I have
observed a twist of the apex relative to the base of a beating
canine ventricle with the correct sense of rotation and
magnitude estimated to be about 10°-200. The distribution
of sarcomere length across the wall as shown in Fig. 7
indicates that throughout the cycle the longest sarcomeres
are in the subendocardial layers. Measurements of Yoran
et al. (1973) at end diastole substantiate this prediction. In
the calculations of Arts et al. it was assumed that the sarco-
mere length distribution is uniform at end diastole instead
of being uniform in the stress-free reference state as was
assumed here and also by Feit.

Fig. 9 predicts a smooth decrease in tissue pressure
varying between ventricular chamber pressure on the
inside surface and zero pressure on the outside surface,
which are the assumed boundary conditions. This trend is
consistent throughout the ventricular cycle. For the cylin-
drical model, tissue pressure is equivalent to the negative of
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radial stress for the case of zero radial component of the
fiber direction field (Eq. 1). These results are in qualitative
agreement with predictions of the other fiber-based cylin-
drical models. Unfortunately, attempts to measure the
tissue pressure have not led to any consistent results. Pierce
(1981) has reviewed the various methods used to measure
tissue pressure. The techniques that are used tend to cause
local edema and contractile dysfunction which would
disturb the measurement. In any case, some of the mea-
surements qualitatively agree with the present theory while
others do not. For example, some measurements indicate
that tissue pressure can exceed the chamber pressure and
that a substantial positive pressure gradient can exist from
endocardium to epicardium. To resolve this problem, sev-
eral issues must be considered. To begin with, the concept
of tissue pressure is itself an idealization in that no
distinction is made among pressures in the different
phases. Nontraumatic measurement techniques must be
found and the stress component actually being measured
must be identified.
Sagawa (1978) has found that the end systolic chamber

pressure and volume experimentally satisfy to a good
approximation the empirical linear relationship

PEs =Es (VFs - Vd) (27)

where EEs is the constant slope (a volume elastance) of the
end systolic pressure-volume line, Vd is a "correction
volume," and PEs = P3, VES = V3 in our notation. The same
relationship is predicted by our theory with

1 E*
E~s = ~,~Vo(28)2 C712 V0

Vd = VolI -2CZ12PS5- = Vo-p5/EEs (29)

where C12 = C12/(pI/E) is tabulated in Table III, and5=P
p5(R)/To is in Table VII. Thus an experimental measure-
ment of EE and Vd would determine the two active muscle
parameters E* and To. The fact that Eq. 27 is linear and
that it is independent of preload and path supports the
basic assumptions of theory. Namely, in the beating heart
it is appropriate to consider a linear quasi-static equilib-
rium theory without significant dissipative effects. The
linearity of Eq. 27 breaks down at large diastolic volumes
as one would expect on the basis of finite deformation
effects. Eqs. 28 and 29 provide a means of explaining many
of Sagawa's observations as well as giving more insight into
his findings. A positive inotropic intervention increases
EEs, which implies an increase in E* because the denomi-
nator of Eq. 28 is a function only of the reference geometry.
Sagawa realized that EEs itself is not a true indicator of
inherent contractility because different sized hearts would
have different EES even with the same contractile state. It is
E* and not EES that is a contractility index and Eq. 28
shows how to normalize EEs to account for size. Sagawa
also observed that the "correction volume" Vd is always less

than the stress-free reference volume V0. This is borne out
by Eq. 29, which also indicates how Vd is a measure of
p5(R), the clamped isovolumic chamber pressure at zero
preload. Sagawa further observed that Vd is insensitive to
inotropic intervention which indicates that the ratio To/E*
remains rather constant. Ventricular hypertrophy (an
increase in a) under conditions of fixed V0, E*, and To
would have the effect of increasing EEs and decreasing Vd
since C12 is a decreasing function of a and the product
C12P5 is an increasing function of a (see Tables III and
VII).

In Fig. 11Ithe calculated EES is 7.0 mmHg/ml which is
typical of values reported by Sagawa for the canine
ventricle. Also, the values of the active muscle parameters
which were used to determine EES are typical of reported
values for the canine papillary muscle. Therefore, there
exists an internal consistency among different physiolog-
ical measurements and properties of the model.
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