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ABSTRACr The goal of this paper is to examine the origins and relative importance of primary and secondary sources of
electric and magnetic fields for excitable tissue. It is shown that for axonal and cardiac tissue a comparison of the
relative field strength from both primary and secondary sources shows only the latter to be significant. Even if the
divergence and curl of the primary source were independent (and hence were both needed to define the primary source),
because the secondary sources all arise from the divergence of the primary source the magnetic field reflects the same
source component as the electric field. As a consequence magnetic and electric fields arising from active tissue are
strongly linked.

CURRENT FLOW (PRIMARY) FIELDS

The goal of this paper is to examine the origins of the
primary and secondary sources of the electric and mag-
netic fields for excitable tissue and, in particular, to
contrast their relative importance. Our greatest interest is
devoted to cardiac muscle but most of the paper applies
equally well to other excitable tissues. We begin with a
consideration of the primary field.

In biophysical studies of excitable tissue the volume
conductor medium is characterized as resistive. The elec-
tric field, E, is consequently associated with a current
density J, and these are related by Ohm's Law

J=caE (1)

where a is the conductivity. Eq. 1, in fact, applies through-
out all of both intracellular and extracellular space (which
are passive), and it is only within excitable membranes that
it might not be valid. Associated with the membrane are
additional "driving forces" of current, namely diffusion
and active transport (1, 2). These are essentially nonelec-
trical in nature but can enter through the currents they
generate, (i.e., currents which arise as a result of the
conversion of stored chemical energy and/or metabolic
energy [splitting of ATP] into electrical form). While it is
possible to describe these contributions mathematically it
will be adequate for our purposes to simply introduce into
Eq. 1 a nonohmic (nonconservative) current that we
designate as an impressed current J'. If all field quantities
were complex phasors so that a could represent a mem-
brane impedance (i.e., including membrane capacitance)
the impressed current would correspond to the ionic cur-
rent of the Hodgkin-Huxley formalism (3). Thus, in

general,

J= aE + J' (2)

and J' # 0 only within active cellular membranes.
Taking into account the frequency content of electro-

physiological signals, as well as the conductivity parame-
ters of physiological media, permits us to establish that all
fields of biological origin are quasi static; that is, currents
and voltages can be considered as if static at any given
instant (4). In particular,

E=-V)~ (3)

where 4 is the electric potential. Because J in Eq. 2 is the
total current, then, according to Maxwell's equations, it is
solenoidal. Taking the divergence of Eq. 2 and using Eq. 3
leads to Poisson's equation,

V2,k = V . Ji/a (4)

and - V * J' is a volume source density function. Ji' is also
a source function for the magnetic field which, in terms of
the vector potential A (5), satisfies

_= j (5)

while the magnetic fieldH, is related to the vector potential
Aby

H -V x A. (6)

SECONDARY SOURCES

The solution of Poisson's Eqs. 4 and 5 is trivial for media
that are uniform and infinite. Ordinarily in physiological
preparations the permittivity and permeability can be
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assumed to be uniform but discontinuities in the conductiv-
ity are typically seen at both the cellular and the macro-
scopic levels. The effect of these inhomogeneities can be
taken into account through the secondary sources that are
generated.

If we make the simplifying assumption that the conduc-
tivity is piecewise constant then the secondary sources arise
at the interface between media of differing conductivity.
For example, at the kth interface that separates two
regions with conductivity a4kand 4k' the scalar function f =
ao, where 4 is the electrical potential, satisfies

{k +:AOff(7)

K = 4V/4jn. (8)

Eq. 8 is an expression of continuity of normal component of
current (Qk4&//n) although the inequality of Eq. 7 is true
because 4, is continuous and c4k ack. The conditions in Eq.
7 and 8 are assured if a current double layer lies at the
interface (in an equivalent uniform homogeneous medium
with the conductivity that of the field point) whose
strength is the discontinuity in the scalar function V/,
namely

Kk= (/," - nn= 4k(k - U)n (9)

where ni is the surface normal from primed to double-
primed region (6). This result was originally noted by
Geselowitz (7).

Secondary sources arise not only at the interface
between macroscopic regions of different conductivity but
also at those which occur on a cellular scale. Thus at the
inner and outer membrane surface of a cell we have,
applying Eq. 9

where r is the distance from source to field and the del
operator is with respect to source coordinates. An alternate
form of Eq. 12 follows from the vector identity

V . (J'/r) = (1/r) V * J' + Ji * V(1/r). (13)

If both sides of Eq. 13 are integrated over a volume
containing all sources and if the divergence theorem is
applied to the left-hand side then this integral must go to
zero because J' is zero at the bounding surface. Conse-
quently

I r dI
fr dv=-fJ7'.V(1/r)dV (14)

and Eq. 12 can also be written

(15)

Eq. 5 can be solved in the same way as Eq. 4 leading to

A=-fJfdV4-7r r
(16)

so that, by applying Eq. 6, we get'

H=-J -d V.
4ir r

(17)

Using the vector identity V x (J'/r) = V(l/r) x Ji +
(V x J')/r, integrating over a volume containing all
sources and converting the integral on the left-hand side to
a surface integral by Stokes' theorem (this integral is zero
because J' is zero over the bounding surface) shows that

Kc= [4eQTeU)-o(a--o(Vm)]n (10)

where a,, a., af are the extracellular, membrane, and
intracellular conductivities; 04e, oi are the extracellular and
intracellular potentials; and -n is the outward normal from
the cell. While the double layer sources associated with the
inner and outer membrane are not congruent their spacing
is so small that in Eq. 10 they have been merged. The
membrane conductivity aU is, strictly, a phasor quantity
because it includes a capacitive as well as conductive
component. At frequencies associated with action currents
the displacement current, at most, equals the conduction
current; however, even under these conditions Urn is very
small compared with o, or v; (8) and Eq. 10 reduces to

Kc = (ar 4O - oii)n- (1 1)

ELECTRIC AND MAGNETIC FIELD
EXPRESSIONS

The integral solution to Eq. 4 (Poisson's equation) is given
(5) by

-t == i- -dv (12)
4woa r

f (V xJ')/r dV= -J V(l/r) xJid V.

Consequently, Eq. 17 has the alternate form

H = (1/4ir) f J' x V(1/r)dV.

(18)

(19)

The total electric and magnetic fields require that both
primary and secondary sources be included. Consequently
adding K'k(Eq. 9) and KC(Eq. I 1) to J, and using Eq. 15 or
19 leads to

* = (1/4wrU) fJi' V (I/r) dv + (1/4wro)Z

J (Ok- Ok') n * V (1/r) dSk +

1 r
40 E J(UeRfi - ;,1)) n * V (1/r) dSc (20)

'The del operator in Eqs. 3, 5, and 6 is with respect to field coordinates;
elsewhere, including Eq. 17, it is with respect to source coordinates. This
ambiguity can be avoided with prime and unprimed notation, but in this
brief paper it was felt that this modest difficulty could be tolerated for the
simplicity it provides.
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H=-fiixVJ(1/r)dV+ (1/47r)E

J k ( 'k- c) n x V (1/r) dSk +

(1/4r) Z f(ac4fe-a ) n x V (I/r) dSC (21)

where the summation is over k macroscopic interface and c
excitable cell membranes. The unsubscripted conductivity
in Eq. 20 is that of the field point.

RELATIVE CONTRIBUTION OF PRIMARY
AND SECONDARY CELLULAR SOURCES

In Eqs. 20 and 21 the primary source, Ji, lies in the
membrane, as explained earlier. Its contribution to the X
and H field can be compared with that arising from the
secondary cellular sources (Eq. 11). Although such a
comparison depends on the particular shape of the propa-
gating action potential, the order of magnitude of secon-
dary-cellular-to-primary-cellular source was estimated by
Plonsey (8) as 107. Swinney and Wikswo (9) estimated this
ratio as 10". So, with respect to computation of E and H
fields, J' can be ignored.

Because the aforementioned referenced papers deal,
basically, with a simple single excitable fiber, we consider
in some detail here a comparison of the contribution to the
electrocardiographic field from primary and secondary
sources in the heart. Because the total number of cardiac
cells is very large (perhaps 10'0) it is convenient to consider
a small subset (say 1,000 cells) as an elementary unit.
Though very small compared with the total number of
cells, it is large enough to be considered through averaged,
uniform, properties.

If typical activation patterns are examined (10) it is
clear that they involve well-behaved wavefronts that are
nearly flat over most regions. Accordingly, in the syncytial
cardiac tissue, one can describe the behavior as that of a
plane excitation front (i.e., a linear core conductor relation-
ship); for anisotropic tissue the intracellular and extracel-
lular axial resistance per unit length depends on the
direction of propagation relative to the fiber axis (1 1). This
forms the basis for a comparison of the first and third terms
of Eq. 20 (or 21) which, it will be noted, are integrated over
the same membranes. In fact, because each membrane is
thin, and .1 is uniform, normal to each cell surface, and
confined to the membrane, we compare

secondary/primary = J (ak -ajo)V(Il/r) . d/

ytfj'V (1/r) * dS. (22)

For the electric field case this expression is the ratio of the
respective electric potentials; for the magnetic field case it
is an evaluation of the ratio of the respective vector
potentials. In Eq. 22 t is the membrane thickness, while y is
the volume to surface ratio for cardiac tissue (considering
it composed of cylindrical cells of radius a then -y =

ira2/21ra = a/2). Because 0, 4i, and Vm (the transmem-
brane potential) are related by linear core conductor
theory (1 1), this provides an expression for transmembrane
current as gfto5j/o9/ (Q is the direction of propagation and
gQ is the effective intracellular conductivity in that direc-
tion) and this serves as a good approximation to J' (the
displacement current being neglected).

The comparison of the expressions in Eq. 22 can be
facilitated by their transformation to axial integrals of the
second derivative of the source function divided by r (12).
Because the activation wavefronts propagate generally
across fiber directions, the transverse resistivities of Rob-
erts et al. (11) show that oi = 50,, a result that implies
intramural potentials of -30 mV, which is a reasonable
experimental figure. Consequently, we can take i =- Vm,
and the comparison of Eq. 22 made on the following
expressions which are integrated across the active wave-
front (usually of thickness 0.5 mm) per unit area of
wavefront

secondary/primary

2V,OR2dQI a?4V/a d
eff i/r |d tg Jtyf

4

dr (23)

(see also reference 13 for evaluating the cross-fiber
source). This can be rewritten

f0.05 a,2Vm/Q2 dQ

secondary/primary = -t 04VID/5Q4V
r

(24)

where the wave thickness of 0.05 cm (rising phase of 1 ms
times a slow velocity of 50 cm/s) is the basis for the
integration limits. Because the field of the secondary
source in Eq. 24 is that of a dipole although the primary
source field is that of an octapole, a comparison can only be
meaningful at specific field locations. Assuming the dis-
tance to a field point large compared with 0.05 cm, we can
approximate Eq. 24 by

cos e
1 R2

secondary/primary = tYZ2 *15 CoS3 0 - 9 C 0 (25)

where the field point is at (R,0) and AZ = 0.05 cm is the
separation between lower multipoles in generating higher
multipoles. We will examine Eq. 25 for a field point on the
axis (when 0 = 0) and on the anterior chest- say 2.5 cm
from an active source assumed on the anterior heart (which
will make Eq. 25 as small as possible). Letting t = 100 A,
fiber radius a = 8M,u then

secondary/primary = I x 1012, (26)

which is roughly the relationship found by Swinney and
Wikswo (9) for the nerve axon. This result does depend on
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the macroscopic field assumption in which we used aver-
aged uniform properties characteristic of a region of
~1,000 cells. Possibly a careful study of the cellular
behavior of the 1,000 cells or so that underlie this macros-
copic element would inject a correction factor. However, it
is extremely unlikely that it could overturn the essential
relationship found above.

DISCUSSION

The introduction of the SQUID (superconducting quan-
tum interference device) (14) with its ability to detect
magnetic fields of picotesla strength has given rise to a
greatly extended interest in the measurement of magnetic
fields of biological origin. The question as to whether such
measurements contribute anything basically new relative
to their electrical potential counterparts continues as a
controversial question since first considered with respect to
fields of cardiac origin.

I suggested (15), based essentially on Eq. 12 and 17 that
and H contained independent information concerning

the sourceJ' because, according to the Helmholtz theorem,
(5), V . J' and V x J' could be assigned independently.
Rush (16) subsequently criticized this conclusion based on
certain constraints that apply to theJ' of bioelectricity that
could preclude V . J' and V x J' being arbitrary. The
matter did not seem completely resolved because the
geometries considered were simple ones. What I have
shown here is that, in fact, the fields measured do not even
arise from J', but rather from secondary sources only.
These secondary sources, in turn, depend on both the
electrical field and the interfaces, and hence are related to
V ·J' and the geometry. So both electric and magnetic
fields have as their sources a common source type. In fact
this point has already been made relative to macroscopic
secondary sources by Wikswo et al. (17).

We have established here that the sources of both
electric and magnetic fields are of the secondary type and
that these are themselves established by boundary condi-
tions on the electric field only. Does this mean that
measurement of the external bioelectric field completely
determines the external biomagnetic field (or vice versa)?
Such a conclusion is clearly suggested, but a direct proof is
absent. So while this paper almost certainly eliminates
what was once thought to be a definite distinction between
the properties of bioelectric and biomagnetic fields it does
not completely exclude such a possibility.
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