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ABSTRACT We have developed a novel technique for simulating the influence of the effects of single channel kinetics on
the voltage changes associated with membrane excitability. The technique uses probability distribution functions for the
durations of channel open- and closed-state lifetimes, which can be calculated for any model of the ion conductance
process. To illustrate the technique, we have used the Hodgkin and Huxley model of nerve membrane ion conductances
to simulate channel kinetics during predetermined voltage changes, such as a voltage jump and an action potential. We
have also simulated the influence of channels on voltage changes in a free running, non-voltage-clamped patch of
membrane 1 jim2 or less in area. The latter results provide a direct illustration of the relationship between fluctuations of
membrane excitability and fluctuations in channel open- and closed-state lifetimes.

INTRODUCTION

Recent measurements with the patch voltage-clamp tech-
nique have demonstrated that ionic channels in excitable
membranes have discrete open- and closed-conductance
states, the durations of which are random variables (Conti
and Neher, 1980; Sigworth and Neher, 1980). We have
simulated the kinetics of the open-close process on a digital
computer using a random number generator and the
probability distribution functions of open- and closed-
channel lifetimes. The distribution functions can be calcu-
lated for any model of the ionic conductance process from
probability theory. These functions can be used to predict
channel behavior for any voltage change, including
changes that are caused by the channels themselves in the
free-running, unclamped membrane. We have used this
technique to simulate the kinetics of small populations of
sodium and potassium channels during voltage-clamp steps
and during an action potential using the Hodgkin and
Huxley (1952) model of ionic conductances in nerve
membrane. We have also determined the influence of
individual channels on the excitability of small membrane
patches 1 m2, or less, in area.

The technique that we describe in this paper provides a
novel, straightforward way to predict ionic currents and
patterns of excitability in the microscopic, single-channel
domain from macroscopic equations of ion conductance.

METHODS
The Hodgkin and Huxley (1952) model is described by

CM dV/dt + gKnf( - EK) + VNm3h(V - ENa)

+ gL(V -EL) =Iapp (1)
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where CM and V are membrane capacitance and membrane potential,
respectively; Ip. is externally applied current; EK, ENa, and EL are the
equilibrium Nernst potentials for sodium, potassium and leakage ionic
currents, respectively; 7K,jNa, and gL are the fully activated conductances
for the respective ions; and n, and m, and h are first-order voltage- and
time-dependent conductance parameters, which are described by x =
dx/dt = - [ax(V) + P,3x(V)]x + ax(V), where x is either h, m, or n. We
take the resting potential to be -60 mV, and EK = -72 mV, EN. = 55
mV,EL= -49 mV;a.(V) = -O.01(V+ 50)/(exp[-O.I(V+ 50)] - 1),
=,(V) 0.125 exp[-(V + 60)/80]; a"(V) -O.1(V + 35)/{exp[-O.1(V

+ 35)] - 1i; #m(V) = 4 exp[-(V + 60)/18]; ah(V) = 0.07 exp(-(V +
60)/20];,8k(V) = l/(exp[-0.1(V+ 30)] + I1, CM 1 AF/cm2.

Noise measurements from nerve suggest that the potassium and
sodium channel densities are 60 and 300 Am-2, respectively (Conti et al.,
1975). We used these estimates together with single-channel conduc-
tances 'YK = 6 pS and 'YNa = 4 pS so that our fully activated conductances
were consistent with the Hodgkin and Huxley (1952) model values of
gK = 36 mS-cm-2 and &N. - 120 mS.cm-2. We assumed that leakage
channels (gL = 0.3 mS.cm-2) do not exhibit gating kinetics. The
interpretation of the n4 and m3h processes that is consistent with the
observation of open-close kinetics consists of assigning four independent
open-close particles to each channel, all of which must be open for any
given channel to be conducting (Hill and Chen, 1972; Stevens, 1972).
Each potassium channel has four identical particles with a rate constant
of a( V) for transition from closing to opening and #((V) for the reverse
transition. Similarly, each sodium channel has three identical particles
with rate constants given by a"(V) and ,B,(V), and a fourth particle (the
inactivation process) with rate constants given by ah(V) and OhM(V). All
rate constants are voltage dependent.

Voltage Jump Simulations
The above description of the gating process possesses the Markov
property (Feller, 1971). That is, channels described by the Hodgkin and
Huxley (1952) model lack memory of their previous history in voltage
clamped conditions. Consequently, the probability distribution functions
for the lifetimes of openings and closings of a gating particle are given by
P0(T) = exp[-#.(V)71 and PC(T) = exp[-a.(V)71, where P0(T), for
example, is the probability that any single opening exceeds T, and x
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represents either h, m, or n. We used these functions to analyze channel
currents before and after a voltage jump from V, to V2 (Fig. 1 A and 1 B).
The time of occurrence of the jump was t = ti. We assumed that the
channels were initially (t = 0) in steady-state conditions, so the probabil-
ity that any single gate was initially open was given by p0 a0(V,)/[a0
(V,) + j30(V,)]. The initial condition of each particle was determined
from po and a random number, r,. All random numbers were uniformly
distributed between 0 and 1. If r, > p0, the particle was closed initially,
and if r, < po, it was open initially. A second random number, r2, was used
to determine the lifetime of the initial condition. If a particle was initially
closed, the duration of that closing was given by T0 = -a0(V,) 'loge r2.
The time t - T0 marked the end of the initial closing and the beginning of
the subsequent opening of the particle. The duration of the latter, T., was
given by T. = - lo(V&)-loge r3. Succeeding closings and openings were
determined in a similar manner until t = tj, where the voltage changed
from V, to V2. Open- and closed-gating lifetimes subsequent to tj were
determined from P0(T) and PC(T) as above, with V, replaced by V2, and
from the initial conditions of each particle at t = t, as determined by the
simulations up to that point in time. We note that PO(T) and PC(T)
change instantaneously at t = tj, as required by the Hodgkin and Huxley
(1952) model. Throughout these simulations any single channel was
assumed to be open only when all four gating particles were open.

Simulations for Continuous Predetermined
Voltage Changes

The extension of the above analysis to conditions in which the membrane
potential is continuously changing is not obvious, since the rate constants
are parametric functions of time through their dependence on voltage,
e.g., ax(V) = a.[V(t)J. Consider, for example, a continuous, predeter-
mined voltage change, such as a voltage ramp, applied to a membrane in
voltage-clamp conditions. During any single open- or closed-gating
lifetime, the rate constants a0( V) and f,( V) change continuously.
Consequently, the above expressions for P0(T) and PC(T) are not
applicable to this problem. It can be shown that the appropriate probabil-
ity functions are given by (Karlin and Taylor, 1975)

PO(T) = exp{-tf$ V(t)]dt}

and

PC(T) = expi-1 aAV(0Idtl. (2)

That is, the duration of any single opening or closing is related to the
average value of the appropriate rate constant during the lifetime in
question. For example, consider a gating particle that is initially open at
t = 0. We assign a random number, r,, to the duration, T,, of this initial
condition, which can be determined from Eq. 2. The solution is

f.0[V(t)Idt = -log, r. (3)

The unknown in Eq. 3 is the limit of integration. All other terms in Eq. 3
are known a priori. At t = T., the particle closes. The duration of that
closing, T,, is determined from

TO+Ta.(V(t)]dt = -loge r2, (4)

where r2 is the random number assigned to this closing. Because T. has
already been determined from Eq. 3, the only unknown in Eq. 4 is T,. At
t = T. + T,, the particle opens again. Succeeding lifetimes are determined
in a similar manner.
We used the above analysis to simulate channel kinetics during the

Hodgkin and Huxley (1952) model action potential assuming an initial
condition of V = -50 mV (Fig. 1 C and D). We used V - -50 mV to
determine the initial condition of gating particles in a manner similar to
that used in the voltage-jump simulations. The action potential waveform

was determined numerically from Eq. 1 using the Rush and Larsen
(1978) integration technique with a time increment of 50 Ps. This result
was substituted for V(t) in Eq. 2, as illustrated in Eqs. 3 and 4. The
solutions to Eqs. 3 and 4 were determined numerically, using an Euler
integration technique with a 50-gs time increment (Moore and Ramon,
1974). Separate simulations were carried out for each gating particle of
each channel. As in the voltage-jump simulations, any single channel was
assigned to its open state only when all four of its gating particles were
open.

Simulations of Membrane Excitability
The above results provide the basis of our analysis for conditions in which
the membrane is not voltage clamped. Our simulations for this problem
concerned the influence of individual channels on voltage changes in
small, unclamped membrane patches. We assigned specific values to each
patch for capacitance Cs, from CM = 1 AF.cm-2, and for channel
numbers, NK and NN., from the channel densities given above. Leakage
current was set equal to zero. Changes both in V and in channel states
subsequent to their initial conditions were determined from Eqs. 3 and 4
and from

CSdV/dt + nKYK (V- EK) +

nNa 'YNa (V - EN.) = Iapp (5)

where nK and nN, are the number of potassium and sodium channels,
respectively, which are open during any given time interval. Specifically,
the initial conditions for all gating particles and, consequently, nK and nN,,
were determined as in the voltage-jump simulations, using the initial
condition for membrane potential, V(t = 0). Each channel particle was
assigned a random number to be used to determine the duration of its
initial condition. The voltage change, V(t), subsequent to t = 0 was
determined from Eq. 5. The initial lifetimes of all gating particles were
determined from V(t) and Eqs. 3 and 4. The results of this procedure were
sequences of lifetimes, To,,, To,2, ... Toj, ... To,.; and TcJ, TC2, T,-- Tc,
where T0j is the lifetime of the ith particle in the patch which was initially
open, Ti, is the lifetime of the ith particle in the patch that was initially
closed, n. is the total number of particles that were initially open, and nc is
the total number of particles that were initially closed. Each channel in
the patch is represented by four of these lifetimes. Any individual channel
is open only when open time durations of all of its gating particles overlap.
Consequently, nO + nc = 4NN, + 4NK. These sequences were searched for
the minimum lifetime, be it either an opening or a closing. Assume, for
example, that To.3 was the minimum of both sequences. At t = a
particle in the patch closes, which may or may not cause the correspond-
ing channel to change from its open to its closed conducting state. If the
conductance state of the channel does not change, we assign a new
random number to the particle in question, and we determine the duration
of its subsequent closing from Eq. 4 and from V(t). The result of this
calculation is added to the sequence of particles that were initially closed,
and T0,3 is removed from the sequence of initial open durations. Both
sequences are then searched for the time of occurrence of the next particle
transition. This procedure is continued until the time, t = t,, at which the
first change of conductance of a channel occurs. The voltage change
subsequent to t, is calculated from Eq. 5 with the appropriate modifica-
tion of either nK or nN,. The lifetimes of all gating particles are also
recalculated. For example, consider a particle whose initial lifetime was

T0.7 with TO,7 > t,. Its new lifetime following tl, T,7, is now determined
from Eq. 3 with the new V(t) subsequent to t,. As a further example,
consider a particle whose initial lifetime was T45, with T45 < t,. Let its
subsequent open duration be T',5 with T' > t, - Tc,5. At t = t,, the open
duration is recalculated from Eq. 4 and V(t) for t > t,. Throughout these
procedures Eqs. 3 and 4 were iterated numerically with 50 ,us time
increments. Eq. 5 was solved exactly to give V(t) between each change of
state of a channel. These simulations were continued in a manner similar
to that of the voltage jump and the predetermined voltage change
analyses. The primary difference between this analysis and the previous
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cases is that V(t) is not known, a priori. Moreover, the simulations must
be carried out in parallel for all gating particles. The simulations in the
previous cases were carried out in a serial manner. That is, a simulation
was initiated and carried out to its conclusion separately for each gating
particle.

Simulations for Other Models of Channel
Gating

In recent years, alternative models for channel gating in nerve that differ
in various ways from the original Hodgkin and Huxley (1952) model have
been presented (Armstrong and Bezanilla, 1977; Armstrong and Gilly,
1979; Gilly and Armstrong, 1982). The extension of our analysis to these
or other models is illustrated by considering an alternative interpretation
of the Hodgkin and Huxley (1952) model. The Hodgkin and Huxley
(1952) gating mechanism consists of four stochastically independent
particles for each channel. Consequently, each different configuration of
these open-close particles can be viewed as a state of the channel, with
certain specified rates of transition to other configurational states. For
example, a sodium channel can be represented by the state diagram
(FitzHugh, 1965; Neher and Stevens, 1977)

3am 2am a,m
[O I [IY ;== [2'] [3Y

OBm 2#,. 3P.,

ah J Oh ah lt Oh ah j[Oh ah 1IOh

3a,m 2am, am

[0] - [1] . [2]=- [3]
lSm 2flm 3ftm

Diagram I

where the number inside each bracket in either the upper or lower tier of
states represents the number of activation, or m gates, which are open in
that particular state. The inactivation, or h gate, is open in the lower tier,
and it is closed in the upper tier of states. Consequently, [3] is the open or
conducting state of the channel. All other states have zero conductance.
Alternative models for gating that have been described in the literature
differ in detail but not in spirit from the above diagram. Some models
have more than one conductance state; the topology of transitions between
states in these models is generally different from that of Hodgkin and
Huxley (1952); and the specific transition rates are generally different
from the Hodgkin and Huxley (1952) a's and ,B's. Nevertheless, any state
diagram can be represented by a set of first-order differential equations,
as can the Hodgkin and Huxley (1952) model. The primary difference is
that the equations for the gating of any single channel are generally
coupled to each other in these alternative models, whereas the Hodgkin
and Huxley (1952) model can be described by one equation for any single
potassium channel and by two uncoupled equations for any single sodium
channel.

The operational procedure for carrying out simulations with state
diagrams differs somewhat from the analysis of the previous sections.
Consider, for example, Diagram I above in steady-state voltage clamp
conditions. The initial state that the channel occupies is determined from
a random number, r,, and the respective probabilities for each state,
which are h_,(1 -m)3, 3m,,(1 - m_)2h-, 3m_2(1- m,)h,,, and m_,,h for
states [0], [1], [21, and [3], respectively. The respective probabilities for
states [0'], ... [3'] are similar with h,, replaced by (1 - h_). Each of these
probabilities is assigned a portion of the real line between 0 and 1. The
portion of the line on which r, lies determines the initial state. The
duration of the initial state is determined from a second random number,
r2; the combined rate of transition for leaving that state to one or more of
the other states; and the appropriate modification of the expressions for
P0(T) and P¢(T). For example, assume that the initial state was [2] in
Diagram I. The duration of that state, T2, is given by

T2 = -(am + 2f3. + ah) 'loge r2- (6)

At t = T2, the channel jumps either to [1], [2'], or [3]. The probability of
jumping to [1] is 213,/(a. + 2j3, + a/); the probability ofjumping to [2']
is a aAI(am + 21, + ah,); and the probability of jumping to [3] is a,/
(a. + 2ft, + at,). A third random number, r3, is used to determine which
of these transitions occurs. The procedure is then continued in a similar
manner. The treatment of time varying rate constants for state diagrams
is similar to that of Eqs. 2-5. In fact, Eqs. 2-4 are appropriate for the
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FIGURE 1 Simulations of channel-gating kinetics for a predetermined
voltage change. A, response of potassium channels to a voltage step with
VI = -50 mV and V2 = 0 mV. Step change occurred at t i = 30 ms. The
number of channels is given to the right of each record. The top trace
represents the macroscopic parameter n4(t), where n(t) =
n2 - (n, - n2)e- 'r" with n, = a.(V,)/[a.(V,) + fln(VI)], n2 = a,n(V2)1
[a,(V2) +±3(V2)], and Tn = 1/[a.(V2) + #.(V2)]; n,4(V, =-50) = 0.051;
n24( V2 = 0) = 0.64; Tr = 1.78 ms. The ordinate represents the fraction of
open channels. Same scale for all traces. The horizontal line to the left of
each of the top four traces represents zero open channels. B, response of
sodium channels to a voltage step with VI = - 50 mV and V2 = -10 mV.
Step change occurred at tj = 5 ms. The number of channels for each
simulation is given to the right. The top trace represents the macroscopic
parameter m3(t)h(t) with m,3h, = 0.0012, m23h2 = 0.0065; Tm = 0.35 ms,
T = 1.34 ms. The peak amplitude of m3(t)h(t) = 0.103. Same ordinate
scale for the top four traces. C, fraction of open potassium channels, fK,
during the Hodgkin and Huxley model (1952) action potential, which is
shown in the top trace. Total number of channels given at the right of each
simulation. D, fraction of open sodium channels,fN,, during the Hodgkin
and Huxley model action potential.
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simplest possible state diagram consisting of only one closed and one open
state. To illustrate the application of this analysis to more complicated
diagrams, consider Diagram I in which state [21 is once again the initial
condition. Its duration, T, is determined by Eq. 2 with (4[V(t)I replaced
by lam[V(t)J + 2#.[V(t)] + ad[V(t)]l. The transition at t = T is
determined as above with the values of the rate constants appropriate for
V(t = T). Other aspects of the analysis are treated in a manner similar to
that for the simple two-state diagram. The primary difference between
the analysis of the Hodgkin and Huxley (1952) model in this and in the
previous sections is that the entire gating mechanism for each channel is
used throughout rather than each gating particle.

The techniques in this section can be applied to any model of channel
gating that can be described by a state diagram. The general simulation
method involves a determination of the initial state, a determination of the
total rate of leaving that state to one or more other states in the diagram,
and a determination of the state subsequent to the initial condition. The
only significant difference in these procedures for a general kinetic
scheme is that the steady-state probabilities usually cannot be caluclated
as readily as they can for the Hodgkin and Huxley (1952) model.

RESULTS

Voltage Jumps
Fractions of open potassium and sodium channels are
shown in Fig. 1 A and B, respectively, for voltage-jump
simulations on different channel populations. The initial
voltage, VI, was -50 mV. The final voltage, V2, was 0 mV
in Fig. 1 A and -10 mV in Fig. 1 B. The top traces in Fig.
1 A and B represent n4(t) and m3(t)h(t), for the same
respective conditions. The other traces represent the frac-
tion of channels of each population that were open in any
given time interval during the simulation. That is, they
represent averaged results of channel openings of individu-
al, separate simulations for each channel in the respective
population indicated by the number to the right of each
trace.

Single-Channel Kinetics During Action
Potentials

The fractions of open potassium and sodium channels
during the Hodgkin and Huxley (1952) model action
potential (Methods) are shown in Fig. 1 C and D for
different channel populations. The corresponding values of
the macroscopic parameters n4(t) and m3(t)h(t) calculated
in the standard way (FitzHugh, 1969) are also shown. The
traces for each of the populations represent the fraction of
open potassium channels, fK, and open sodium channels,
fNa. These results were determined in a manner similar to
that used to construct the simulation results in Fig. 1 A and
B.

Membrane Excitability
Action potential responses of three different size mem-
brane patches to a near threshold current stimulus are
shown in Fig. 2. A near-threshold pulse, Iapp, was applied
from I to 1.5 ms; Ipp = 0 at all other times. The size of the
patches used was 1, 0.2, and 0.04 jm2, left to right in Fig. 2,
with C,, Iapp, NK, and NN5 all scaled according to area. The

0 -
mV

-60-

INO

K2-

FIGURE 2 Sample action potentials for I Am2 (left), 0.2 ;&m2 (middle),
and 0.04 ,m2 (right) patches, as described in the text. Fraction of open
channels,fK andfN. and total channel currents, IK and IN. are given below
each action potential. EK = -72 mV, and for these simulations EN. = 75
mV rather than 55 mV, which was the value of ENa used in Fig. 1 Cand D.
The channel numbers were, left to right, NK = 60, 12, 2; NN. = 300, 60,
12; the stimulus amplitude, left to right, was I,pp = 0.3 125, 0.0625, 0.0125
pA. Membrane capacitance was determined from CM - 1 MF.cm-2
Vertical bar represents 12.5, 3, and 0.6 pA, reading from left to right.
Horizontal bar represents 1.5 ms for all three results.

fraction of open potassium and sodium channels and the
corresponding currents are shown below each action poten-
tial.

The variability of the small patch response is illustrated
in Fig. 3. The conditions for these simulations were the
same as those used for the smallest patch in Fig. 2. The
relationship between variability of response and patch size
is illustrated in Fig. 4 for response latency. For these results
a suprathreshold stimulus was applied from t = 0 to t = 0.5
ms to membrane patches of area A = 0.02, 0.04, 0.08, ...

2.56 Om2 with I,pp, NK, NN5, and C0 all scaled according to
area. In the smallest patch, NK = 1, NNa = 5; in the largest,
NK = 128, NNa = 640. The latency was taken to be the time

0 -

-60 - -

0 -

-60 -

FIGURE 3 Examples of variability of membrane response for a small
patch. Same conditions as in the right hand panel of Fig. 2 with different
sets of computer generated random numbers. The horizontal bar repre-
sents 1.5 ms.
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lifetimes of a channel combine to produce the characteris-
tic delay of the macroscopic response. The probability
distribution functions for open- and closed-channel states

I, change instantaneously at ti. That is, the durations of

I T jt t + t + channel states following tj are determined by the finalvoltage, V2. So long as a channel remains in the state at
which it found itself at t = tj, it reflects its condition at that
time which, in turn, was determined by VI, the starting
potential. Consequently, the macroscopic time constant of
membrane response reflects the distribution of the life-
times of the states of channels at t, following the voltage

C A-1/2 ~jump.
The results in Fig. IC and D illustrate the relationship

between the time course of the macroscopic action poten-
tial and the underlying potassium and sodium channels.
The comparison between the simulations and the macros-
copic n4 and m3h results in all panels of Fig. 1 provides a
self-consistency check on our simulation technique.

The results in Fig. 2 illustrate the relationship between
I2 4 8 I632 64 128 channel openings and closings and the resulting changes in1 2 4 8 16 32 64 128

membrane potential as the size of a patch is reduced. The
A (xO.02 JLm2) action potential in the left-hand panel for a 1 ,um2 patch is

roughly similar in shape to the standard, macroscopic
itency fluctuations vs. patch area (A). Each patch was Hodgkin and Huxley (1952) action potential. The general
m t = 0 to t = 0.5 ms by a current pulse of amplitude equal outline of the action potential for a 0.2 '4m2 patch can be
mes the number on the abscissa. The total number of discerned, although the event is much noisier. The shape of
r each patch was I 0. The fraction of simulations that

2

action potential was 0.872, 0.912, 0.930, 0.911, 0.944, the voltage waveform for the 0.04 ,.m2 patch bears little
1.000, for patch areas starting with the smallest and resemblance to the macroscopic event. The effects of
the largest. The mean latency to reach 0 mV for the first single-channel openings and closings on membrane poten-
potential responses is given in the top part of the figure by tial are apparent in this result. The potential changes with
The vertical bar represents the standard deviation from

'he coefficient of variation, C = ot/t is given in the bottom an exponential time course following a change in conduc-
ire. The solid line represents the relation C A -'/2, fitted tance state of a channel with a time constant that is
esults from the four largest patches. determined by the capacitance of the patch, the number of

open channels, and their respective conductances. These
the membrane to reach V - 0 mV for the first results are relevant for small cells, where the input resis-
Lumber of simulations for each patch was 103. tance is so high that openings and closings of single
ttency, t, the standard deviation of the mean, a, channels may have large effects on membrane potential
fficient of variation, C - are all shown in (Hamill et al., 1981).

The results in Fig. 3 indicate that any single voltage
response from a small patch cannot be regarded as typical.

5CUSSION The response amplitude, latency, and duration are all
variable. Moreover, the probability of any depolarization

in Fig. 1 A and B illustrate the relationship occurring for a near-threshold stimulus is <1, as the result
n and closed conductance-state lifetimes of a in the lower right-hand panel of Fig. 3 illustrates. Any
i the macroscopic membrane response to a single response parameter must be represented in a statisti-
i. Any single channel can give a misleading cal way from a large number of simulations, as demon-
on of the macroscopic behavior. For example, strated by the results in Fig. 4, for response latency for
)tassium channel in the simulation represented patches of varying size. These simulations demonstrate
m trace of Fig. 1 A opened before the voltage that mean latency is nearly independent of membrane area
occurred at t- = 30 ms, and it remained open for the larger patch sizes, whereas the fluctuations in

e thereafter. This was not a typical result. Each latency are a diminishing function of area with the coeffi-
liffered, of course, from all others. The charac- cient of variation, C A-1/2 for the four largest patches.
roscopic behavior became apparent only when The fact that the response latency is independent of A is
Ltions were averaged together, as the results for consistent with the intuitive notion that the mean action
s in Fig. 1 indicate. These results also illustrate potential parameters are independent of size for a space-
in which open and closed conductance state clamped preparation. For example, a nerve action potential
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is theoretically independent of axon diameter in space-
clamp conditions, so long as the channel densities are
independent of diameter and the current pulse amplitude is
scaled according to area. The membrane capacitance, the
ionic conductances, gK, gNa, and gL all scale in the same
way, if the channels are uniformly distributed throughout
the axonal membrane with the same distribution for axons
of different sizes. Consequently, the membrane area drops
out of the equation for the membrane action potential if the
stimulus, ,lapp, is scaled appropriately. Experimental prepa-
rations may, of course, have a dependence of channel
density on axon diameter. The reduction of variability of
the action potential parameters as area increases is not
surprising, although the specific relationship between vari-
ability and patch size is striking. An intuitive basis for the
C - A-'1/2 relationship can be obtained from Poisson
statistics, since the variance of a Poisson distribution is
N"2, where N is the distribution mean. Consequently, the
coefficient of variation for such a process is -N-1/2.
Experimental evidence for the C A- 1/2 result has been
reported recently from observations of the beat rate of
spontaneously beating clusters containing some number, N
(1 < N < 125), of electrically coupled embryonic heart
cells (Clay and DeHaan, 1979). Although the mean beat
rate was independent of N, the relative beat-to-beat varia-
bility of the interbeat interval scaled according to the C -

N-1/2 relation. Further evidence for the general nature of
this result has been provided by Enright (1980), who
demonstrated with computer simulations that the variabil-
ity in first passage time to a threshold for some number, N,
of coupled, noisy oscillators scales according to N-'1/2. This
reduction of variability with size provides one way in which
coupled, noisy cells can produce coherent, or rhythmic,
behavior.

The primary purpose of this paper is to describe a
method of calculating membrane current or voltage
responses at the level of single channels from macroscopic
ion conductance equations. We have illustrated the tech-
nique with the Hodgkin and Huxley (1952) model of the
nerve action potential. This model is known to provide an
incomplete representation of macroscopic membrane cur-
rent measurements from nerve, including squid giant axons
for which it was originally designed (Cole and Moore,
1960; Bezanilla and Armstrong, 1977; Shoukimas and
French, 1981; Oxford, 1981; Clay and Shlesinger, 1982).
Measurements of single channel kinetics in excitable mem-
branes also illustrate the inadequacies of the model (Conti
and Neher, 1980; Sigworth and Neher, 1980). In particu-
lar, the measurements of Conti and Neher (1980) suggest
that a channel occasionally flickers rapidly between its
open state and one of its closed states during any individual
open-state lifetime. Alternative models that demonstrate
flickering behavior have been analyzed recently by Colqu-
houn and Hawkes (1981). Simulations similar to the ones
we have performed could be carried out for these or any
other models, as described above (Methods). Our primary

purpose in using the Hodgkin and Huxley (1952) model
was to illustrate a novel stimulation technique. Other
investigators have presented simulations for voltage jumps
or steady-state voltage-clamp conditions (Colquhoun and
Hawkes, 1977; Baumann and Easton, 1980; Lecar and
Sachs, 1981). These authors did not present results for
conditions in which either the rate constants for transitions
between states are effectively time dependent or the mem-
brane is unclamped. As we have shown, the solution to
these problems can be generalized from our treatment of
single channel kinetics in steady-state voltage-clamp con-
ditions.

Analysis of the relationship between single channel
kinetics and membrane excitability effectively turns the
noise problem back to its origins, as Sigworth (1980) has
recently noted. The original observations by Blair and
Erlanger (1932), Pecher (1939), and Verveen (1961) of
fluctuations in excitability in response to a constant near-
threshold stimulus provided at least some of the original
motivation for membrane noise measurements. Earlier
theoretical treatments of fluctuations of excitability con-
sisted of analysis of macroscopic conductance equations to
which idealized, model noise sources were added (Lecar
and Nossal, 1971 a, b; Clay, 1976, 1977). Because the
principle noise source in excitable membranes can now be
assigned to the single-channel open-close process, the
problem of fluctuations of excitability can be treated
directly by assigning noise properties to the conductance
parameters in the microscopic, single-channel domain.
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