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ABSTRACT The effect of receptor clustering on the diffusion-limited forward rate constant (k+) is studied theoretically
by modeling cell surface receptors by hemispheres distributed on a plane. We give both exact results and bounds. The
exact results are obtained using an electrostatic analogue and applying the method of the images. Accurate upper
bounds on k+ are found from a variational principle.

INTRODUCTION

Distributed on the surface of cells are a variety of receptors
that mediate the uptake of specific biological molecules
from the cell's environment. Diffusion-limited forward rate
constants have been calculated for the case where the
receptors are uniformly distributed over the cell surface
(1-3). However, in many situations binding sites are
preclustered on the plasma membrane.

Clustering of binding sites may occur because the
receptor molecule, although uniformly distributed over the
membrane is itself multivalent, or because receptors are
clustered in the plane of the membrane. For example,
although anitbodies appear not to be clustered in the
absence of ligand on the surface of lymphocytes, mast cells,
and basophils, each antibody has two identical binding
sites and, hence, the binding sites are clustered in pairs (4).
The insulin receptor, with its symmetric structure of two
heavy and two light chains, is most likely also multivalent
(5). An important example of preclustered receptors are
the low-density lipoprotein (LDL) receptors on fibroblasts
(6, 7). These receptors are clustered in structures known as
coated pits, with an average coated pit containing -20
LDL receptors (8). These receptors also appear to be
clustered in smaller groups (5 or less) outside of coated pits
(R. G. W. Anderson, personal communication). To com-
plicate matters, multivalent receptors can also be preclus-
tered. For example, the insulin receptor on some cell types
is aggregated (9).

In this paper we first consider the general relation
between diffusion-limited forward rate constants and the
problem of calculating the capacitance in electrostatics.
We then look at the simplest example of clustering on the
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cell surface: two binding sites in proximity. We model the
binding sites as hemispheres and then calculate exactly the
diffusion-limited forward rate constant. This result is used
to discuss binding to the cell surface when such receptor
pairs are uniformly distributed over the cell surface.

GENERAL CONSIDERATIONS

We model the cell membrane as an infinite plane and
consider binding sites of arbitrary shape anchored to this
plane (see Fig. 1). To calculate the diffusion-limited
forward rate constant, one has to solve the steady-state
diffusion equation

(1)v2c = 0

for c, the ligand concentration, under the following boun-
dary conditions:

(2a)
c = c(oo)

at large distances from the binding sites;

(2b)c =0

at the surfaces of the binding sites; and

(2c)-= 0
ln

everywhere on the plane outside the binding sites. Here
Oc/on denotes the normal derivative of the concentration.
To demonstrate the connection with electrostatics we

follow Berg and Purcell (1) and set

c = c(o)(l - 4/40). (3)
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FIGURE I Basic geometry of cell membrane and binding site. The
shaded area shows a receptor of arbitrary shape; its mirror image in the
plane of the membrane is indicated by a dashed line.

Substituion of Eq. 3 into Eqs. 1 and 2 shows that 0 has the
following properties;

v2o = o (4)

0C
[Fn

and their mirror images. Using Poisson's equation in the
meter-kilogram-second (mks) systems'

V20o= _ p/fo, (10)

where p is the charge density and Ec is the dielectric
constant of the vacuum, Eq. 9 becomes

=Dc(oo)QJ=00 (1 1)

where Q equals the total charge enclosed by the binding
sites and their mirror images when they are treated as
conducting surfaces held at a constant potential 00. In
terms of the capacitance C,

subject to the bondary conditions,

4=0

far from the boundaries;

4 = 'o

on the binding sites, and

al=0
an

Dc(oo)
J= ~~ C.

2,Eo
(12)

Thus, for receptors of any geometry where the capacitance
is known, Eq. 12 can be used to calculate the diffusive flux.

S5b) The diffusion-limited forward rate constant k+ is then
obtained from the expression (see, for example, reference
11)

k+ = J/C(o).
(Sc)

everywhere on the plane outside the binding sites. This last
boundary condition is automatically satisfied provided 4 is
defined on both sides of the membrane and the binding site
below the membrane is defined as the mirror image of the
binding site above the membrane (see Fig. 1). Eqs. 4 and 5
show that 0 is the electrostatic potential outside a system of
conductors with the same shape as the binding sites, with 4
- 00 on their surface.

The inward diffusive flux, J, into the binding sites is
given by the surface integral over the binding site

J = Df vc * ndS (6)

where D is the diffusion coefficient of the ligand, n the
outward pointing unit vector and dS the surface element.
Because of the symmetry of the problem with respect to the
plane of the membrane, we can as well write

J = (D/2) f vc ndS (7)

where the prime indicates that the surface integral extends
over the binding site and its mirror image. Using Eq. 3 we
can cast this in a form familiar from electrostatics

Dc(oo) -
J= - 2( f) v4 ndS

J - Dc(oo) f V24. dV
24,,

where we have used Gauss' theorem, and the volume
integral is extended over the interiors of the binding sites

(13)

If the explicit calculation of the capacitance is not
feasible, a variational principle could be of practical use.
To derive such a principle, we note that the energy Uof the
system of conductors under consideration can be written in
the forms (see, for example reference 12)

U +2,cool(14a)

and

U=O (v) 2dV. (14b)
2

Hence, by combination, one has the expression

(0'o d V.(15)

Now consider the problem to calculate the minimum of
the integral

L- 2f((V2dV
0

(16)

over those functions V/ that tend to 00 at the surface of the
(8) conductors and to 0 at infinity. As the Euler-Lagrange

equation for this variation problem is

(9)
v24, == O, (17)

We use the miks system of units since that is the system of units used in
reference 10, the most comprehensive collection of results in electrosta-
tics.
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one sees that the solution is exactly the electrostatic
potential X, and that L [41 = C, because of Eq. 16. In
summary, we have found

images. In the context of diffusion, Samson and Deutch
(14) used this solution to obtain the diffusion-limited
forward rate constant for two identical spheres in solution.
In our notation, the total flux into both hemispheres is

c= nnif' (v+)2dV* 2'o
(18)

which is the well-known variational principle for the
capacitance (see, Chapter 19 of reference 12).

A useful corollary of this variational principle for the
capacitance is found if one compares the capacitances
C(B') and C(B") of two conductors B' and B", which have
the property that B' can be located entirely inside B". In
this case, the class of functions t,t that tend to b0 on B'
includes the class of functions i1 that tend to 00 on B".
Hence, one finds

(19)
A second useful inequality that follows from the van
tional principal states that if A' and A" are two nonoverla
ping conductors, and if A' + A" denotes the conductor th
consists of the two pieces A' and A", then

C(A' + A") _ C(A') + C(A"). (2

A nonvariational proof is given in reference 13. The
inequalities can be used to derive upper and lower boun
for the flux into a receptor of arbitrary shape.

AN EXACT RESULT FOR A CLUSTER OF
TWO BINDING SITES

In this section, we will consider the geometry displayed
Fig. 2 consisting of two identical hemispheres of radius
with centers separated by a distance b, where b _ 2a. Tk
problem was solved by Smythe (10) using the method

ia-
'p
iat

O)

se
ds

J = 4wDc(oo)a sinh (3 E (- 1)X+lcsch ni4
n- I

b
csch 3 =

(21a)

(21b)

In the limit b -- o, in which the two hemispheres
become independent, the flux approaches 4irDc(oo)a,
which is twice the flux into a single hemisphere. In the
opposite limit, in which the spheres are made to touch, b =
2a and the flux approaches the value

- (_ I)n+I
J = 4wrDc(o)a ,_- = 4rDc(oo)a In 2. (22)

n n

Because J is an increasing function of the distance b
between hemispheres, the result shows that clustering of
two receptors in the cell membrane will decrease their
diffusion limited forward rate constant. In terms of the
diffusion-limited forward rate constants for the cluster,
k2,, and the isolated single receptor, k, +, Eq. 22 shows that

2k,+ _ k2+ - 2kl+1n2. (23)

In the next section we shall show that the clustering of
receptors of any shape and number will always decrease
the diffusion-limited forward rate constant.

in
a

lis PROOF THAT RECEPTOR CLUSTERING
of ALWAYS DECREASES THE

DIFFUSION-LIMITED REACTION RATE

To prove that the clustering of receptors of any kind will
decrease the flux, we start from the variational principle of
the section on General Consideration. Consider an arbi-
trary complex A consisting of an arbitrary number of
receptors of any size. Divide this complex into two nonover-
lapping subcomplexes A' and A", and let 4A'. and 4A'
denote the potential of subcomplex A' and A", respectively.
If b denotes the distance between A' and A", measured in
some convenient way, then we know that the potential 4PA
of complex A is a function 4A(b) of this distance. Now, in

x the limit of infinite separation, the capacities of A, A', A"
are related by

CA() = CA' + CA"-

For a finite value of b we form the trial function

Tb(r) = OA'(r) if 1A'(r) > OA(r),
= OA-(r) if +."(r) > OA'(r).

FIGURE 2 Geometry consisting of two identical hemispheres, and their
mirror images; discussed in text.

This trail function goes to zero as r goes to infinity and
satisfies the condition Vlb(r) = 40 on the boundary. Accord-
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(25)

C(B') '< C(B").
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ing to the variational principle, we now have

CA(b) ' 2 f (Vb)2 dV. (26)
o

Denoting by R' the region of space where A(r) > A (r),
and by R" the region of space where OA(r) > OA'(r) one
has

2f' (VI,)2dV=o240

2J V4A')2dV + 2 I (VAn)2dV (27a)

o2
R' f0Rn A

f(vOA1)'dV + °2 (V4A)dV, (27b)

where the first (second) integral on the right-hand side of
Eq. 27b extends over all space outside subcomplex A'
(subcomplex A"). Because of Identity 16 the right-hand
side equals CA, + CA.. Combination of Eqs. 26 and 27
gives

CA(b) ' CA, + CA". (28)

From the nature of this proof, it also follows that the
equality sign only holds in the limit b - oc.

UPPER BOUNDS FOR DIFFUSION-LIMITED
RATE CONSTANTS

The procedure of the previous section suggests a way to
construct an upper bound for the diffusion-limited forward
rate constant of an arbitrarily complex of receptors. We
demonstrate this method using the model of the section An
Exact Result for a Cluster of Two Binding Sites, which
consists of two hemispherical binding sites. The advantage
of this example is that the exact result is known also.

The basic geometry is indicated in Fig. 2. We shall first
consider the case b > 2a, in which the spheres do not
intersect. In this case the trial function equals

a4oo4'=-+°, (x < 0) (29a)

a
= +o (x> °) (29b)

r2

where ri denotes the distance to the center of sphere i.
Substituting into Eq. 18 and using spherical coordinates 01,
r, as shown in Fig. 2, we find

C < 47roa (1 + a f / sin0l d1 f. /
I

r1 2 dri)* (30)

Using Eq. 12 and evaluating the integral, we find for the
diffusive flux

J _ 4rDac(o) [ - (a/2b)].

2a, the exact flux is 2k1 +c(oo)ln2 and the upper bound, Eq.
31, gives a flux 2k,+c(oo)3/4. This bound is too high by
only 8%.

Next we consider the case 0 _ b _ 2a, which
corresponds to two identical interpenetrating spheres. It is
straightforward to verify that Eq. 31 should be replaced by
the inequality

J < 2irDac(oo) [1 + (b/4a)]. (32)

For this case we are aware of the exact result only when
b = a 212, which is given on p. 135 of reference 10,

J 2rDac(oo)(2 V-2J. (33)

The upper bound 2irDac(oo) [1 + (1/4) V2] given by Eq. 32
is too high by <5%.

The method we have used to obtain bounds for the
two-hemisphere problem can be extended to obtain bounds
on the diffusive flux into any configuration of hemispheres
distributed on a plane. For example, it is straightforward to
show, using simple trial functions similar to those of Eq.
29, that for a string of n touching hemispheres of equal
radius, the centers of which are on a straight line, the
diffusion-limited forward rate constant obeys the inequal-
ity

k+_<rDan [1 + (1/n)], (34)

where for n = 1 the expression is exact.

BINDING TO A CELL

To complete the picture of ligands binding to receptors on
cells, we now briefly discuss the calculation of the diffu-
sion-limited forward rate constant for an entire cell. For an
arbitrary cluster of receptors, modeled as hemispheres, our
method leads to an approximate expression for the diffu-
sion-limited ligand flux

J, = aDac(oo), (35)

where the numerical constant a depends on the geometry
of the cluster, and a is the radius of a hemisphere. For
example, a = 2ir for a single hemisphere, a = 4irln2 for two
touching hemispheres and a _ 7rn [1 + (1/n)] for n
touching hemispheres in a line.
Now consider a spherical cell of radius R, on the surface

of which N of these receptor clusters are uniformly distrib-
uted. For the simplest case in which there is no nonspecific
interaction between the cell and the ligands, the total
diffusion-limited ligand flux into the cell (see reference 1)
is given by

JN= 47rRDc(o) taaN4irR + aaN(31) (36)

Comparing Eq. 31 with the exact formula (Eq. 21) we see
that this bound is exact for b -- oc. In the liimiting case b =

This expression can be generalized to include nonspecific
cell-ligand interactions, as well as nonspherical cell geome-
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tries and nonuniform distribution of receptor clusters
(2,3).

Receptor clustering decreases the forward rate constant
because more than one binding site competes for the same
ligand. Placing receptors on a cell clusters them, even if
they are uniformly distributed over the cell surface. This is
reflected in Eq. 36 by the dependence of the flux on N
(1, 15). If the receptors are not uniformly distributed there
is additional clustering and the flux is further reduced.

CONCLUDING REMARKS

The variational principle that formed the basis of the
calculations in this paper can be used to analyze any
receptor cluster than can be represented by a collection of
hemispheres. Additional results for a variety of such
clusters will be discussed in a future paper (Weigel and
Goldstein, in preparation). The method can also easily be
extended to treat diffusion into three-dimensional clusters
of spherical receptors.

In this paper we used only the simplest type of trial
function for the variational principle, yet the results were
remarkably accurate in those cases where comparison with
the exact results was possible. The method of images
suggests a systematic way to improve the trial function.

In a more biological context the main conclusion of our
work is that receptor clustering decreases the diffusion-
limited forward rate constant. In the case of two touching
hemispheres, this constant is reduced by a factor of -0.69.
As the clusters become larger the reduction becomes more
pronounced. Because large clusters of receptors do occur
on cell surfaces, for example, LDL receptors in coated pits
(6), this may be a significant effect.

The work reported in this paper was begun during a workshop on Physical
Aspects of Cellular Recognition and Response, which was held at the
Aspen Center for Physics, June 29-July 17, 1981. This work was
performed in part under the auspices of the Department of Energy and
supported by grant AI 16465 from the National Institute of Allergy and
Infectious Diseases.
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