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ABSTRACT The relations between the protein coats and DNAs of the four filamentous bacteriophages fd, Xf, Pf1, and
Pf3 are considered. These viruses have similar morphologies, yet show a diversity of detailed structure, having different
protein coat symmetries (helical and rotational), different coat protein sizes (44-50 amino acids per subunit) and
sequences, different nucleotide axial translations (2.3-5.5 A), and different ratios of nucleotides per coat protein
subunit (integers 1.0 and 2.0, and nonintegers -2.4). These divergences are all reconciled quantitatively by means of
two theoretical concepts: the pitch connection and the restricted pitch connection. The pitch connection relates protein
and DNA surface lattices with arbitrary, nonintegral nucelotide/subunit ratios in a nonrandom way. The restricted
pitch connection selects a preferred set of n/s values. Both relations are derived formally in a mathematical appendix.
The available structural data are explained, including the fd DNA pitch indicated by x-ray diffraction photos and the
similar DNA morphologies of Xf and fd. Predictions are made for the existence of nonclassical inverted DNA structures
(I-DNA) in Pfl and Pf3.

INTRODUCTION

The filamentous phages (e.g., Pfl, Xf, Pf3, fd, Ike, If1)
contain a circular single-stranded genome ensheathed by a
protein coat consisting of several thousand copies of a
major coat protein and a few copies each of one or more
minor coat proteins. In each of these viruses the topologi-
cally circular DNA is packaged as two antiparallel chains
occupying a central core region. These are not Watson-
Crick paired throughout the length of the virion, although
a small amount of Watson-Crick pairing may be present in
some structures. Table I states physical parameters for
Pfl, Xf, Pf3, and fd, the most significant parameters
among them for this paper being the nucleotide/subunit
ratios (n/s). Two of these viruses (Pf 1 and Xf) have what
appear to be integer values and two viruses (fd and Pf3)
definitely have noninteger values. This article is concerned
with two questions involving the DNA-protein interfaces of
the filamentous viruses: (a) What manner of protein-
nucleotide interaction allows a noninteger value of n/s and
a matching of the different protein and DNA symmetries?
and (b) Can particular values of n/s be interpreted in
terms of some strategy for producing an optimum struc-
ture?

In order even to pose these questions, we have adopted
the hypothesis that the DNA-protein interface is well-
ordered and understandable through a simple model. This
is not the only viewpoint. It has been asserted that in fd the
DNA-protein interaction is "non-uniform" (Banner et al.,
1981), and also that "the helical symmetry of the DNA
and the coat protein must be unrelated" (Makowski and

Caspar, 1981). Part of the issue is semantic. The noninte-
gral n/s ratios in fd and Pf3 are themselves sufficient to
imply "non-uniformity," if a uniform interaction is one in
which each major coat-protein subunit has the same
nucleotide environment. Similarly, one might say that two
coaxial helices are "unrelated" if their pitches differ,
however else they may interact. In any case, some degree of
structural interdependency for the DNA and protein
sheaths is suggested by the fact that for none of these
viruses has a protein sheath without DNA (ghost) or a
DNA molecule in its native configuration, but without
protein, been observed; but this may result from an
assembly mechanism. An infrared linear dichroism study
(Fritzsche et al., 1981 ) finds that the fd "structure involves
a rigidly held DNA molecule complexed within a stable
coat protein matrix." Also, electron micrographs and
sedimentation analysis of sheared fI (fd) virions show that
the DNA does not unravel from the cut ends (Webster et.
al., 1981; Grant et al., 1981), indicating that it is not
simply stuffed into the protein coat but is somehow bound.
Furthermore, Ag+ complexes with Pf3 (private communi-
cation with A. Casadevall), Xf, and fd (Casadevall and
Day, 1982) show increased sedimentation coefficients,
compared with the native virions. The magnitudes of the
increases are much larger than can be accounted for by the
addition of the Ag+ mass alone, so the changes are due to
overall perturbations in the structures or in the hydrations
of these virions (Casadevall and Day, 1982). Because the
Ag+ binds to the DNA and not to the protein, the DNA
perturbation induced by the Ag+ must propagate outward
into the protein, implying a strong coupling in these virions
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TABLE I
SOME STRUCTURE PARAMETERS OF FOUR

FILAMENTOUS VIRUSES

PfI Xf Pf3 fd

Length* 2.0 sm 1.0,um 0.7 Mm 0.9 Mm
Nucleotides

per Subunitt 0.97 ± 0.05 2.02 ± 0.04 2.38 ± 0.14 2.32 ± 0.08
Symmetry of

protein
sheath§ 27u/5t 27u/5t 27u/5t 5-start

Axial nucleotide
separation
(one chain) 5.73 A 2.75 A 2.33 A 2.76 A

Properties common to all four viruses are mass per length, which is in the
vicinity of 1,800-1,900 daltons/A for each (Newman et al., 1977;
Berkowitz and Day, 1980; Nave et al., 1981; Newman et al., 1982), and
the small size, from 44-50 amino acids, and relatively high alpha-helicity,
from 50 to 100%, of the major coat protein subunits (data compiled in
Day and Wiseman, 1978; for Pf3, Thomas and Day, 1981, and D. Gluck
Putterman and B. Frangione, personal communications).
*tData compiled and discussed by Day and Wiseman (1978) and, for
Pf3, by Newman et al. (1982).
§Pfl, Xf, and Pf all have 27 subunits in five turns of the protein helix
over repeat distances of 75 A (Marvin et al., 1974; Wiseman and Day,
1977; Nave et al., 1981; for Pf3, C. Peterson et al. (1982); fd has five
subunits every 16 A (Newman et al., 1977) arranged with fivefold
rotational symmetry (Makowski and Caspar, 1978, 1981).
||Values calculated from x-ray unit cell dimensions and the data of t and
§. The values are accurate to 6% or better. Note that the best values
generated by the theoretical treatment of this paper are (t) 1, 2, 2.4, and
2.4; and (||) 5.55, 2.77, 2.31, and 2.67 A.

between the DNA and protein sheath. Finally, x-ray
diffraction photos of magnetically oriented fd fibers show
layer lines ascribed to the DNA (Banner et al., 1981),
which requires regular DNA helices in fd. We will show
both that a nonuniform nucleotide environment does not
imply that the DNA-protein interaction is random and
that, although different, the DNA and protein symmetries
in fd and the other filamentous viruses can be neatly
connected.

We will answer the first of our questions above by
means of a geometrical construction that we call the "pitch
connection" and the second by means of the "restricted
pitch connection." We provide here some context for these
concepts by observing that in the filamentous phages, and
in rodlike or filamentous nucleoproteins in general, the
nucleotide-protein interactions can be described in order of
decreasing symmetry: (a) "simple periodic" in which every
nth nucleotide experiences the same protein environment
(n = 3 for TMV), and the protein and the nucleic acid have
the same helical symmetry; (b) "restrictively pitch con-
nected," in which the protein and nucleic acid symmetries
are different but related by the pitch connection, subject to
the condition that every nth nucleotide of one strand
experiences the same protein environment; (c) "simple
pitch connected," in which there is not necessarily a

periodicity of nucleotide environments, but the nucleic acid
and protein symmetries are related at the level of secon-
dary structure; (d) "irregular," in which the nucleic acid
and protein coat are unrelated.

THE PITCH CONNECTION

The pitch connection (Marzec and Day, 1980) affords a
simple and flexible answer to the symmetry-matching
problems posed by the occurrence of nonintegral n/s values
in both fd and Pf3 and by the occurrence of helical DNA
symmetry and rotational protein-coat symmetry in fd.

Fig. 1 a shows a helical DNA surface lattice not
intended to represent any known structure, but drawn
solely to demonstrate lattice interactions. In this and
subsequent lattice diagrams, we adopt the convention that
the lattice is drawn as it would be seen from outside the
virus, so a right-handed helix is represented as a straight
line with a positive slope. Each nucleotide (X for the up
strand and 0 for the down strand) is positioned at its z and
o polar coordinates, with z directed along the virion
structure axis, and coordinates 0 = 0 and 0 = 2wr identical.
The solid line represents the helix traversed by the sugar-
phosphate backbone, with pitch PDNA. An X or 0 represents
the point of a nucleotide that lies farthest from the
structure axis. In Fig. lb the backbone helix has been
omitted. The nucleotides have been joined instead by
dashed lines that represent the ridges formed by the
outermost segments of each nucleotide. The ridge lines
could have been drawn differently in Fig. 1 b to demon-
strate different possibilities consistent with the same
underlying nucleotide surface lattice. Such constructions
are reminiscent of those used by Chothia et al. (1977) for
analyzing a-helix packing patterns.

Fig. 1 c reproduces the DNA ridge pattern of Fig. 1 b
and adds to it a set of solid lines lying in the valleys between
the ridges. We picture these as the axes of a set of tubes,
each made of many identical segments from different
protein subunits, which are cradled by the grooves of the
DNA. Alternately, one could begin with these coat-protein
tubes and insert nucleotides into the chinks between them,
again producing Fig. 1 c.

The origin of the protein tubes is illustrated in Figs. Id
and e, in each of which a basic surface lattice for the helix
of protein subunits, with pitch Pp, has been superimposed
onto the tube axes. In these figures a protein subunit is
represented by a dot, and the lattices of dots have been laid
with rotational (R) and helical (H) symmetries in Fig. 1, d
and e, respectively. Protein surface lattices of this sort, in
which a subunit is represented as a straight line adjoining
another subunit, have been given elsewhere (Banner et al.,
1981; Makowski and Caspar, 1981). The central feature of
this DNA-protein interaction is that each protein subunit
contributes a segment of polypeptide that nestles into a
valley defined by the DNA. Although belonging to dif-
ferent subunits, the successive polypeptide segments lying

BIOPHYSICAL JOURNAL VOLUME 42 1983172



b.>- / , ,

/ /.X f *

I 1 / / 0

/I K /

/ I I K
0 / I ,

I
I I

I I / K
I K'

f/ K i *I~ i

FIGURE 1 (a) An arbitrary helical DNA surface lattice, with equivalent points marked X (up strand) and 0 (down strand), and a solid line of
pitch PDNA schematically denoting the sugar phosphate backbone. (b) The backbone is removed. Dashed lines of pitch Pjoin ridges of mass at
large radius. (P equals twice the height of the figure.) (c) Segments of protein that form continuous helical tubes (solid lines) are inserted into
the valleys between the ridge lines. (d) The nucleotides are removed and equivalent points on the protein subunits are denoted by dots, forming
an example of a rotationally symmetrical surface lattice of subunits; NR-mer axial translation T is shown. e, same as (d) but showing an
example of a helically symmetrical protein surface lattice.f, the lattices of (e) Showing subunits and DNA but no ridge or valley lines; Azp and
AZDNA are indicated.

along one of the tube axes, when taken together, form a
continuous helical tube of protein that wraps around the
virion along its entire length. A number, N, of such tubes of
protein completely surround the DNA core. The remain-
der of each subunit extends into a second, outer layer of
protein tubes coaxial with the original inner layer. Some
relations between the two layers of protein, through which
they form a double layer of close-packed tubes surrounding
the DNA, will be presented by us elsewhere.

The geometry of Fig. 1 leads immediately to the pitch
connection equation:

AZDNA AZDNA + K

PDNA P N (1)

in which PDNA is the pitch of the DNA helix, AZDNA is the
nucleotide axial translation, and P is the pitch of a protein
tubeaxis.Kisaconstant= +1, +2, ±1/2, ±3, ±1/3,...,
the absolute value of which is the number of protein tubes
per nucleotide, and the sign of which is + (-) if successive
nucleotides are associated with tubes having greater
(smaller) azimuthal coordinate. Eq. 1 states that for a
pitch connected DNA-protein interface, AODNA equals a
contribution (2wK)/N due to the azimuthal angle occu-
pied by K of theNtubes plus a contribution (AzDNA)/P due
to the axial rise per nucleotide along a helix tube of pitch P.
Eq. 1 applies to helical DNA that is pitch connected to a
protein coat that has either helical or rotational symmetry.

Note that the pitch P of the protein tube axes is distinctly
different from the pitch Pp of the basic subunit lattice.
We denote the subunit axial translation by Azp, and so

n/s = 2Azp/AZDNA. The factor of 2 arises because the
filamentous bacteriophages locally have two strands of
DNA. It is evident from Fig. 1, d and e, that the protein
subunit axial translation Azp can be varied freely with the
DNA lattice remaining fixed, simply by repositioning the
dots along the tube axes. It is this freedom that allows a
protein lattice with either H or R symmetry, and having
any value of Azp, to be superimposed onto the tube axes of
Fig. 1c. For the rotationally symmetrical case, Azp =

T/NR, where NR is the order of rotational symmetry, and T
is the axial rise between successive NR-mers. Thus, any
value of n/s can be accommodated by the pitch connection
construction. Fig. 1 f shows the DNA and protein lattices
of Fig. 1 e, without the ridge and valley lines.

THE RESTRICTED PITCH CONNECTION

In this section we consider the observed values of n/s as
examples of pitch-connected symmetry. We begin with
some general remarks and advance a hypothesis which
affords selection of discrete sets of allowed n/s values that
contain the observed examples.
We seek an optimum mode of DNA-protein interaction

that is DNA-sequence independent. This is essential, since
insertion and deletion mutations of the fd genome are

MARZEC AND DAY The Pitch Connection 173



packaged indistinguishably from the native genome,
except for a linear scaling of virion length with genome size
(Enea and Zinder, 1975; Herrmann et al., 1978). Thus, in
general, it is the mean shape of the DNA molecule that is
fi'tted stereochemically to the protein coat.

It is plain that the local contribution to the total
DNA-protein interaction varies on the DNA-protein inter-
face, depending on what part of the DNA and what part of
the protein are in contact. We assume that there is some
one site on each nucleotide that interacts optimally with
some corresponding site on each protein subunit, so that
the net DNA-protein interaction is maximum when the
largest number of DNA sites and protein sites are juxta-
posed. The sites could be charged groups or aromatic
residues for the protein, and phosphate charges or nucleo-
tide bases for the DNA, although these examples are not
exhaustive.

The simplest manner of achieving a large number of
site-site interactions is through simple periodic symmetry,
in which each nucleotide site (or each nth nucleotide site)
binds to a subunit site, and every subunit site (or every nth
subunit site) is bound to a nucleotide site. However, these
symmetries do not allow for the observed nonintegral n/s
ratios. To achieve both a large number of site-site interac-
tions and a nonintegral n/s value, we invoke the pitch
connection, to allow nonintegral n/s, and add to it the
requirement that n/s = 2j/k, wherej and k are integers. A
rational value for n/s ensures that the number of different
nucleotide environments is finite and that every jth nucleo-
tide site and kth subunit site can be in proximity. A virion
with N nucleotides would have N/j of them enjoying
site-site interactions, so it is advantageous to keep j small;
the same argument applies to k for the subunits. Fig. 2a
shows an arbitrary example of restrictively pitch connected
protein and DNA lattices, with n/s = 2(7/5) = 2.80. The
dots here represent subunit sites, and the X's represent
nucleotide sites, with each subunit site bracketed by two
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FIGURE 2 (a) Restrictively pitch-connected DNA and protein lattices,
with n/s = 2(7/5) and M = 1. Every fifth subunit site interacts strongly
with a pair of nucleotide sites. The primitive lattice vectors i and b for the
protein helix are shown. (b) Solid and dashed lines denote lattice vectors
of the protein DNA lattices, with the terminus of each DNA lattice vector
marked by an X, and the heavy lines denoting common vectors.
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FIGURE 3 (a) A restrictively pitch-connected model of the DNA and
protein surface lattice interactions of fd. NR = 5, M = 2, T = 16 A and
PDNA = 26.7 A. (b) Restrictively pitch-connected surface lattices for Xf,
with N = 11, n/s = 2.0, and every 11th subunit interacting strongly with
two nucleotides. Both strands of the DNA are shown.

nucleotide sites. Other examples of restrictively pitch-
connected lattices are shown in Figs. 3-5, drawn for
application to the filamentous phages.
A rational value for n/s implies that the set of DNA

lattice vectors and the set of protein lattice vectors have at
least one common member. This is shown graphically in
Fig. 2b, drawn for the lattices of Fig. 2a. The connection
between rational n/s values and strongly interacting sur-
face lattices is shown mathematically in the Appendix. The
Appendix derives both the pitch connection equation and
the restricted pitch connection by considering a general-
ized interaction between the surface lattice of a helical
DNA molecule and the surface lattice of the protein coat.
To derive the pitch connection, the protein coat is charac-
terized as a set of N helices; to derive the restricted pitch
connection, the discrete aspect of the protein surface lattice
is emphasized. The restricted pitch connection results from
a fusion of the two results: a rational n/s value and the
pitch connection.

In drawing a pair of restrictively pitch-connected

FIGURE 4 Restrictively pitch-connected surface lattices for Pf 1, with N -

11, n/s = 1.0, and every 11th subunit interacting strongly with one
nucleotide. The DNA ridges fit into every other protein groove in an
alternate interaction mode. Both strands of DNA are shown.
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FIGURE 5 Restrictively pitch-connected surface lattices for Pf3, with N -

11, n/s = 2.40, and every 6th nucleotide interacting strongly with every
5th subunit. Both strands ofDNA are shown.

lattices for a given number Nof a-helix tubes the value of k
in the expression n/s = 2j/k can always be chosen
arbitrarily. With N and k fixed, only a small set of values
of j is possible; each j value corresponds to the number of
tubes between one protein site and another that is k
subunits further along the basic protein lattice. Hence the
n/s spectrum is discrete, and its elements depend on the
number of protein tubes surrounding the DNA. For an
inclusive enumeration, these relations can be written alge-
braically.

For chosen values ofN and k, the corresponding set of
integers j is given by

1 mN +ko (2)
K

The positive or negative index m can range over all
integers, including zero; it is the number of complete turns
(the sign of which is measured relative to the helical sense
of the basic protein lattice) made by the DNA strand
between successive site-site interactions minus the number
of turns made by the basic protein lattice. Thus, if m = 0,
the DNA helix follows that of the basic protein lattice. The
integer ko is the number of tubes crossed by a DNA strand
between successive site-site interactions. For helical lat-
tices ko = kM, where the positive integer M is the number
of cycles of the basic protein subunit helix cut by an a-helix
tube axis as it spans the distance between its initial and
terminal dots. Equivalently, M is the number of tubes
between adjacent dots along the basic protein helix. In Fig.
1 d-e, M = 1, and in Figs. 3-5, M = 2.

In the case of a protein lattice possessing NR-fold
rotational symmetry, one finds N = MNR. Because the
protein NR-mers occur at z intervals of NRAZ, the allowed
values of k are k = LNR for L = 1,2, .... The allowed ko
values are ko = L + SM, for S =0,1, . . ., NR-1. With
these expressions in hand, a spectrum of n/s values can be
predicted for a given protein surface lattice, once its
subunits have been seated in a set ofN helical tubes.

NMR studies by Cross et al. (1983) have found that the
31P NMR spectrum for Pfl shows chemical shifts for only
one phosphate-group orientation, with respect to the struc-
ture axis, whereas the spectrum for fd shows many. These
spectra are interpreted to mean that the sugar-phosphate
dihedral angles of Pfl are roughly constant from nucleo-
tide to nucleotide, whereas those of fd vary. However, a
laser Raman spectroscopy study of fd (Thomas et al.,
1983) finds that the sugar-phosphate backbone of fd is well
ordered. The restricted pitch connection explains how the
fd DNA might appear ordered by some techniques (x-ray,
Raman spectroscopy, and IR), yet disordered by another
(NMR). By connecting every jth nucleotide to every kth
subunit, the restricted pitch connection actually relates the
protein coat only to the average structure of the DNA,
where the average is taken over j successive nucleotides.
Thus the j - 1 nucleotides lying between successive
nucleotide sites can assume local helix parameters, varying
from the average values, to adjust to the local protein
configuration. Perturbations in AZDNA merely cause the
nucleotides to slide up or down along their protein grooves,
in accord with the unrestricted pitch connection hypothe-
sis. It is possible for the sequience of DNA-protein interac-
tions, and therefore the values of the dihedral angles of the
sugar-phosphate backbone, to repeat exactly every j
nucleotides; then the nucleotide-protein interaction would
have a unit cell containing j nucleotides and k subunits.
The x-ray photos reflect the helix parameters of the
average DNA structure, whereas the NMR spectra are
sensitive to the j different local nucleotide configurations,
at the level of dihedral angles.

APPLICATION TO fd, Xf, Pf1, AND Pf3

We now apply the restricted pitch connection to four of the
filamentous viruses, beginning with fd. Its fivefold rota-
tional symmetry and 16-A pentamer translation are taken
from x-ray diffraction studies (Makowski and Caspar,
1978; Banner et al., 1981; Makowski and Caspar, 1981),
and so Azp = (16/5) A = 3.2 A. X-ray photos of
magnetically oriented fd fibers show no layer line splitting
and contain two spots, assigned to the DNA, at -1/26.7
A- ' and 2/26.7 A- ' (Banner et al., 1981). The absence of
layer line splitting indicates an exact 360 rotation angle
between pentamers, as shown in the dot lattice of Fig. 3 a.
The fd DNA lattice of this figure is drawn with right-
handed pitch, in accord with the arguments presented by
Casadevall and Day (1982). The DNA spots indicate that
PDNA = 26.7 A in fd, an experimental fact to be inter-
preted.

To do this we apply Eq. 1 and the rotational case of Eq.
2:

mMNR + L + SM
K

(3)
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We seek indices m, L, S, M, K, and k (with k = 5L) such
that n/s falls in the range 2.3-2.4. We also need PDNA,
found from Eq. I and AZDNA = kAzp/j, to be near 26.7 A.
To apply Eq. 1 we need P. Our modeling experiments
indicate that the only possible values for P consistent with
the x-ray data are P = 160 A forM = 1 and P = Xo forM =
2. A systematic search reveals that it is possible to find
j/k = 2.40 in two ways, but that only one solution yields an
appropriate PDNA. This solution has j = 12, k = 10, m = 2,
K = 1, P = oo, andPDNA= + 10(3.2/1.2) = +26.67 A. The
nearest rejected PDNA values are 23 and 32 A; the nearest
rejected n/s values are 2.2 and 2.6. These results could
have been obtained graphically, but with considerably
more effort.
The acceptable solution has the DNA with 10 residues

per turn, surrounded by 10 exactly vertical tubes of
protein. This structure is in accord with linear dichroism
data (Fritzche et al., 1981; T. Troxel and J. A. Schellman,
personal communication), NMR data (Cross et al., 1983),
x-ray data (Marvin et al., 1 974b), and a magnetic birefrin-
gence study (Torbet and Maret, 1981), which indicate that
the a-helices of fd are nearly parallel to the structure axis.
In a subunit packing study to be presented elsewhere, we
have developed this model of fd and used it to calculate
diffraction patterns in agreement with the semiquantita-
tive patterns available in the literature (Marvin et al.,
1974b). We propose in view of this evidence, that n/s =
2.40 exactly for fd.
We turn now to Xf and Pfl. Their very similar x-ray

diffraction patterns (Marvin et al., 1974a) indicate that
their protein coats are also similar on a scale of - 10 A and
that both have helical symmetry. Their DNA morpho-
logies differ significantly, since Xf has an experimental n/s
value nearly equal to 2, whereas Pf 1 has an n/s value
nearly equal to 1 (Wiseman and Day, 1977; Day and
Wiseman, 1978). We shall assume that the correct values
are 2 and 1, respectively, and consider the consequences
attached to explaining these numbers via the simple peri-
odic symmetry assumption and via the restricted pitch
connection.

With integral n/s values, a pitch-connected DNA-
protein interface is possible but not required, since an
interaction with simple periodic symmetry is sufficient,
and in fact, has been accepted as a matter of course in the
past. However, a simple periodic DNA-protein symmetry
implies that the DNA lattice and basic protein lattice share
the same pitch, known from x-ray studies to be 15 A. There
is no intrinsic problem with such a low pitch for the DNA
of Xf and Pf 1 (Day et al., 1979). However, silver binding
studies (Casadevall and Day, 1982) strongly suggest that
the DNAs of native Xf and fd are very similar. Because fd
DNA in its virion has 27-A pitch, a contradiction is implied
by the assumption of simple periodic symmetry: Xf DNA
in its virion has both a 15-A pitch and an -27-A pitch. We
can use the restricted pitch connection hypothesis to dis-
solve this contradiction by voiding the simple periodic

symmetry assumption for Xf and its concommitant 15-A
DNA pitch.

To see how integer n/s values proceed from Eq. 2, we
apply it to the case of helical protein symmetry:

mN + kM
K

(4)

The sign of mN+kN indicates whether the DNA and the
protein tube helices have the same (+) or opposite (-)
handedness. If m = 0, the solution has simple periodic
symmetry. Solutions with n/s = 2.0/K can be found by
setting j = k = N and m + M = ±1. Every value ofN thus
possesses these two solutions with n/s = 2.0/K, so these
values of n/s can be thought of as being generic. The two
solutions with n/s = 2.0 and K = 1 are plainly related to
solutions with n/s = 2.0/K for K 7 1.

To apply Eq. 4 to Xf and Pf1, we need values ofM and
N. In our theoretical study of protein packing in filamen-
tous phages, we have found two Pf 1 (and Xf) models that
agree with the experimental fiber diffraction patterns, and
these have (M,N) = (2,1 1) and (M,N) = (1,6). From the
pitch connection Eq. 1, together with n/s = 2.0, Azp = 2.77
A for Xf, and several K values, we have calculated PDNA for
these models. The value of P needed for Eq. 1 is fixed by
the lattice parameters of Xf (Table I) and the value of N.
The Pf 1 and Xf rotation angles AOP have absolute magni-
tudes of (5/27)2wx. For Pf 1 the sign of AOP is thought to be
negative (Makowski et al., 1980), and because of the
similarity of the Pf I and Xf diffraction patterns we assume
this is the case for Xf as well. Taking N = 11, we find for
the pitch of the alpha helices in the protein layer surround-
ing the DNA, P =27r[(I lAzp)/(llAOp + 4wr)] = -825 A.
Setting K = 1, we find for the (M,N) = (2,11) models
PDNA = 31.6 A, with j = k = 11 and m = -3. The (1,6)
model requires P = -150 A, and the positive DNA pitches
given by the pitch connection equation are, for K = 1,
PDNA = 18.7 A, and, for K = 1/2, PDNA = 42.8 A. Because
these are the only positive DNA pitches, the six-tube
solution is rejected by the pitch connection equation,
whereas the 11-tube solution allows a DNA pitch close to
the 27-A pitch observed for fd. For this reason and because
of its similarity to the fd model, about which there is little
or no ambiguity, we favor the N = 11 solution for Xf and
Pf1. Another line of reasoning discredits theN = 6 models.
These solutions have protein tubes with a relatively small
pitch, 150 A in absolute value, and correspondingly large
curvature, so they may be energetically unfavorable, since
a-helices are fairly rigid. The standard x-ray fiber-diffrac-
tion pattern analysis of Makowski et al. (1980) also
indicates for Pf 1 a (2,11) type structure, although they do
not use this notation. Fig. 3b shows the protein and DNA
surface lattices, restrictively pitch connected for the Xf
model with N = 11, n/s = 2.0, K = 1, m = -3, andj = k =
11.

For Pf 1 we expect the same large-scale protein configu-
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ration as in Xf but exactly one-half of the nucleotides, since
it has n/s = 1.0 and AZDNA = 5.5 A. To arrange this we can
adapt an Xf DNA-protein lattice by simply removing
every other nucleotide. The resulting lattice is shown in
Fig. 4. The "alternate interaction" character of this DNA-
protein interface, wherein every other groove between
tubes is skipped, is handled algebraically by setting K = 2.
The alternate interaction mode is not an arbitrary device.
Because there are two strands of DNA, even the simplest
possible Pf 1 DNA-protein interface, with a simple periodic
interaction, would necessarily have successive nucleotides
of one strand associated with every other subunit along the
basic protein lattice. Although the DNA lattice of Fig. 4
formally has 22 different protein environments for its
nucleotides, from the standpoint of the proximity required
for site-site interactions, there are only 11, just as for Xf.
We have shown elsewhere (Day et al., 1979) that the

large AZDNA of Pf 1 mandates an inverted DNA configura-
tion (I-DNA) in which the bases are directed outward,
away from the structure axis, and the phosphates are
located near the structure axis. This result holds for Pfl
DNA models with 15-A or -30-A pitches. However, a
stereochemical feasibility computation with the linked-
atom least-squares computer code demonstrates the intui-
tively acceptable fact that the 30-A pitch model is less
tightly wound than the 15-A pitch model. The 30-A pitch
models have much smaller electron density on the helix
axis, and most atoms are at larger radii, allowing a more
relaxed structure. Because the sugar-phosphate backbone
of an I-DNA structure is more isolated from the protein
than that of a classical DNA structure, it could escape
structural perturbations induced by a varying protein
environment and have constant dihedral angles. This
appears to be the case in the NMR spectra observed for
Pf 1.

The Pf3 x-ray diffraction pattern has not yet been
thoroughly analyzed. It is known that its protein coat has
helical symmetry and the same lattice parameters Azp and
AOP as Pfl and Xf (Peterson et al., 1982). The n/s ratio of
Pf3 is 2.38 ± 0.14 (Table I), so we now apply Eq.4, seeking
j and k values that give n/s within the above limits. In the
range k = 1 to k = 16 we find several possible solutions,
with N = 5 to 14. Of these, the most plausible has N = 1 1,
for the same reasons as apply to Xf: it allows rigid a-helices
and good comparison with fd. This solution has K = 2,M =
2, j = 6 and k = 5, yielding n/s = 2.40 and, from Eq. 1,
PDNA = 12.9 A. It is shown in Fig. 5. This low PDNA value
requires an I-DNA structure for Pf3, but because of its
small AzDNA value, the Pf3 I-DNA need not be as tightly
wound as a Pf 1 DNA model with 15-A pitch.

Alternatively, if the range of Pf3 n/s values were
unknown, setting N = 11 would severely constrain the
spectrum of n/s values. These may be calculated from Eq.
4 by inserting all possible values of k, m, and K using N =
11 and M = 2. The K = 1/2 choice produces small AODNA
values of - 180 and, consequently, crowded nucleotides, so

TABLE 11
POSSIBLE RESTRICTIVELY CONNECTED

LATTICES WITH
ELEVEN TUBES FOR Pf3

K + 1 1 ±2 ±2 ±2
m -1 -2 -2 -2 -2
j 3 8 6 5 4
k 4 7 5 6 7
n/s 1.5 2.28 2.40 1.67 1.14
PDNA 42.9 A 27.6 A 12.9 A 18.8 A 27.6 A

-38.8 A -25.9 A - 12.5 A - 17.9 A -25.9 A

Solutions to Eq. 4 with (M,N) = (2,1 1),j < 9, and K = ± 1 and ± 2, which
yield 0.5 < n/s < 3.0. PDNA is calculated from Eq. 1, with AZDNA = kAzp/j
and P= -825 A.

the K = 1/2 solutions can be discarded. All remaining
solutions with 0.5 < n/s < 3.0 are listed in Table II. The
m = 0 solution, forj = k = any integer, is a simple periodic
symmetry solution, as remarked above. Table II contains
only one entry with j and k values smaller than those we
propose for Pf3, and its n/s value is quite removed from
2.40. In this way, the 1 1-tube structural constraint might
explain why the value 2.40 appears for Pf3, instead of
neighboring numbers.

For each of Xf, Pfl, and Pf3, (M,N) = (1,6) and (M,N)
= (2,11) models are feasible on the basis of subunit
packing constraints, diffraction pattern analyses and
agreement of experimental n/s values with those allowed
by the restricted pitch connection. However, in each case
the (M,N) = (2,1 1) models are arguably favorable.

Comparison of Figs. 3 b, 4, and 5 reveals strong similar-
ities in the possible DNA-protein interactions they repre-
sent. The choice N = 11 is built into the three protein
configurations, but it is a striking fact that for each of Xf,
Pf1, and Pf3, 11-tube models are possible that satisfy Eq. 4
for successful n/s values. It is also noteworthy that the Pf1
and Pf3 models both require an I-DNA configuration and
an alternate interaction (K = 2) between DNA and
protein, perhaps suggesting a link between these features.
If the Pf3 and fd models are correct, it may be of
considerable significance that both have n/s = 2.40 exact-
ly. For these reasons and their common mass-per-length
values (Table I), the fd, Xf, Pf1, and Pf3 structures can
plausibly be considered as variations on one successful
theme, and this view might carry implications for the study
of their evolutionary history.

CONCLUSION

The pitch connection and restricted pitch connection pre-
sented above were developed to resolve the theoretical
problems posed by the nonintegral n/s values of fd and Pf3.
In addition they resolved the contradictions implied by the
silver binding study of Xf and suggested a quantitative
theoretical basis for the fd DNA reflections observed in
x-ray diffraction patterns. The DNA pitches of Xf and Pf1
are predicted, with an alternative for Pf1 to the tightly
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wound 15-A pitch DNA demanded by the straightforward
simple periodic interaction hypothesis. Finally, the restric-
tive pitch connection hypothesis predicts that a mutation
that changes the n/s value of a virus must change it by a
discrete jump, with a wholesale change in the symmetry
and stability of the DNA-protein interface.

As a means of rectifying evidently disparate symme-
tries, the pitch connection and restricted pitch connection
may describe the relations between coaxial helices in other
biological structures.

APPENDIX

The pitch connection and the restricted pitch connection will be derived
here more formally by considering the mutual interactions of protein and
DNA lattices. To represent the lattices we need some notation. With
primitive lattice vectors i and b as shown in Fig. 2 a, we define reciprocal
space vectors A and B by

A *a=B * b=0

and

A * b = B * a = 2wr .

Conditions Al lead to

- 2w 2-
a2b2 -( 2 [-(a * ba + a)b]

and

2(r ___ 2i.B = a2b2 _ (i. b)2 [-(a * b) + b

For a lattice wrapped around a cylinder, the vectors i and b are related by
the periodicity condition

b = eX[Lax- 2rR sgn(ax)] + i. (La. )

Here L is the integer part of [(2wiR/ax) + Ia /aj, and Z, and i. al
vectors in the azimuthal and structure axis directions, respectively.
a physically realizable functionfof position s = xex + zez on the
may be written as a Fourier series

f(g) = CpC/"q

with kpM = pA + qB and

Cpq = 2 RH
2w

dxf dz e IiiwIf(g),

where H is the length of the virion. Eqs. A4 and A5 ensure periodi
the representation of the lattice

f (g1m + Z) =f (£),
where ilm = la + mb. Eqs. Al and A3 lead to

(kp)x (Lq-p) sgn (ax),

which ensures periodicity around the cylinder

f (S + 2wRix) =f (g).

(A3)

To derive the pitch connection we shall write the interaction between a
helix of nucleotides having pitch PDNA and N continuous helices of protein
having pitch P, coaxial with the DNA. We represent the DNA by a
function FD(I), as in Eq. A4, with Fourier coefficients C... This quantity
is meant to denote some property defined on the DNA surface lattice
through which the DNA interacts with the protein. We define FD in order
to write the area density of the interaction as the product of FD(i) with a
similar quantity F'(s), defined for the protein. For example, we might
take FD and Fp to be the DNA charge density and the protein
electrostatic potential, respectively.

The protein surface function is written

F (s) = _Z jeiN[(.IR)-(2rzlP)]
j_ -co

(A7)

This form ensures that the representation of the protein has N-fold helical
symmetry by meeting the conditions

FP(n + 2 Fdx)

and
(Ala)

Fp | + (p ex + ez z |= F (s).

(Al b)
The DNA Fourier coefficients Cpq have two indices, whereas the protein
tube Fourier coefficients Dj have only one. This is due to the fact that the
value of FD(s) depends on the position of s with respect to a net of lattice
points (representing the nucleotides), while the value of Fp(s) depends on

(A2a) the position ofi with respect to a set of lines (representing the protein tube
axes). The protein lattice-DNA lattice interaction is written as

(A2b)
I = I dx Hdz FP(g)FD(i). (A8)

Substituting Eqs. A4 [with FD =fli)] and A7 into Eq. A8 and integrating
reveals that the term CpDj makes a nonvanishing contribution to I only
if

jN
R+ (kpq = 0 (A9a)

and

-p2jN + (k1c)z = 0.
P

(A4) From Eqs. A2, A3, and the definition of kpq we find

(kpq)z = 27rq + (p-qL)I aI'pZ a2 Ra2

(A9b)

. (A10)

Substituting Eq. AIO into A9b and Eq. A6 into A9a and solving for (Lq
- p) yields

ax q/] a,+ N P
2wR N P

Because a, = AZDNA and PDNA = (2wrRa,)/a2, we have

AZDNA K AZDNA

PDNA N P

(All)

(A 1 2)

where K = q/j. This is the pitch connection equation; it results from a
spatial resonance between one term in the Fourier expansion of the DNA
surface function FD and one term in the Fourier expansion of the protein
tube surface function Fp.
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The restricted pitch connection can be derived similarly. For this
purpose both the DNA and the protein surface lattice functions are
represented by Eq. A4, with Fourier coefficients Cpq and Elm, respectively.
Here the protein is treated as a lattice of points, each of which represents a
site on a subunit that we suppose interacts strongly with some correspond-
ing point on a nucleotide. Although the DNA must be helical, the lattice
of protein points may have either helical or rotational symmetry. We
write the interaction integral I as in Eq. A8 and note that the term Cpq Elm
contributes only if

k[ = -kPm k ,- (A13)

Eq. Al 3 states that the set of DNA reciprocal space vectors D and the
set of protein reciprocal space vectors ip have an element in common. It
is straightforward to show that ki, = k-.-m implies Vpq = s,; i.e., the
protein and DNA surface lattices share a common lattice vector. This is
equivalent to the assertion that lattice points Djp.jq and gjp,-jm are in strong
interaction position, for all integers j. When this condition and the pitch
connection equation hold simultaneously, we say the restricted pitch
connection holds.

Eqs. A9 have the trivial solution p = q = j = 0; likewise, Eq. A13 has a
solution p = q = 1 = m = 0. If these are the only solutions to Eqs. A9 and
A 13, then the DNA and protein interact in a completely irregular
manner, relating to each other only through their mean properties, with
surviving interaction terms CooDo and CooEoo, respectively. These terms
are also present, of course, in a (restricted) pitch-connected structure, so
the mean interaction is not lost when the interaction mediated by the
(restricted) pitch connection is gained.
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