Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Aug;48(2):253–267. doi: 10.1016/S0006-3495(85)83779-6

Electrical properties of the myotendon region of frog twitch muscle fibers measured in the frequency domain.

R L Milton, R T Mathias, R S Eisenberg
PMCID: PMC1329317  PMID: 3876852

Abstract

The electrical properties of the end of a muscle fiber were determined using three microelectrodes, one passing sinusoidal current, the other two recording the resulting voltages. An electrical model was constructed from the morphology of the fiber, including the resistance of the extracellular space between cells; the parameters of this model were determined by fitting the model to the observed voltage responses. Our results, analyzed directly or by curve fits, show that the end of muscle fibers contains a large capacitance resulting from the extensive membrane folds at the myotendon junction. Analysis and simulations show that the extra capacitance at the myotendon junction has substantial effects on measurements of linear properties, in particular on estimates of the capacitance of the membranes. There is little qualitative effect on classical measurements of nonlinear charge movement (provided they were made with one set of electrode locations) if the linear components have been subtracted. Quantitative estimates of nonlinear charge movement and ionic currents are significantly affected, however, because these estimates are customarily normalized with respect to the linear capacitance.

Full text

PDF
256

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H., FREYGANG W. H. Potassium conductance of frog muscle membrane under controlled voltage. J Physiol. 1962 Aug;163:104–114. doi: 10.1113/jphysiol.1962.sp006960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Almers W. The voltage dependence of membrane capacity. J Physiol. 1976 Jan;254(2):317–338. doi: 10.1113/jphysiol.1976.sp011234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Almers W. Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol. 1978;82:96–190. doi: 10.1007/BFb0030498. [DOI] [PubMed] [Google Scholar]
  5. Chandler W. K., Schneider M. F. Time-course of potential spread along a skeletal muscle fiber under voltage clamp. J Gen Physiol. 1976 Feb;67(2):165–184. doi: 10.1085/jgp.67.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenberg B. R., Milton R. L. Muscle fiber termination at the tendon in the frog's sartorius: a stereological study. Am J Anat. 1984 Nov;171(3):273–284. doi: 10.1002/aja.1001710304. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg R. S., Gage P. W. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J Gen Physiol. 1969 Mar;53(3):279–297. doi: 10.1085/jgp.53.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hodgkin A. L., Nakajima S. The effect of diameter on the electrical constants of frog skeletal muscle fibres. J Physiol. 1972 Feb;221(1):105–120. doi: 10.1113/jphysiol.1972.sp009742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horowicz P., Schneider M. F. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. J Physiol. 1981 May;314:565–593. doi: 10.1113/jphysiol.1981.sp013725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kootsey J. M., Johnson E. A. Voltage clamp of cardiac muscle. A theoretical analysis of early currents in the single sucrose gap. Biophys J. 1972 Nov;12(11):1496–1508. doi: 10.1016/S0006-3495(72)86177-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kootsey J. M. Voltage clamp simulation. Fed Proc. 1975 Apr;34(5):1343–1349. [PubMed] [Google Scholar]
  12. Levis R. A., Mathias R. T., Eisenberg R. S. Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts. Biophys J. 1983 Nov;44(2):225–248. doi: 10.1016/S0006-3495(83)84295-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mathias R. T., Eisenberg R. S., Valdiosera R. Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system. Biophys J. 1977 Jan;17(1):57–93. doi: 10.1016/S0006-3495(77)85627-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mathias R. T., Levis R. A., Eisenberg R. S. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle. J Gen Physiol. 1980 Jul;76(1):1–31. doi: 10.1085/jgp.76.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mobley B. A., Leung J., Eisenberg R. S. Longitudinal impedance of single frog muscle fibers. J Gen Physiol. 1975 Jan;65(1):97–113. doi: 10.1085/jgp.65.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mobley B. A., Leung J., Eisenberg R. S. Longitudinal impedance of skinned frog muscle fibers. J Gen Physiol. 1974 May;63(5):625–637. doi: 10.1085/jgp.63.5.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schneider M. F., Chandler W. K. Effects of membrane potential on the capacitance of skeletal muscle fibers. J Gen Physiol. 1976 Feb;67(2):125–163. doi: 10.1085/jgp.67.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  19. Schneider M. F. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers. J Gen Physiol. 1970 Nov;56(5):640–671. doi: 10.1085/jgp.56.5.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schneider M. F. Membrane charge movement and depolarization-contraction coupling. Annu Rev Physiol. 1981;43:507–517. doi: 10.1146/annurev.ph.43.030181.002451. [DOI] [PubMed] [Google Scholar]
  21. Valdiosera R., Clausen C., Eisenberg R. S. Circuit models of the passive electrical properties of frog skeletal muscle fibers. J Gen Physiol. 1974 Apr;63(4):432–459. doi: 10.1085/jgp.63.4.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Valdiosera R., Clausen C., Eisenberg R. S. Impedance of frog skeletal muscle fibers in various solutions. J Gen Physiol. 1974 Apr;63(4):460–491. doi: 10.1085/jgp.63.4.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Valdiosera R., Clausen C., Eisenberg R. S. Measurement of the impedance of frog skeletal muscle fibers. Biophys J. 1974 Apr;14(4):295–315. doi: 10.1016/S0006-3495(74)85917-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES