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ABSTRACT Equations are derived that account for the contribution of internal structure of cilia and flagella to motion
in three dimensions according to a sliding filament model of the motile system. It is shown that for reasonable amounts
of bending and twisting, the bending properties of an axoneme can be described by a linear elastic bending resistance,
and approximate values for the bending and twisting resistances are computed. Expressions for the shear moments
contributed by purely elastic or pinned links between filaments are also derived. It is shown that within the confines of a
strict sliding filament model such internal structures cannot by themselves produce twist. Thus planar bending will
occur if the internal shear force lies in a plane. Application of an external force, however, will in general produce
twisting. Computer simulations of flagellar shape in response to a constant external force applied to the distal end of the
axoneme are presented. It is shown that a small amount of twist may arise because of acylindrical bend resistance. Large
twists, however, result when the external force is applied to an axoneme with internal shear resistant links.

INTRODUCTION

Flagella and cilia beat with a wide variety of three-
dimensional shapes of varying complexity. This variety of
shapes contrasts with the rather symmetric organization of
the axoneme. Previous attempts to understand how inter-
nal components such as dynein arms and outer doublets
produce bending waves have focused on those flagella that
display planar bending. The planarity encouraged the use
of two-dimensional equations for analysis of bend propaga-
tion. Such models, of course, beg the question of how a
three-dimensional system can produce two-dimensional
motion. Even if the properties of the central pair were to
define the plane of bending merely by virtue of the extra
stiffness along one axis, the possibility of twisting makes it
unlikely that beating would be planar. That cilia of the 9 +
0 (Costello et al., 1969), 9 + 1 (Henley et al., 1969), 6 + 0
(Schrevel and Besse, 1975), and 3 + 0 (Prensier et al.,
1979) patterns also beat with three-dimensional shapes
further emphasizes the importance of understanding the
role of internal structure in determining the form of the
propagating wave. Preceding theoretical studies of bend
formation and bend propagation (see Blum and Hines,
1979, for a recent review) have simplified the 9 + 2
structure by projection of the contributions of the outer
doublets onto the plane of bending, so that, in essence, one
composite pair of sliding filaments was considered, and
bending was necessarily planar. This approach has permit-
ted the development of models of flagellar motility that
take into account the presence of passive shear links (e.g.,
nexin links) and the cyclic attachment-detachment of the
dynein arms. A fundamental issue still to be resolved is
how bending is coordinated with sliding to yield wave

propagation at a specified frequency. The participation of
the radial spoke system, at least in 9 + 2 flagella, seems to
play an important role in converting sliding into bending
(Warner and Satir, 1974), but no details as to how
coordination of these processes is achieved are available.
That the radial spoke system is a three-dimensional array
of elements further emphasizes the need for an investiga-
tion of the effects of internal structural organization on
flagellar motility.

Although most studies on wave shape in cilia and
flagella have tacitly ignored the possibility that twisting
occurs, it is now clear that, at least in some circumstances,
twisting may be a significant aspect of flagellar motility.
From studies on hamster sperm flagella that were arrested
by quick freezing, Wooley (1977) concluded that the plane
of action of a given bend cycle undergoes twisting as each
bend cycle is succeeded by a new bend cycle. He suggested
that the preferred plane of bending is determined by
peripheral doublet 1, then successive planes by doublets 2,
3, etc. In 6 + 0 and 3 + 0 flagella, each bend seems to stay
on its own set of doublets, the next bend being on another
set, and twisting has been observed even in a doubly
tethered cell (Goldstein et al., 1978). Bradfield (1955) and
Costello (1973) have suggested that helical motion may
arise from a progression of activity around the circumfer-
ence of the axoneme as the wave progresses along the axis.
A change in orientation of the central pair during

beating was observed by Satir (1968) and by Tamm and
Horridge (1970). More recently, Omoto and Kung (1980)
have observed twist in the central pair of filaments in
Paramecium cilia, which they interpret to indicate that the
central pair rotates continuously, its rotation originating at
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the base of the cilium. Thus there are many indications
that twisting of at least some ciliary components occurs
during ciliary motion and, indeed, may play a role in
determining the three-dimensional motion. The need for a
comprehensive analysis of the contribution of internal
structure to three-dimensional flagellar mechanics is there-
fore clear.

In section I of this paper we analyze flagellar shape by
developing a formalism that accounts for the change in
coordinate axes of each of the filaments in a flagellum for
arbitrary bending and twisting, and show how coordinate
transformations can be used to keep track of local orienta-
tion of the internal components. Section II then formulates
the sliding filament model, explicitly allowing for the
contribution of each of the outer doublets. A method for
computing the bending and twisting resistances of a flagel-
lum is presented in section III. When a central pair is
present, the bending resistance encountered in response to
an internal dynein-generated force will depend on the
angle that the force makes within the central pair cross
section. Estimates of the values of the components of the
bend resistance matrix are obtained. In section IV we
derive general expressions for the moments generated by
internal shear forces, and apply these to an analysis of the
contribution of nexinlike links. This analysis shows that
such elastic links cannot contribute any twisting moment.
Section V presents a numerical method for computer
analysis of the three-dimensional sliding filament model
and simulations of flagellar shape in response to applica-
tion of a constant external force for various degrees of
internal asymmetry. The contribution of internal structure
to bend shape and twist is then examined, and conditions
for nearly planar bending are discussed.
A brief outline of some of these results has been

presented (Hines and Blum, 1982).

NOMENCLATURE

Depending upon the context, a subscript may refer to the filament
number, i = 1, 9; a component of a vector, i = 1, 3; or a discrete point on
the flagellum, p = 1, N. In the rare case that confusion is possible, the
meaning is explicitly stated.
An arrow over a symbol denotes a three-dimensional vector. A

circumflex over a symbol denotes a unit vector. Two tildes under a symbol
denote a 3 x 3 matrix.

Symbols that appear in more than one section of the paper are listed
below with their units:

A
Eb
EJ,, En, Ezz
Es
A-

F, Ft,,
fii

Li
A
M

coordinate transformation
bending resistance matrix
diagonal components of Eb (pNMm2)
shear force coefficient (pN/Im)
external force density (pN/um)
external force on positive face of axoneme (pN)
force caused by link between ith and jth doublet (pN)
effective shear (radians)
curvature (rad/Mm)
vector from neutral axis to ith doublet (,um)
length of flagellum (Mm)
moment on positive face of axoneme cross section
(pNAm)

r
s

s
T
U'

position vector (,um)
arc length (Am)
internal shear force (pN)
tangent vector
sliding of ith doublet relative to central pair (Am).

I. FLAGELLAR SHAPE

Consider an orthogonal coordinate system with its origin at
arc length position s along the neutral axis (see Lubliner
and Blum, 1971) of the axoneme. The location of this
origin with respect to some fixed point in the laboratory is
expressed by the position vector, r. The orientation of this
coordinate system is taken as fixed relative to the structure
of the axoneme. We call this system the body coordinate
system and, for convenience, choose to orient the z axis
along the neutral axis of the axoneme, i.e., along the
tangent. The orientation of the x axis can be arbitrarily
fixed with respect to some conventional structural feature
of the axoneme such as along the long cross section of the
central pair. The y axis is then fixed by the further
requirement that the body coordinate system be right-
handed. The value of using such body coordinate systems is
twofold. First, many mechanical and structural properties
are independent of s when expressed in this system.
Second, vectors describing structure, position, and forces
acting on the axoneme have very simple representations.
The shape of the axoneme can be envisioned as a continu-
ous string of coordinate systems with their origins sepa-
rated by an infinitesimal distance, ds, along the filament
axis.

Fig. 1 illustrates how the overall shape is governed by the
relative rotation of adjacent body coordinate systems. For
example, pure twist is built up by successive relative
rotations about the z axis and pure bending in the xz plane
is built up by successive rotations about the y axis. The
change of orientation with respect to arc length about the
three local body coordinate axes are the three components
of the curvature vector, Ki, along these axes. Notice that we
have identified Kz as the amount of twist per unit arc length.
As a flagellum changes its orientation continuously (but

z

LKy

FIGURE I Bending and twist generated by relative rotation of adjacent
body coordinate systems about the body coordinate axes. Rotation only
about the z axis produces pure twist, Kz Rotation only about the x axis
produces pure bending in the Y, Z plane, Kx, and similarly about the y
axis.
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with Kz = 0 everywhere) parts of the flagellum will rotate;
such rotations should not be confused with twist. These
concepts are rigorously expressed in the appendix where
coordinate transformations are used to derive the usual
expression for the directional derivative of a vector,

dV /dV\
= + K x V. ~~~~(1)

ds ds body

This formula relates the change of a vector, V, with
respect to arc length, to the derivative of its components in
the body coordinate system at position s; the cross product
term accounts for possible changes in direction of the axes
of the body coordinate system if the axoneme is undergoing
bending or twisting. For example, because the tangent
vector, T, has been defined so that it is constant in body
coordinates,

dT-
d= x T. (2)
ds

Given -K(s) in body coordinates, one can determine the
shape of the flagellum by using the transformation
matrices described in the appendix. From Eq. A5, the
infinitesimal transformation from position s to s - ds is

I -KdS Kyds

A(s -ds,s) = Kzds I -Kxds (3)

-KydS KXds I

The finite transformation from position s back to the origin
(s = 0) is then achieved by the infinite product of these
infinitesimal transformations:

A(0, s) = A(0, ds)A(ds, 2ds) . . .

A(s-2ds,s-ds)A(s - ds,s). (4)

Because dr/ds = T in body coordinates is z, then the
position vector, r, to the flagellum at position s from an
origin at s = 0 is

7(s) = A(0, s')zds'. (5)

Thus in fixed coordinates the X, Y, and Z components of
the position vector are

X(s) = f A13(0,s')ds'

Y(s) = f A23(0,s')ds'

Z(s) = A33(0,s')ds'. (6)

II. SLIDING FILAMENT MODEL

The position vector of the ith doublet of the axoneme can
be written formally as

ri(si) = 7(s) + Li(s), (7)

where 7 refers to the position vector of the central pair of
microtubules (Fig. 2). The sliding filament model is
expressed succinctly merely by requiring that Li, a vector
from the central pair to the ith outer doublet, be a constant
vector in body coordinates. We choose Li normal to the
central pair tangent vector. (For convenience Li may be
thought of as directed along an undistorted radial link.)
This formalism then specifies that the normal distance
between the central pair and any of the outer doublets is
fixed, but allows the axoneme as a whole to bend and twist
in three dimensions. It is important to realize that si in Eq.
7 is not an independent parameter, but is the arc length of
the ith filament in the cross section of the axoneme at arc
length s along the neutral axis. Warner's (1978) data
shows that during extensive cross bridging the cilium
assumes an ellipsoidal shape, i.e., is distorted, with some
doublets approaching the central pair while others move
some distance away. This refinement, which would require
that the magnitude of Li be a variable, is ignored here. It is
implicit in this formulation that the central pair retains a
fixed orientation relative to a marker (such as the position
of the 5-6 bridge) somewhere on one of the outer doublets.
If the central pair rotated within the interior of the
cylindrical region defined by the outer doublets, as indi-
cated by the studies of Omoto and Kung (1980), then the
axonemal body coordinates in which Ei is constant could no
longer be identified with central pair body coordinates.
Although it would be simple to allow for rotation of the
central pair relative to the outer cylinder of doublets, we
ignore that possibility here.
The relationship between the tangent vectors of the

central pair and the ith outer doublet can be obtained by
differentiating Eq. 2.1 with respect to s,

dr dr dLi
ds ds ds (8)

ith OUTER DOUBLET

_i:'1 ~ CENTRAL PAIR

I,
riTSj (s)Jis

IJA r (s)
IA

X~~~~

FIGURE 2 The central pair and the ith outer doublet of an axoneme are
shown relative to a fixed coordinate system, XYZ. The body coordinate
axis is tangent to the central pair (strictly, the neutral axis) at arc length
position s, and Li(s) is perpendicular to the tangent and has a fixed
length.
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The term on the left side of this equation is, by the chain
rule, (dir/dsi) (dsi/ds). Because Li is a constant in body
coordinates, dtE/ds = i(s) x ti(S). Thus Eq. 8 can be
rewritten as

ds2T = T(s) + it(s) x Li(s), (9)
ds

where we have used the fact that the arc length derivative
of the position vector is the tangent vector. If one defines
the relative sliding, ui(s), as s - si(s) (note that positive
sliding or distal movement makes the value of si < s), then
upon taking the norm of Eq. 9 one obtains

dui(s) 1-I T(s) + iW(s) x Li(s)j (10)
ds

If the twist per unit arc length, Kz, is not too great, the
norm in Eq. 10 can be expanded in a Taylor's series to yield
the second-order approximation,

-i (Lx T) . K- (LiK)2/2. ( 11)
ds

This equation is exact if Kz = 0 (i.e., no twist). Notice also
that L x T has no z component; thus, to first order, sliding
is independent of twist.

For planar bending without twist the integral of Eq. 10
equals L times the total bend angle. For pure twist (KX =
KY= 0) sliding of the outer doublets relative to the central
pair occurs because of the increased length of the spiral
path. Fig. 3 demonstrates the accumulation of sliding at
the tip for a three-filament axoneme (outer filaments
numbered 1 and 2) with constant K, and constant KX and, for
convenience, Ky = 0. In the linear approximation, u2 - ul is
2K,LA at the distal end, where A is the length of the
axoneme. In the second-order approximation, u, =
(-KXL - 0.5L2K2)A and u2 = (KXL - 0.5L2K2)A, and again

FIGURE 3 A three-filament axoneme with the central filament labeled 0
and two outer doublets labeled I and 2 is shown. The filaments, fixed at
the base, are 20 gm long and the spacing between the central rilament and
filaments I and 2 is + I and -1I gm, respectively, in the body coordinate x
axis. Curvature is set at K., = 4.5, KY = 0, KZ = 9 degrees/Mlm. Markers
spaced at 1 Mm intervals along the outer doublets and normal to them as
well as to the central pair are shown as an aid to visualizing the twist and
the sliding.

U2-ui is 2KXLA. The exact relative sliding (from Eq. 10),
however, is

U2 - Ul

= [(1 + K1L)2 + K2L2 _ (1 -KL)2 + K,L2]A. (12)

The exact value for u2 -uI therefore contains a very small
(order K3L3) contribution due to twist. For a flagellum 20
gm long with a spacing of 0.1 sm between central pair and
an outer doublet, a KX of 4.5 degrees/,um and a Kz of 9.0
degrees/,gm, the value of U2 -ul = 0.315789,um to second
order, and the exact result is 0.315790.

Schreiner (1977) has derived equations that allow one to
compute the displacement and sliding of twisted filaments
in cilia and flagella, and Holwill et al. (1979) modified the
treatment of Schreiner (1977) for ease of computation of
the doublet pattern to be expected at the tip of cilia in the
effective and recovery stroke positions. Their derivation
accounts for the changing projection of the filaments onto
the plane of bending, but ignores the sliding due to
spiraling of the filaments about the central pair. If, for
example, the twist was so large that the doublets essentially
coiled around the base of the flagellum, their equations
would predict zero sliding relative to the central pair,
whereas the actual sliding would be almost the negative of
the full length of the flagellum. Although the equations
used by Holwill et al. (1979) are correct only to first order,
their use to compute relative sliding of outer doublets
eliminates terms equivalent to the term (LK,,)2/2 in Eq. 11,
so that their computations of relative tip displacements are
correct to second order and hence entirely adequate.

III. BENDING RESISTANCE
OF THE AXONEME

By bending resistance we mean the sum of the bending
resistance of the individual doublets. Other contributions
to "stiffness" from interdoublet links such as nexin links,
radial spokes, or dynein cross-bridges, will be treated as
contributing to shear resistance. Even if one assumes that
the bending resistance of individual doublets is linearly
elastic (i.e., the bending moment is proportional to curva-
ture), it is not clear whether the axoneme can be treated so
simply. For example, in a twisted but otherwise straight
axoneme, the outer doublets would spiral around the
central pair and their direction would not be parallel to the
axonemal axis. Axonemal bending resistance might thus
be a complicated function of shape. In this section we
examine this question and ask under what conditions it is
appropriate to use a simple linear elastic bending resis-
tance to describe the bending resistance of a flagellum.
The assumption that individual doublets are linearly

elastic can be expressed as

M= - bKi. (13)

Here Mi is the bending moment and Eb, is the bending
resistance of the ith filament. The representation of bend-
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ing resistance in ith doublet body coordinates is particu-
larly simple; because we have chosen the coordinate axes to
lie along the principal axes of the doublet, all off-diagonal
terms of the matrix are zero, and

Exx

EFbi.= O Eyy O .

O O Ezz-
(14)

To derive reasonable values for'the components of the
bend resistance matrix, we make use of a generalized form
of Hooke's law, which states that linear strain is propor-
tional to force per unit area via ex = [ay - v(ay + a7)]/E,
with similar equations for the y and z components of the
strain, e. In this equation, ay and ao are the forces acting per
unit area on the y and z faces of an infinitesimal element of
the body, E is Young's modulus of elasticity, and v is
Poisson's ratio,' a number that ranges from =0.3 for metals
to =0.5 for rubber. Hooke's law also states that the shear
force is proportional to the shear strain via the shear
modulus G = E/2(1 + v). It can be shown (Crandall and
Dahl, 1959) for slender members that the twisting moment
generated by Kz is given by

Mz = -CIlZZKZ, (15)

where Izz, is the moment of inertia around the Z axis.
Similarly, the bending moment is given by

Mi=-EIj1Kji=L, 2 (16)

where Ij = fA xjxjdA. Electron microscopic studies show
that typical dimensions for an outer doublet are -20 nm
from the center of the B subfiber to the center of the A
subfiber, and wall thickness is -5 nm. For convenience of
computation, we replace the outer doublet by a pair of
overlapping tubules, as shown in Fig. 4. The area of one of
the annuli is 27r r'It. The moments of inertia are given by

I. = 2 r2dA = 2 f (x. + r')2dA = 2 Area (X2 + r2),

IXX = 2f (X. + r' cos )2rtdO = 2 Area(X + 2

and

rP2
Iy,==2Area . (17)

2

Using a value of E = 4 * 107 pN/tUm2 (Hines and Blum,
1979) and choosing v = 1/3, one obtains the following
approximate values for the bend resistances of an individ-
ual doublet: EXX = 3.6, Eyy = 1.2, Ezz = 5.4 pN,tm2. Recent
measurements of the bending resistance of isolated dou-

'When an elastic material is stretched, it also becomes slightly thinner. If
the initial length and diameters are l and d0, respectively, then v =
- lateral strain/longitudinal strain -[(d-do)ld]/[(l - lo)/l]

FIGURE 4 Shape used for computation of moment of inertia of an outer
doublet. For simplicity of computation, a doublet is drawn as two
overlapping singlets with the dimensions shown. This slightly overesti-
mates the moment of inertia in the overlap region, but this is more than
compensated for by use of the average value of the radius of the annulus in
the computation of the moment of inertia. Because the body coordinates
are oriented as shown (with the x axis perpendicular to the paper), the
off-diagonal elements of the moment of inertia matrix are zero by
symmetry. XO (not shown) is a vector from the origin of the coordinate
system to the center of either singlet microtubule.

blets (Ishijima and Hiramoto, 1982, and personal commu-
nication), however, indicate a value for bend resistance of
-10 pN ,um2, suggesting that the above value of E may be
too low for a tubulin doublet.
The bending moment of the axoneme is just the sum of

the bending moments of the individual filaments. To find
Eb, we choose a curvature for the central pair, find the
curvature for each of the outer doublet filaments (using
Eq. 9, appropriate to a sliding filament model with no
distortion of the axoneme), then use Eq. 13 to find the
moments of each filament, and add those moments
together. We then do the same thing for slightly different
curvatures of the central pair to build an expression for Eb,
via Eb. = bMilbKj.
To carry out this program, it is first necessary to find a

transformation matrix, which we denote Ajo, from central
pair body coordinates to ith outer doublet body coordi-
nates. Once the vectors of interest (i.e., bending moment
vectors) are expressed in the same coordinate system,
conventional vectorial operations can be done component
by component.

Ajo(s), the transformation from central pair body coordi-
nates to the ith outer doublet body coordinates at arc
length s1(s) is simply the product of three elementary
rotations, Aio = BCD. The first of these, ID, is a rotation
about the central pair z axis by an amount 0, so that the
new x' axis is along Li (Fig. 5):

cos Oi sin 0, 0

D = -sinOi cos0i .

O O 1
(18)
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The matrix B is the transformation for a rotation about z"
by an angle 4 and therefore has the same form as that of
matrix D (see Eq. 18). Notice that because of matrix C, Ajo
is a function of curvature. The bending moment of the
axoneme as a whole can then be written as follows,

axoneme
"

io fbiAio)IK.-

Ebo (A-US (23)

x I1 TO PAGE

ttI1T PG xii

9i
zi I TO PAGE

FIGURE 5 Shown are three elementary coordinate transformations used
to build up the finite transformation from central pair body coordinate to
ith doublet. The solid horizontal arrows between similar views imply a

transformation of coordinates. The dashed vertical arrows between
different views denote merely a change in the observer's viewpoint to
allow easy visualization of the following transformation.

Next, we rotate about the x' axis by the amount required
for the new z" axis to be in the direction Ti. To find the
transformation, C, we use two pieces of information. First,
the representation of Li in double prime coordinates is the
same as it is in prime coordinates, as we are rotating about
an axis parallel to Li. Thus

(0 =C 0 (19)

The second piece of information is that Tj = i". From Eq.
9, the representation of 1i in prime coordinates is

( ) +(KZ) (0) (20)

Til= d
dsi
ds

Eq. 19 and 20 imply that

1 0

C=Io 1 - LKy,
dsi/ds

LKZ.
_ dsi/ds

0

LK,,
dsi/ds

1 - LKY
dsi/ds _

with

dsl/ds = [(LK(,)2 + (1 LK )2]O.5

(21)

The first term in this equation is the bending moment of
the central pair. In the second term, dsi/ds accounts for the
fact that for a given change in bend angle there are

different arc lengths for each outer doublet and hence
different curvatures. This is usually ignored in treatments
of planar motion, but differs from unity whenever curva-

ture is large or when there is appreciable twist. The term in
parentheses represents the ith outer doublet bending resis-
tance in central pair body coordinates, and also depends on

curvature.
For a straight flagellum using the bend resistance values

derived above, the values of E.,, Eyy, and E,, for the whole
axoneme are 25.2, 22.8, and 54.0 pN ,um2, with the
off-diagonal elements <10'6 pN ,Om2. Thus the effect of
averaging the contribution of the doublets with that of the
central pair is to produce a bend resistance matrix which is
only slightly acylindrical (EXX = Eyy) Furthermore, the
magnitudes of bend resistance are identical to the average

contribution of the outer doublets plus 3.6 or 1.2 due to the
central pair. The twist resistance, on the other hand, is
simply the sum of the individual twist resistances of each
doublet. For a helical flagellum with Kx = KY = KZ = 1

rad/Mm, the bending moment computed from Eq. 23 has
components Mx = 25.8, My = 23.4, and Mz = 54.5 pN ,tm.
If the bending resistance of the straight axoneme were

applicable to a flagellum with this curvature, the bending
moment components (using the same form as Eq. 3.1)
would be Mx = 25.2, My = 22.8, and Mz = 54.0 pN zm.
Thus, even with this very large degree of curvature, a <5%
error is made in the bending moment if one uses a constant
Eb. It is interesting to note that the bend resistance matrix
with this curvature has diagonal elements 26.0, 23.6, and
53.3 pN 11m2 (instead of 25.2, 22.8, and 54.0 pN ,um2 for
the straight flagellum), and the off-diagonal terms range

from 0.2 to 1.2 pN IAm2 (instead of <10 6pN ,um2). Clearly
it is an excellent approximation to consider Eb as being
independent of curvature. In the simulations to be pre-
sented below, we will use Eb appropriate for a straight
axoneme, which is applicable with negligible error to
normally curved flagella and cilia.

IV. SHEAR MOMENTS

The only components of force between filaments that are of
interest are those that tend to move any of the doublets in
ways that are allowed. Thus forces that tend to distort the
axoneme by, e.g., moving an outer doublet closer to or

(22) farther from the central pair are ignored, because we
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assume that forces of constraint exist that prevent such
motion (i.e., that exactly balance the forces tending to
produce such distortion). All components of forces along
the direction of any of the doublets, however, must be
accounted for, because they will produce relative sliding.
Thus, in so far as the radial link system merely acts to
prevent axonemal distortion, it will not contribute to
sliding. If the radial link system, however, undergoes a
cyclic attachment-detachment process and resists relative
sliding while attached, its contributions to the production
of bending moments cannot be ignored. Until further
information is available as to the details of operation of the
radial link system, we shall assume that it acts only to
prevent distortion and as a source of passive shear resis-
tance. The treatment that we now develop for the periph-
eral nexin links can, however, be easily extended to include
the contribution of the radial link system to sliding when a
detailed model of its action is proposed.

Link forces contribute to the tension in the outer dou-
blets, and these tensions, because they are a distance Li
from the body coordinate z axis, have resultant moments.
Fig. 6 illustrates how the moment proximal to a stretched
link is computed for links that cannot themselves transmit
moments, i.e., pinned links. We write the tension in the ith
filament at arc length s,, where it passes through the cross
section at arc length s, as

Tensioni = Z Ti(s) f A(s) T,(s') . fi(s')ds', (24)

where we have approximated the links between the ith and
jth filaments as a continuous distribution and the sum is
over all filaments that have links connecting to the ith
filament. For nexin links there are only two terms in this
sum because the ith outer doublet (i = 1 ... 9) has nexin
links only with the two adjacent doublets. For radial links,

D

EF

FF

there would be one term for each outer doublet and nine
terms for the central pair. The total moment due to these
links is then

9

M(s) = EE ILL(s) x T (s)f A[Ti(s') * fj(s')Jds'I. (25)

In the usual first-order approximation it is appropriate
to assume that (a) si(s) = s, i.e., that opposite ends of a link
are not located at significantly different arc length; (b)
Ti(s) = T(s), i.e., that the doublets at opposite ends of a
link have similar tangents. This approximation implies
that

dM -_ _ _
=S= Lix T(T * fij),ds i-l j-i

(26)

i.e., that the links produce only a shear force, 3, to first
order. It is of interest, however, to ask if the twisting
moment generated by the action of links in a sliding
filament system is significant. To assess the magnitude of
the twisting moment, we retain the first-order term in the
approximation to Ti, i.e., Ti = T - Kz(L x T) (see Eq. 9).
The twisting moment, M,, from Eq. 25 is then given by

Z ~~fA (T .
-

)s'Mz =- I
E KziE I T fij)ds' (27)

For elastic peripheral links (i.e., nexin links), Mz = 0 as
fi = -fji and Li is a constant. Thus any twisting moment
due to peripheral links is at least third order in Li and hence
negligible. For radial links, the first summation should go
from i = 0 to i = 9, where i = 0 represents the central pair.
The forces,Aio, exerted on the ith outer doublet contribute a
twisting moment, but -(oi (acting on the central pair) do
not contribute a twisting moment. Thus radial links con-
tribute a (second order in Li) twisting moment, propor-
tional to the twist component of curvature, Kz. The twisting
resistance due to the elasticity of the filaments is E, The
twisting resistance of the axoneme due to radial links is

9

Z- L? fA (T. f-i) ds'.
i-I

A

B

C

(28)

Before attempting to assess the magnitude of this twist-
ing resistance term, it is convenient to return to the shear
force (Eq. 26) and cast it in a form suitable for analysis.
We begin by assuming that the doublets are firmly tied
together at the proximal end, i.e., ui(O) = 0 for i = O.... 9.
If we ignore the second-order effect of twist on sliding in
Eq. 11 it becomes

FIGURE 6 The conceptual process involved in determining the bending
moment at some point proximal to a stretched link. In panels A-C, the
stretched link produces a force along the link but constraints (not shown)
keeping the filaments a constant distance apart exactly balance the force
components that are not tangent to the filament. In panel D, the force F of
panel C produces a constant tension along the filament proximal to the
link. In panels E and F, the tension in the filament is a distance L from the
origin of the cross section, thus producing a moment of magnitude LF as
well as a tension F along the axonemal axis.

ds' -*, (Li X T). (29)

The effective shear, j, analogous to the definition of y used
for the analysis of planar motion (Hines and Blum, 1978)
can now be written as

ui = - *- (Li x T) (30)
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thereby allowing one to use j instead of the nine values of
ui. Because both Li and T are constant in body coordinates,
Eqs. 29 and 30 are consistent if the three body coordinate
components (k = 1, 2, 3) are defined by the relation dYk/
ds = Kk. Because ui(O) = 0, 7(O) = 0 and when twisting is
small, plane sections will remain planar in three-dimen-
sional bends. Under these conditions, and in so far as the
radial links can be treated as a passive system, the twisting
resistance of the axoneme due to the radial links will be
zero to second order because the tension, f, (T * (i0)ds', on
opposite sides of the axoneme will cancel. The contribution
of an active radial link system to twist resistance could only
be evaluated in terms of a specific model for the behavior of
the radial links. If the constraints on axonemal distortion
were relaxed so that the central pair was free to rotate it is
easy to envision how an active radial link system could
cause rotation of the central pair.

For further evaluation of the shear force we assume that
a nexin link produces a linear elastic force proportional to
its length and that the radial links act merely as structural
constraints. Then

fi=- E*(ui1T + Lij), (31)

where now i and j denote adjacent doublets with relative
sliding uij = ui - uj and separation L11 = - L1 and E*is
the resistance of a nexin link to stretch.
To get the contribution of the nine nexin links within an

axonemal cross section at s to the shear force at s* we treat
the sum in Eq. 26 as an integral,

- 9 f2w - x )S = 2 r (Lii x T) (T * fij)dO

V. COMPUTATIONS FOR
STATIC EQUILIBRIA

Equilibrium Equations
In sections III and IV we have derived expressions for the
bending moments due to the bending and shear resistances
of the axonemal components. At equilibrium the sum of all
of the bending moments, Mb +Ms + Mext, must vanish at
every point on the flagellum, where Mb is the moment due
to axonemal bending resistance, MS is the moment arising
from all internal shear producing or resisting links, and
Mext is the moment due to external forces such as viscosity.
In this paper we treat only static equilibrium, where the
viscous moment is zero. For purposes of numerical compu-
tation the most convenient way to express the equilibrium
condition is in terms of the three component derivatives of
the moment balance equation, expressed in body coordi-
nates. From Eqs. 13 and 14,

-E - Si + ds = °biijd S i ds 0 (35)

We have shown earlier (Blum and Hines, 1979) that an
external force per unit length, +, produces an external
moment through the equations

'x' + = 0,ds
(36)

and

(32) (37)x +Tx Fext = 0,ds
with 1ij specified in Eq. 31 and t,, represented in body
coordinates by

Lii = L{ cosO-cos Q-9g)]x

+ [sinO - sin - 9y (33)

After some algebraic manipulation, one finds

dMshear
sne - d -Es (,y.x + Syy9,). (34)nexinf ds (34

where Es = 27r2/9 L2Es*
As noted above, the present analysis has been confined

to pinned links, i.e., links that cannot support a moment at
their point of attachment. Because attached dynein arms
are unlikely to behave as pinned links, it is possible that the
action of dynein arms could generate twist. An analysis of
the capacity of dynein arms to generate twist will require
an extension of the present formalism. The present analy-
sis, therefore, is merely the first step in understanding the
factors contributing to twist generation in cilia and flagel-
la.

where Yext(s) is the force on the positive face of a cross
section of flagellum due to all external forces proximal to
that cross section. Eqs. 35-37 determine the shape of a
flagellum given an external force and appropriate boun-
dary conditions. At the distal end (s = A), Mext =

Ms = 0, and therefore Mb = 0. Thus dyj(A)/ds = 0 for the
body coordinates j = 1, 2, 3. The application of a point
force at the distal end implies that Fex1(A) = _(A)ds. If the
applied force were distributed over a region of the axo-
neme, as would be the case for viscous forces, then
Fext(A) = 0 because ds is infinitesimal. If the external force
were applied at the tip as, for instance, a needle point, then
+(A) would be a delta function such that +(A) ds equals
the total force applied by the needle. A further boundary
condition is the constraint that there is no sliding at the
proximal end, i.e., yj(O) = 0. This implies that Sj(O) takes
on whatever shear force is necessary to prevent sliding at
s = 0. The final boundary condition depends on whether
the proximal end is free, in which case the proximal force
and moment are equal to zero, or embedded in a wall, in
which case we know the proximal position and angle with
respect to fixed coordinates. In this paper we deal only with
the latter case.
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In the absence of an external force, Mext(s) = 0. Because
K has no tangential component, S3 = 0. Then from Eq. 5. 1,
Eb3,d2yj/ds2 = 0. Because the tangential direction of a
cylinder is necessarily one of the principal axes of the bend
resistance matrix, d2Y3/ds2 = 0. Thus shear forces, whether
produced by peripheral links or passive radial links cannot
produce twist. In the absence of external forces and of
moment transmitting links, the problem of three-dimen-
sional motion can be reduced to that of two independent
planar problems.

Computational Methods
Eqs. 35-37 with associated boundary conditions may be
solved numerically by defining i(s) and 1cx,(s) in body
coordinates at N + 1 points, p = 0 .... N, separated by
distance As, with p = 0 and p = N defining the proximal
and distal ends, respectively. Mex,(), iK(s), and +(s) (in
body coordinates) are defined at theN intermediate points,
e.g., M[(p + 0.5) As]. Eqs. 35 and 37 are evaluated at
points p and Eq. 36 is evaluated at points (p + 0.5) using
approximations correct to order As2. Thus the equations
for coordinates i = 1, 2, 3 are written,

-(Ebj/lAs2)[,yj(p + 1) - 2yj(p) + ,yj(p - 1)] - Sj(p)
+ (I/As)[Mi(p + 0.5) - Mj(p - 0.5)] = 0,

p=l ...N-1 (38)

(1/As)[Fi(p + 1) - F(p)]

+ j[f(p + 1)-y(P)] x [F(p + 1) + F(p)]
AS 2 E

+ oi(p + 0-5) = 0, p = 0. ... N-1I (39)

and

( lA/s) [Mi(p + 0.5) -Mj(p -0.5)]

+ jy(p + 1)-y(p -1)] (M(p + 0.5) + M(p-0.5)]
+ ~~2Avs x2i

+ [T x -F(p)], = 0, p = I . .. N-1. (40)

In these equations, the cross product terms come about
because Eqs. 36 and 37 contain vector derivatives (see Eq.
1). The boundary conditions are expressed as

-yi(0) = 0, (41)
Mi(N-0.5) =-Fj(N)As/2, and (42)

yi(N)- yi(N - 1) = 0. (43)

Note that for simplicity Eq. 43 is correct only to first order.
Because Si in Eq. 38 and the cross product terms in Eqs. 39
and 40 are nonlinear, this set of equations must be solved
by an iterative procedure. At the kth iterative step the

linear variation of each nonlinear term, say Wj, with
respect to the variable x, is computed numerically as

W(xk) = W(xk ')

+ [W(xk + h) - W(xk -)] (xk xk ')/h (44)

where h is a small number. The resulting linear equations
are solved by Gaussian elimination. The iterations are
performed until the difference between the values of the
sum of the variable differences between the kth and k -
1th iterations is <10-4.

Effect of Asymmetrical Bend Resistance
on Twist

In the absence of internal shear forces, twisting may arise if
an external force that is not along either the thick or the
thin axis of the central pair is applied to an initially straight
flagellum. Fig. 7 (left panel) illustrates this for a normal
force applied at the distal end to bend the flagellum by 900.
The amount of twist depends on the plane of the bend
relative to the central pair, the magnitude of the twist
resistance, and the ratio of the thick and thin axis bending
resistances. As shown in the right-hand panel, the amount
of twist is small even for a thick-to-thin axis bend-
resistance ratio of 2, i.e., 50 vs. 25 pN Aim2. For a real
flagellum the ratio between thick and thin axis bending
resistances is close to unity (see section III) so that
application of an external force in the absence of shear
resistance would not cause appreciable twist. For a given
ratio (say 50 vs. 25 pN 1Am2) the amount of twist is not
directly proportional to the twist resistance (cf. the dotted
line, with EXX = 25, Eyy = 50, Ezz = 25 with the solid line
labeled 50, for which EXX = 25, Eyy = 50, and E,, = 54 pN
Um2). When Eyy equals 200 pN Im2 (with EXX = 25 and
Ezz = 54 pN 4m2), the shape of the flagellum becomes
complex so that the plot of total twist vs. angle from the y
axis is of little interest and is therefore not plotted. It
should be noted that the equilibrium shape in these simula-
tions was independent of the previous computational his-
tory.

Effect of Asymmetrical Shear Resistance
on Twisting

The simulations in this section were carried out for a
cylindrical bend resistance matrix (EXX = 300, Eyy = 300,
Ezz = 500 pN UMm2) but with different shear resistances
along the x and y body coordinate axes. The presence of an
asymmetrical shear resistance causes the equilibrium
shape to depend on computational history. In Fig. 8, the
force is applied initially along the fixed x direction with the
magnitude required to bend the distal end by 450 with
respect to the fixed x axes, and then that force is rotated in
steps of 50 with magnitude adjusted to keep the distal end
at 450 to the z axis so that at the end of the series of steps
the force is 600 with respect to the x axis. In Fig. 9, the
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angle from Y-axis

FIGURE 7 Twist due to an external force and an asymmetric bending resistance. A filament is bent by the action of an external force (left
panel, arrows) so that the tangent at the distal end is normal to the fixed Z-axis. The external force applied at the distal end is at all times
normal to the tangent. Bending resistances of the thin and thick axes were 25 and 100 pN ,um2, respectively, and twisting resistance was 54 pN
giM2. The direction and relative magnitude of normal force which caused the distal end tangent to be 00, 450, and 900 from the fixed Y-axis and
normal to the Z-axis are shown as arrows. At 00 and 900 the external force is in the negative Z direction. It takes four times the force to bend
the filament along the thick axis and there is no twist. At 450 the external force is not in the Z direction and the twist is 280. The right-hand
panel shows total twist at the distal end as a function of the angle of the distal end-tangent from the Y-axis for thick axis bending resistances of
50, 100, and 200 pN gm2. The 200 pN gim2 filament displays very complex behavior at large angles and only the linear portion is plotted. The
dotted line is for thick axis bending and twisting resistances of 100 pN gM2 each.

force was first applied in the fixed y direction and then
rotated in steps of -5°, keeping the distal end 450 from the
z axis, such that in the final equilibrium the force is 600
from the x axis. The two left panels of each of these figures
show two views of the final equilibrium position. Compari-

z

g -Q1

<-0~~~~".1}

Y-

(
FIGURE 8 An axoneme 40 ,m long is anchored in the XY plane at X =
10 gim, Y = 10 gim, Z = 0. The filaments are assumed to be tied at the
proximal end. A point force parallel to the XY plane was applied at the
distal end initially in the X direction until the distal end was 450 with
respect to the Z axis. The force required to achieve this configuration was
1 1.8 pN. The direction of this point force was then rotated to the XYplane
in steps of 50 and adjusted in magnitude so that the tangent at the distal
end was maintained at 450 with respect to the Z axis until the final force
(of magnitude 1 1.1 pN) was at 600 with respect to theX axis. The two left
panels of this figure show two views of the flagellum in its final
configuration. At the distal end, the twist was 23.30, the direction of the
tangent to theX axis was 480, and the sliding components were y" = 0.44
rad and yy = 0.51 rad. The components of the curvature vector, K, are
shown as a function of arc length in the right-hand side of the figure.
Parameter values used in this simulation were, for the bending resis-
tances, E. = 300, Eyy = 300, E,z = 500 pN IM2, for the shear resistances,
E,= 10, E5y = 8 pN.

son of Fig. 8 with Fig. 9 shows that the final shapes differ.
The components of the curvature vector are also displayed
in each figure. It can be seen that in the presence of
asymmetric shear resistance the final shape depends on the
previous computational history. We have not attempted to
ascertain the maximum ratio of ESX to E,Y for which final
shape is independent of history. (This ratio would probably
depend on Eb.) It is noteworthy that in both simulations an
oscillation in the sign of the curvature components occurs
and that the wavelengths are comparable. We also note
that had the proximal end of the flagellum been free to
rotate, then the final configuration would lie in a plane and
shape would be independent of previous history.

z I~~~~ KX
Y Los0.1 .

g -0.1

-oil0 s(OLm)
X Y

FIGURE 9 This simulation is identical to that shown in Fig. 8 except that
the sequence of forces that brought it to the final configuration shown in
the left panels began with a force of magnitude 14.8 pN directed along the
y axis, followed by rotations of- 50 until the force was 600 from the X
axis. The magnitude of the final force was 13.3 pN. At the distal end the
twist was - 10.60, the direction of the tangent to theX axis was 61.70 (and
to the Z axis was 450), and the sliding components were y, = 0.64 rad and
zy = 0.37 rad.
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DISCUSSION

Crowley et al. (1981) have considered the propagation of
three-dimensional bends along an axoneme in terms of two
orthogonal noncoupled, planar, bending-moment equilib-
rium equations. The present paper shows that such a
formulation is satisfactory for shear forces caused by
pinned links even if the bending resistance is not radially
uniform. The present work also permits the computation of
twisting due to external forces, for such a system.

In this paper we have used the mathematics of coordi-
nate transformations to describe the contribution of inter-
nal structural organization to flagellar mechanics. The
coordinate system in which the three-dimensional struc-
ture of cilia and flagella finds its simplest representation is
body coordinates. It is, of course, also possible to represent
all the vectors characterizing the structure in a fixed
coordinate system, in which case the appropriate funda-
mental variables are the Euler angles which describe finite
rotations. Morgan et al. (1979) have used the Euler angles
to describe the shape of a flagellum when the curvature is
given. Because none of the vectors or matrices are constant
in fixed coordinates, functions of the Euler angles will
appear throughout the equations and render any attempts
to derive the curvature from the internal mechanism
cumbersome. The fact that structural quantities are con-
stant when represented in body coordinates makes this the
representation of choice. Products of matrices need be
taken only after the moment balance equations are satis-
fied and one wishes to compute the shape. The general
approach we have followed in using the coordinate trans-
formations to develop the equilibrium equations is the one
already familiar from the study of planar models (Blum
and Hines, 1979), i.e., the axonemal cross section is
assumed to be structurally invariant except for the arc
length position of a doublet within the cross section. The
problem then reduces to that of knowing the orientation of
each cross section of the axoneme. The only forces of
interest are then those forces that tend to change the
orientation of the cross sections. Because bending moments
determine orientation, a single bending moment equilib-
rium equation suffices to determine the shape of the entire
flagellum.

This approach, which is a strict form of the sliding
filament model, bypasses the question of what structures
are implicated in maintaining the uniformity of each cross
section by lumping the forces due to such structures under
the rubric of forces of constraint and thereafter ignoring
them. To deal with such forces realistically will require a
highly detailed model of the properties of the dynein arms
and of the radial links and central pair projections. (If the
nexin links do not behave as the simple elastic elements we
have assumed them to be, then a more realistic representa-
tion of their properties would also be necessary.) Conceptu-
ally, however, the procedure to be followed for elimination

of the forces of constraint is straightforward. One has only
to write the moment equilibrium equation for each fila-
ment separately, treating cross-bridge forces (and perhaps
moments) as external forces (and moments), and solving
the equilibrium equations simultaneously. In practice this
is a formidable problem for even a two-filament model.
As a prerequisite for considering the contributions of

such elements as nexin links, dynein cross-bridges, and the
radial link system to flagellar mechanics, it is of course
necessary to account for the effective resistance of the
doublet microtubules themselves to bending and twisting.
Use of the body coordinate transformation formalism has
permitted us to show that the bend resistance matrix that is
strictly applicable to a structure with the complexity of an
axoneme can, to within the negligible error, be represented
as a constant matrix; we have computed the principal
values on the assumption that the doublets have elastic
moduli appropriate for a collagenlike substance. Even so,
the total bending resistance of the 10 doublets is still very
small, and only one-tenth of the value used by Brokaw
(1980) in his modeling studies. Okuno and Hiramoto
(1979) found that the minimum effective stiffness in
flagella inactivated by C02-saturated sea water was -300
pN IAm2, but interpretation of their measurements is
ambiguous because of contributions to stiffness that may
have arisen from nexin links or radial spokes (Blum and
Hines, 1979). Recent measurements of the stiffness of
individual doublets (Ishijima and Hiramoto, 1982) yield a
range of values for Eb from 10 to 380 pN IAm2, indicating a
higher elastic coefficient for polymerized tubulin than we
have used for the present computations. Okuno and Hira-
moto (1979) report that after removal of a deflecting force
the flagellum returns to its initial shape. Thus, purely
elastic forces are probably adequate as a first approxima-
tion to the structural properties.
The relative values E_x:Eyy:E,z = 1:0.9:2.2 were derived

(section III) on the assumption of an idealized 9 + 2
configuration in which the central pair was treated as one
outer doublet. (The absolute values, as already discussed,
depend on the value of the elastic modulus.) To the extent
that the central pair is more asymmetric than an outer
doublet, there may be a slight increase in the disparity
between EXX and Eyy and hence in the propensity to twist
under the action of an external force, but it is unlikely that
this effect will be appreciable. A consequence of the sliding
filament model is that pinned links between filaments
contribute to shear resistance and not bending resistance.
An exception to this, however, might be a permanent 5-6
cross-bridge, known to occur in some cilia. If these bridges
were pinned and resisted stretch with the same high
elasticity as the doublets themselves, then their effect
would better be described as a substantial increase in bend
resistance in the plane defined by filaments five and six and
not as a very high shear resistance. Because relative sliding
due to twist between outer doublets is a third-order effect
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proportional to L3K3 (section II), such a permanent 5-6
bridge would cause virtually no increase in twisting resis-
tance and thus cannot stabilize the plane of bending.
Although relative sliding between an outer doublet and the
central pair is proportional to L2KY, this is still too small to
cause appreciable change in the effective twist resistance.
Indeed, any structure that lies in the plane of the axonemal
cross section cannot affect twist to first order because in
the strict sliding filament model the axonemal cross section
is invariant. If, however, cross-bridges (whether permanent
5-6 cross-bridges or other dynein arms) are rigidly
attached and hence can support moments, then such links
could lead to twisting. Such links are not dealt with in this
paper.
The analysis presented here implies that for planar

motion to occur the dynein shear force must be carefully
arranged so that the net active shear force lies in a plane
over the entire arc length. Several authors (Satir, 1968;
Tamm and Horridge, 1970; Omoto and Kung, 1980) have
proposed that the central pair may act as a commutator.
Such active internal twist of one structure relative to
another at a given cross section is also not dealt with in this
paper.

In a strict sliding filament system containing only
pinned links, twist may arise only in response to an external
force that does not lie in the plane of the flagellum. If a
flagellum is beating with planar motion, viscous forces will,
therefore, not produce twist. If, however, fluid is made to
flow normal to the plane of the flagellum, substantial twist
will result. Gibbons (1975) observed that by flowing a
stream of water past a flagellum in rigor, the flagellum
could be twisted through 1800, and that this twist, which
was reversible, could occur within a segment of flagellum
as short as 3 Am in length. The speed of water flow required
to produce this twist was about one-sixth that of the rate of
water flow past the flagellum during normal swimming.
This result could arise either because of a low twist
resistance of the flagellum combined with a large torsional
moment acting, for the particular shape, at the point of
maximum observed twisting, or else the twist resistance at
all points except those where twisting occurred was high.

Gibbons (1975) further observed that in flagella in rigor
but with a normal waveform there was a twisting of
.400-600 near each junction between a straight and
curved region, and that the handedness of the twist
appeared to alternate at consecutive regions, so that little
or no net twist accumulated over the length of the axo-
neme. This cannot happen within the confines of the
present model, and points to the necessity of extending the
present analysis to include moment-bearing links.

Contrary to our initial intuitive belief that a sliding
filament system containing only pinned links might natu-
rally twist because of internal forces acting away from the
neutral axis, the present work shows that in a strict sliding
filament model internal forces cannot by themselves gener-
ate twist. Experimentally observed twisting may therefore

suggest either an active twisting of the central pair in the
opposite sense to that of the cylinder of the outer doublets
or could result from the presence of moment bearing links.

APPENDIX

Coordinate Transformations
A thorough exposition of coordinate transformations can be found in
Goldstein (1950). In this Appendix we briefly present those mathematical
concepts directly relevant to this paper. A vector, V, specified in one
coordinate system has three components, say V, Vy, and VK. The same
vector in another coordinate system will have different values of the
components. Conversely, different vectors may have the same representa-
tion if they are expressed in terms of differing coordinate systems. This
point is central to an understanding of three-dimensional motion and twist
in a flagellum. Consider a coordinate system, which we designate as the x
system, defined by three unit vectors 'x, X2, X3 that are orthogonal to each
other. Now define a new X coordinate system with unit vectors X,, Rb, &
The representation of the same vector in the x coordinate system can be
written in terms of its representation in the x system as

1\X Xx2 X,*X3 V j(*Xi

2 = X2 * X X2 X2 X2 *X3 V -X2

The elements of the 3 x 3 matrix are the direction cosines of theX system
axes with respect to the x system axes. In more compact notation,

V(X) = A(X, x)V(x), (A2)

where the superscript refers to the particular coordinate system in which
V is represented. Transformation matrix A(X, x) transforms a vector
represented from system x to system X. If we wish to transform the vector
to a third coordinate system, y,

VY) = A(y, X)A(X, x)V(x) = A(y, x)V(x). (A3)

Thus a transformation may be built from a succession of intermediate
transformations (which must be carried out in the correct order, because,
in general, matrices do not commute).
From Eq. Al it can be seen that the inverse transformation is given by

the transpose of the matrix, i.e., this orthogonal condition provides six
independent relations among the direction cosines of the transformation
matrix. Thus three quantities suffice to determine a coordinate transfor-
mation. This fact finds expression in Euler's theorem that states that any
proper transformation is a rotation about some axis (see Goldstein, 1950,
for further details). The three quantities that specify a finite transforma-
tion do not form a vector. A vector can, however, be associated with
infinitesimal transformations.
The transformation from body coordinates at s to body coordinates at

s + ds can be written as an infinitesimal rotation about the x axis by angle
dO, followed by an infinitesimal rotation about the y axis by do and then
about the z axis, by d4'. (The general form of a rotation about the x axis,
e.g., is

1 0 0

0 cosO sin 0 .

o -sin0 coso]

(A4)

For infinitesimal rotations, the cosine terms become 1 and the sine terms
become dO.) Note that the order of the rotations is not important because
infinitesimal transformations commute. Multiplication of the three in-
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finitesimal rotation matrices (omitting higher-order terms) yields a
matrix that can be written as

O Kz -Ky

A(s,s + ds) = 1 + ds -[Kz 0 Kx j (A5)

LKy -KX °

where KX = dO/ds, Ky = d4/ds, and K,z = d#/ds. It turns out that the
components of the matrix in Eq. A5 transform as the components of a
vector under proper rotations. For example, the vector

lKzVy - KyVz

KV = KX VZ - KZ Vx (A6)

KyVx - Kx Ay

has the same components as the vector cross product -K x V. Now
consider the derivative with respect to arc length of a vector

dV =lim VV(s + As) - V(s) (A7)
ds a- o As

The indicated subtraction can be performed only when the two vectors are
represented in the same coordinate system. Suppose thatV_(s) and
Vi(s + As), with i = 1, 2, 3, are the representations of V in body
coordinates at s and s + As, respectively. Then the representation of Eq.
A7 in body coordinates at s is

dV A 1(s, s + As) Vj(s + As) - Vi(s)
lim (A8)ds Aas-O As

Note that the left-hand side is the ith component in body coordinates at s
of the vector dV/ds. Now, using Eq. A5, we have

dV dV
-= 'KijVi (A9)

ds, ds (9

Returning to vector notation yields Eq. 1 of the text.
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