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ABSTRACT This paper gives a detailed analysis of experiments on the kinetics of aggregation of lipid vesicles containing
neural cell adhesion molecules (N-CAM). An explanation for the dependence of the “initial aggregation rate,” kg, on
the square of the vesicle concentration is given, accounting both for Brownian motion of the vesicles and shear effects. A
model in which trimers of N-CAM are one-half of the molecular unit bridging two vesicles explains the observed
dependence of kg on up to the sixth power of the lateral N-CAM concentration and corroborates electron micrographic

evidence for N-CAM “triskelions.”
INTRODUCTION

Hoffman and Edelman (1983) have reported experiments
on the aggregation of vesicles containing neural cell adhe-
sion molecules (N-CAM). In this system, adhesion of two
vesicles is believed to take place by the binding of the
N-CAM molecules on one vesicle to those on the second
vesicle. Inasmuch as adhesion between cells is also
mediated by N-CAM and similar molecules (Edelman,
1983), the study of such vesicle aggregation may help to
delineate parameters of importance in cell adhesion.

In the experiments (Hoffman and Edelman, 1983), the
appearance of aggregates having volumes exceeding a
threshold was measured as a function of vesicle concentra-
tion, number, and type of N-CAM molecules per vesicle, as
well as other parameters. Two salient findings were that
the rate of appearance of superthreshold aggregate volume
could be expressed as a constant, k,g,, times the square of
the initial vesicle concentration, and that kg is propor-
tional to the third to the sixth power of the number of
N-CAM molecules per vesicle. One purpose of the follow-
ing analysis is to clarify the conditions under which this
behavior is to be expected and to estimate an upper limit to
Kogg:

s§uperthreshold aggregates contain many monomers.
For example, in some of the experiments, vesicles were
prepared by passage through a 0.4-um filter, and aggre-
gates were detected when their volume exceeded 1.5 um’
(diameter, 1.42 um). If we assume that the initial vesicle
diameters are no larger than 0.4 um, then a superthreshold
aggregate contains at least (1.42/0.4)* = 45 vesicles. (In
unreported experiments, S. Hoffman has shown that the
initial vesicles in such a preparation indeed have mostly
diameters somewhat less than 0.4 um.) Analysis of such

experiment, both Brownian and shear-induced collisions
are significant.

In this paper, we first consider the kinetics of aggrega-
tion and show that the observed dependence on initial
vesicle concentration is to be expected for any process
where the state of an aggregate can be changed only by
binary collisions. Estimates for an upper limit to kg, for
both Brownian and shear-induced collisions are obtained
assuming that two colliding aggregates stick irreversibly
with 100% probability. (Numerical results have been
obtained for various combinations of Brownian and shear
collisions [Spouge, J., and G. I. Bell, manuscript submitted
for publication]). Estimates are also made of the sticking
probability and of the dependence on the number of
N-CAM molecules per vesicle. In addition, it is noted that
the accumulation of adhesion molecules in regions of
vesicle—vesicle contact will tend to render aggregates less
sticky, and the extent of this effect is estimated. Model
predictions are compared, where possible, with experimen-
tal results.

KINETICS OF AGGREGATION: THEORY

Consider the formation of aggregates containing k vesicles (k-mers) by
the collision and sticking of smaller aggregates or by shear-induced (or
spontaneous) breakup of larger aggregates. Let n,(7) be the concentration
of k-mers, c,; the collision rate for i-mers colliding with j-mers at unit
concentration of each, p, , the sticking probability for such a collision, and
Si—ix-i the rate at which a k-mer breaks into an i-mer and a k—i-mer.
Then the following system of kinetic equations describes the aggrega-
tion:

1
dt 25 Cige—iPige—i (E) m_i(2)
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large aggregates introduces considerable uncertainty since -3 > Seinimic(2)
their shape, in particular, is rather uncertain, and therefore =
reliable estimates of their collision rates are not possible. A -
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further complication is that, under the conditions of the ; vttt (1) M
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As an initial condition, we take n,(0) = n,(0)5,,, representing a popula-
tion of only monomers. Note that Eq. 1 contains on its right-hand side
binary collision terms quadratic in n, together with linear terms not
involving collisions.

During any collisions that may lead to sticking, there must be a first
bridge formed between N-CAM molecules on two vesicles, and until a
few bridges have formed, the aggregate may be viewed as tentative and
prone to spontaneous or induced breakup. If it does dissociate at an early
stage, let us agree to take this into account in the sticking probability, p; ;,
since the aggregate will break up into the original collision partners. For
modest shear forces, we can expect that after a few bridges have formed
(see below and Bell, 1978), the aggregate will be rather stable, and we will
neglect the linear terms in Eq. 1. Further, let f;(¢) be the fraction of
vesicle mass in k-mers

kny(1)

t) = , 2
o) @
and define a rate constant for sticking,
Cix—iPik—i 3)

Fiki = .
L l(k - l)
Then Eq 1 can be rewritten as

1 dfi(r) k&
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with the initial condition f(0) = §;,.

It follows from Eq. 4 that the time for fi(¢) to reach any attainable
value will be inversely proportional to the initial concentration, 7,(0). To
see this, one may choose a new time variable, 7 = n,(0)¢, so that the
left-hand side is d f;/d7. Thus, for any definite set of rate constants, f; is a
function of  only.

Suppose that superthreshold aggregates have k = . Then the fraction
of vesicles in superthreshold aggregates,

F(x,7) = 3_fi7), ©)

k=x
will depend on time through 7, and the volume in superthreshold
aggregates per unit volume of solution,
V(K9 7) = VI”I(O)F(K’ T) ’

will have the same time dependence, where ¥, is the volume of a vesicle.
Thus, the rate of appearance of volume in superthreshold aggregates will
be

IV(x, 7)
ot

vV )
-n@ v D g

This establishes that the rate of appearance of superthreshold aggregate
volume is proportional to the square of the initial concentration, in
agreement with experiment. Note that this result holds for any aggrega-
tion process based on binary collisions as the only process for formation
(or breakup) of aggregates.

For two simple collision models representing approximately Brownian
and shear collisions with certain sticking, we have derived explicit forms
for F(x, r) and for « » 1. Details are given in the Appendix. For Brownian
collisions, we find

1
F = Fy(x, 7) = exp (-— K—-:?—Xl + ﬁ) ,

)

940

where ¢ = 4xDR, with D the vesicle diffusion constant and R its radius.
The product DR ~ 2 x 10~'* cm®/s. For collisions induced by shear, we

find
FaFgk,7) =1 — erf(Jé e“") , 8)

where 8 = 8/3 GR?, with G the shear rate, and

2 x
erf(x) = Wj; e du.

Note that both collision models predict that F(x, r) — 1 for large = and
fixed «.

For comparison with experiment, we need to compute the maximum
rate of appearance of superthreshold aggregates, and thus the maximum
value of dF/dr as 7 is varied for fixed x. From Eq. 7, we find that, for
Brownian collisions,

oF,
or

1.34¢

max K

, (&)

where the maximum is reached at + = x/3c. From Eq. 8 for shear-induced
collisions,

oFs

- 0488, 10
F 8 (10)

with the maximum reached at 7 = (fnx)/28.
Experimental results were expressed by Hoffman and Edelman (1983)
as

dv

2
ar koga®, (11)

where V is the volume of superthreshold aggregates in nanoliters per
milliliter of solution, ¢ is in minutes, and a is the initial vesicle concentra-
tion in milligrams of lipid per milliliter of solution. If in Eq. 6 we measure
n,(0) in vesicles per milliliter, ¥, in nanoliters per vesicle, and 7 in minutes
per milliliter = minutes per cubic centimeter, then ¥/dt will appear in
units of nanoliters of product per milliliter of solution per minute. For
thin-walled vesicles of radius R and thickness AR in millimeters,

a ~ 4xR*ARpn,(0) mﬁ, (12)

with p the lipid density in grams per cubic centimeter = milligrams per
cubic millimeter. The volume of a vesicle is

v, - 1034T"R’n2. (13)

Inserting these expressions in Eq. 6 and taking maximum values for the
derivatives, we have

2
v 102>  oF | a4

37 |max  122R(AR)? 97 |max

and, by comparison with Eq. 11,

10° oF

*aws = T3 (AR 37 e (1)

Upper limits to k,,, can be estimated by assuming that vesicles stick on
every collision and by using Eq. 9 or 10 as an estimate for dF/dr |.... For
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Brownian collisions, the upper limit is denoted by kg, where

5.4 x 107°

RGRY« " 1o

kI“SkB-

where we have taken p = 1 g/cm?, (DR) = 1.2 x 107" cm®/min.
For shear collisions, the corresponding upper limit to kg is denoted by
ks

R 2
Kugg < ks = 0.034(5) G, a7

where G is the shear rate in reciprocal minutes.

The combination of Brownian and shear collisions will be treated
elsewhere (Spouge and Bell, 1985); the results are briefly summarized in
the Appendix.

COMPARISON WITH EXPERIMENT

We have already seen in Eq. 6 that the predicted rate of
appearance of superthreshold aggregates is proportional to
the square of the initial concentration, in agreement with
the results of Hoffman and Edelman (1983). This predic-
tion holds for any aggregation process in which the state of
aggregation changes only through binary collisions.

In the experiments, vesicles were incubated with mild
agitation. From casual observation, we estimate the aver-
age shear rate to be ~10 s~'. The vesicle radius for which
Brownian and shear collision rates are about equal is given
by Eq. A12, and for G = 10 s™' is 0.36 um. For smaller
vesicles (or aggregates), Brownian collisions predominate,
whereas for larger ones, shear-induced collisions are more
important. The critical radius is estimated to be within the
range of important aggregate sizes, so we have considered
both Brownian and shear collisions.

The rate of appearance of superthreshold aggregates can
be compared with k and kg as given by Eqs. 16 and 17. If
the initial vesicle radius is 0.2 um = 2 x 10~* mm and the
thickness is 7 nm = 7 x 10~® mm, then « = 45, and with
G = 600/min, kg = 1.4 x 10* n?/min, ks = 1.6 x 10*
n¢/min. These values are substantially larger than
observed values of k,g, for reconstituted vesicles made of
embryo brain lipids plus purified N-CAM, for which
kg < 200. A possible explanation for this reduced rate of
aggregation is that the sticking probability per collision is
substantially less than unity. An additional explanation is
that the kernels from which kg and kg were obtained, in
their neglect of some hydrodynamic effects, overestimate
the rate of occurrence of collisions that can lead to
adhesion. If, on each collision, the partners stick with a
probability p, the effect is to lengthen all time scales in the
aggregation process by 1/p so that the observed values of
k.g may suggest p < 102, Moreover, since kg is a
sensitive function of the number of N-CAM molecules per
vesicle, it appears that p is also a sensitive function of
N-CAM surface density. Estimates of p in a later section
suggest that values of p < 1072 are to be expected.

For aggregation of “brain vesicles™ treated with neu-

raminidase, k., = 10* was observed. In this case, the
vesicle concentration was measured in milligrams of mem-
brane protein per milliliter, which is, however, probably
similar to the lipid content per milliliter. Moreover, the
vesicles were prepared by filtration through a 0.8-um filter.
If their initial radii were as large as 0.4 um, then x =~ 6 and
the estimated values of kg and kg would each be increased
by a factor of 4. In any case, it appears that sticking
probabilities are much nearer unity for “brain vesicles”
than for “reconstituted vesicles,” and that hydrodynamic
effects are not primarily responsible for the previously
noted, smaller values of k,g,.

A substantial disparity between theory and experiment
is found when we observe the amount of material
appearing in superthreshold aggregates. Theory predicts
that all of the initial vesicles should appear in super-
threshold aggregates, whereas only a small percent (of the
reconstituted vesicles) are observed to do so. (This assumes
that the vesicle lipids are single bilayers. If the vesicles, or
aggregates, are multilamellar, somewhat more mass for a
given volume will be found; however, most of the mass is
still not observed to appear in superthreshold aggregates.)
Various explanations can be considered. The most obvious
is that the aggregates are unstable, either spontaneously or
against the shear forces to which they are exposed, so that
the distribution of aggregate sizes approaches a limit in
which formation and breakup rates are in balance. To
initiate an experiment, the suspension is filtered, a process
that presumably breaks up large aggregates. If, after
aggregation has occurred, the suspension is filtered and
allowed to reaggregate, the rate is similar to the original
aggregation rate. Also, if the large aggregates are removed
by centrifugation, the small aggregates in the supernatant
will form large aggregates, the weight fraction at long time
being approximately half of its prior value (Hoffman, S.,
personal communication). This is evidence in favor of the
“reversibility” of the vesicle aggregation and also of a
limited vesicle heterogeneity.

Shear forces during incubation appear to be too small to
be effective in breaking aggregates. To see this, note that
the relative velocity of different portions of an aggregate
will be Av ~ GR < 1072 cm/s. A particular vesicle in the
aggregate may be subject to a force, f ~ 6mRAv, tending
to separate it from the rest of the aggregate, where 7 is the
viscosity (~10"2g/cm - s). For R =2 x 10~ cm, f 5 4 x
10~? dyn, which is too weak a force to materially perturb a
single bond (Bell, 1978). Larger shear rates, by at least a
factor of 100, would be needed to accelerate the sponta-
neous breakup of aggregates.

Although larger shear rates may be present in the
Coulter counter used for aggregate identification, it may
be noted that any shear-induced breakup will upset the
quadratic dependence of d¥/dt on n,(0) (Eq. 6). Hence,
the observed dependence can be taken as evidence against

~ the importance of spontaneous or shear-induced breakup.

Another explanation for the nonappearance of vesicles
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in superthreshold aggregates may be that the N-CAM
molecules become sequestered in regions of contact
between vesicles. In order to analyze this possibility, we
consider the sticking process during a collision.

A MOLECULAR MODEL OF
N-CAM-MEDIATED ADHESION KINETICS

The initial rate of appearance of superthreshold aggre-
gates, kg, is observed to be proportional both to the square
of the initial vesicle concentration and to the (lateral)
concentration of N-CAM raised to the power x, where 3 <
x < 6. The latter finding is remarkable, and a theory
explaining this dependence is the subject of this section.

Because an increase in the N-CAM concentration
increases k,g,, one can infer that in an average encounter
between vesicles (or aggregates), the adhesion probability
is low. N-CAM molecules, which have an extracellular
length of on the order of a few hundredths of a micron
(Edelman, 1984), are much smaller than the vesicles, and
encounters having a large contact area with a separation on
the order of 1072 um are a rare event. These considerations
are made quantitative in the next section.

One bond bridging two vesicles may be sufficient to
initiate essentially irreversible adhesion. In any case, the
initial rate of bond formation between randomly placed
molecular units on two vesicle surfaces must be propor-
tional to the product of the lateral concentrations of the
molecular units in each surface. This fact will be found
universally, for example, whether or not the two surfaces
are in relative motion, whether or not the reaction is
diffusion limited, and whether or not coloumb or hydrody-
namic effects dominate the kinetics. The initial rate of
N-CAM to N-CAM bonding between vesicles with the
same concentration is therefore expected to be proportional
to the square of the N-CAM concentration. Because the
probability of adhesion of two vesicles that encounter one
another is small (reaction-limited adhesion), Kk, is also
expected to be proportional to the square of the N-CAM
concentration.

The simplest explanation for the observed proportional-
ity between k,,, and N-CAM concentration raised to the
power x (3 < x < 6) is that there is an equilibrium between
N-CAM and N-CAM trimers and that the trimers are the
molecular units that then bond together to form a bridge
between two vesicles. The equilibrium concentration of
trimers could be proportional to the first through the third
power of the N-CAM concentration (as the equilibrium
constant decreases), and then the square of the trimer
concentration would give kg, proportional to the N-CAM
concentration raised to the second through the sixth power.
Additional evidence for the “trimer” hypothesis can be
gained from electron micrographs of N-CAM molecules
on solid supports clearly showing some “triskelions™ or
objects having a threefold rotation axis of symmetry
(Edelman et al., 1983). To reiterate, we adopt the model

942

that N-CAM trimers, which are in equilibrium with
N-CAM monomers, form the molecules that bridge two
vesicles, because it is the simplest model consistent with the
data. Further experiments may reveal other details and
other N-CAM polymers that are important in vesicle—
vesicle and cell—cell bridging.

The equation for the trimer concentration in a trimeriza-
tion equilibrium in which the dimer concentration is
negligible is found from the equilibrium equation and
molecular conservation.

T = KM? = K(M, — 3T)*. (18)

T is the number of trimer molecules per unit area of vesicle
membrane, M is the number of N-CAM monomers per
unit area, and M, is the initial number of N-CAM
molecules per unit area. X is the equilibrium constant. Eq.
18 is a cubic equation in 7 with one real root, which is the
equilibrium trimer concentration, T,

M. 3 1/3
Tq-f(l e (RN I

- [+ - 1]"’}), (19)
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FIGURE 1 The data in this figure are from Table II of Hoffman and
Edelman (1983). The x axis is the N-CAM concentration expressed in
micrograms of N-CAM per milligram lipid (10 = x = 30). The y axis is
the “initial rate” of appearance of superthreshold particles, k,g (0 = kg
= 180). The three sets of data with four points each are the untreated
vesicles (circles), mock treated vesicles (squares), and neuraminidase-
treated vesicles (triangles). The least-squares fit of the model, Egs. 19 and
20, is shown as a solid curve for the first data set, for which K = 7 x 10~°
and a = 45, and as a dashed curve for the second data set, for which K =
1.4 x 107% and « = 8.62. As is explained in the text, it is not possible to
obtain a reasonable fit to the third set.
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with
v = 4/(3'KM3) .

Note that for large values of KM3, T, ~ M,/3; that is, all
N-CAM molecules are found in trimers. For small values
of KM}, T, ~ KM3, and most of the N-CAM molecules
are in monomers.

The mathematical model of aggregation gives

kagg = aqu > (20)

with « a proportionality constant. Fig. 1 shows a least-
squares fit of this nonlinear model to the data relating kg,
and N-CAM concentration (M,) given in Table II of
Hoffman and Edelman (1983, p. 5764). Their Table II
presents three sets of data with four data points each; these
are shown in Fig. 1. We have obtained reasonable fits to
the first two sets of data.

The first set gives K,y as a function of N-CAM concen-
tration for untreated vesicles, for which we find an equilib-
rium constant K of 7.0 x 10~ with dimensions (ug/mg
lipid)=% and the proportionality constant a equal to 45
(ug/mg lipid)=% - cm™* - s. (The sum of residuals squared
is 0.45.) The second set gives Kk, for vesicles put in a buffer
(mock treatment) in which k,, is increased when com-
pared with the untreated vesicles. For this set of data, we
find K to be 1.4 x 107® and « to be 8.6."' (The sum of
residuals squared is 8.59.) Over the range of these two
experiments, these equilibrium constants mean that the
percent of the monomers in trimers goes from 3 to 12 and
25 to 48, respectively. The increase in the equilibrium
constant with the mock treatment suggests that some
element of the ionic environment can strongly modulate
the equilibrium between monomers and trimers. No inter-
pretation of the variation in « between these two experi-
ments can be .given without detailed knowledge of the
structures of the monomers and trimers.

There is a scaling property of Egs. 19 and 20. If only a
fraction f of the N-CAM monomers can participate in the
trimerization equilibrium, then the same fit to the data as
was found with fequal to unity will be achieved with

K =Kf

'It may be useful to convert the equilibrium constant K with dimensions
(ug/mg lipid)~2 to an equilibrium constant K with dimensions cm*, K
being the ratio of the number of N-CAM trimers per square centimeter to
the number of (monomers per square centimeter)® on the outside of a
vesicle. One N-CAM molecule has a molecular weight of ~2 x 10°
(Cunningham et al., 1983; Rutishauser, 1984), and a phospholipid
molecule has a molecular weight of ~600. We make a reasonable
assumption regarding the lipid mass density per unit area, that one such
phospholipid molecule occupies 64 A2 on one surface of the bilayer. We
further assume that the N-CAM molecules are dilute enough that they do
not significantly displace lipid molecules. Then, with 14 ug N-CAM/mg
lipid, there are ~1.4 x 10'® N-CAM molecules/cm?, which corresponds
to ~300 N-CAM molecules on a spherical vesicle of radius 4 x 10~! um.
Thus, one must multiply K by 3~ x 10~"* to get K.

and
o =af 2.

For example, if the monomers are randomly inserted, then
only half would have an “outward” orientation, and f
would equal one-half. Then the data would suggest a K and
an « four times larger than if f were unity. Regardless of f,
the same fraction of available monomer would be predicted
to be in trimers for a given value of kg, in data sets one or
two.

The third set, also shown in Fig. 1, gives kg, for vesicles
put in a buffer with neuraminidase. Because of the rapid
decrease in the slope between data points, it was not
possible to obtain a reasonable fit of the model to this set of
data. Perhaps with the sialic acid removed, other polymers
besides trimers are significant, and these polymers’ concen-
trations vary according to mass action. Although the data
are not extensive, there are clear qualitative differences in
this third case. It is to be noted that both adult "and
embryonic N-CAM molecules have a significant content
of sialic acid, and the neuraminidase treatment would
presumably remove the sialic acid entirely, perhaps mak-
ing this third experiment “unphysiological.”

STICKING PROBABILITY

An a priori estimate of the sticking probability per collision
cannot be made, since we have no knowledge of the rate of
reaction of membrane bound N-CAM molecules. How-
ever, we can write the rate of formation of bridges between
vesicles that are in contact (Bell, 1978, 1981) as

d
dlt" - 4xeD, T2, @1)

where n, is the number of bridges per unit area, T, is the
number of free N-CAM trimers per unit area on either
vesicle, D,, is the diffusion constant for N-CAM trimer
translation in the vesicle membrane, and € < 1 is a factor by
which the actual bridge formation rate falls short of its
diffusion limit and by which the initial rate falls with time
(Torney and McConnell, 1983), averaged over collision
durations. In the reconstituted vesicles, a fraction f of the
N-CAM molecules may be oriented in the wrong direction
and ineffective in mediating adhesion; this could be taken
into account by multiplying M, by f in Eq. 19, thereby
reducing T, or equivalently by reducing e. The total
number of bridges, IV, expected in a collision can be
obtained on multiplying dn,/d¢ by the collision duration =
and contact area A,

Ny, = 4‘)reDmT§q‘rAc . (22)

If a single bridge forms during a collision, this should
suffice to stabilize the nascent aggregate against the small
shear forces during incubation. The bridge may sponta-
neously break before subsequent bridges form, depending
on the (unknown) dissociation rate constant. However, if a
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few bridges form during the collision, the resulting aggre-
gate should be effectively irreversible (Bell, 1978), at least
during incubation conditions.

The duration of a Brownian collision, 7, is estimated to
be 75 =~ R*/6D ~ 7 x 1073 s (Bell, 1978), whereas the
duration of a shear collision is 7 ~ G~ ~ 0.1 5. The “area
of contact” has been estimated as the area of a spherical
vesicle that is within a distance A of a touching spherical
vesicle, where A is approximately the length of an N-CAM
bridge. This area is A, = TRA ~ 6 x 107 um?if A ~ 1072
um. We estimate an upper limit for T, to be 2 x 10°/cm?
(see the previous section). Finally, we take the diffusion
coefficient D, for the N-CAM trimers, 10~'° cm?/s, to be
slightly smaller than that observed in the mobile N-CAM
fraction on chick embryo brain cells and chick embryo
retina cells (Gall and Edelman, 1981). Putting these values
into Eq. 22 gives for the number of bonds formed in a shear
collision on the order of 1072 € and in a Brownian collision
on the order of 1073 ¢.

A number of conclusions can be drawn from these
equations. First, Brownian collisions are expected to be
appreciably less sticky than shear-induced collisions
because of the shorter duration of the Brownian collisions.
This suggests that the greatest difficulties may be in
getting the smallest particles to stick to each other. Fur-
ther, it is most likely that no bridges will form during a
collision, especially a Brownian collision. Under these
conditions, the values of Ny represent very nearly the
probability of forming a single bridge, p,, during a colli-
sion.

In a recent review, Edelman (1984) notes that the length
of a N-CAM molecule may be as great as 4 x 1072 um, as
visualized in electron microscopy. This suggests that the
length of a bond between two vesicles could be larger than
taken above, perhaps as large as ~8 x 1072 um. Neverthe-
less, the expected number of bonds formed per collision
would be «1, and the conclusions are unaffected.

REDISTRIBUTION OF N-CAM MOLECULES

At equilibrium, the number of bridges, IV,, in the contact
area, A, between two vesicles in a dimer can be expected to
be related to the concentration of N-CAM trimers, T, On
each vesicle of area A, according to

— = KT, (23)
with Ky an equilibrium constant for bridge formation. The

trimer concentration T, is calculated from Eq. 19, replac-
ing M, with Mg

3N,
My= Myl — . 24
o - 22 o

We can use Eqgs. 19 and 23 to find the fraction b of
monomers in bridges (b equals 3N,/ AM,). If we assume
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one contact area between two identical vesicles with the
ratio 4./ A equal to 0.01, and if we take K, to be 10~ cm?
(which corresponds roughly to an equilibrium constant in
solution of 10’ M~"), we find for the data point with 18.8
pg N-CAM/mg lipid in data set one with K = 7 x 10~°
that b is 0.06, and in data set two with K = 1.4 x 1073, we
find that b is 0.4. (We assume p = 1, that is, that all
N-CAM molecules are on the outside of the vesicle.) In
these two cases, the equilibrium surface concentrations of
unbound N-CAM trimers are, respectively, 0.9 and 0.4 of
the value before adhesion. Thus, it is plausible that after
one adhesion between two vesicles, a significant fraction of
the bridging molecules is unavailable for sticking, and their
sticking probabilities toward subsequent adhesions would
be correspondingly reduced.

It remains to consider the time that is required for
receptor redistribution and hence whether a significant
depletion of free receptors can be achieved in the time
between collisions. A lower limit to the redistribution time
can be found by assuming that every receptor that diffuses
to the contact area sticks there. The mean time, T,, for

absorption is then
A\ R?
T. = K.(;) D—m N (25)

where «, is a function of (4./A4), given by Chao et al.
(1981), for a circular contact area. For A./A4 ~ 0.01, «, =
3.5,and with R = 0.2 um, D, = 10" cm?/s, T, = 14s.

This redistribution time should be compared with the
time between Brownian collisions that result in sticking, T,
which is initially T, = [4wRDn,(0)/p,]". Expressing n,(0)
in terms of the lipid concentration in micrograms per
milliliter, a, from Eq. 12, we find T, = 1.4/ap, s. Under the
experimental conditions of Hoffman and Edelman (1983),
a ~ 1.0 so that if p, < 0.01, as appears likely for synthetic
vesicles, T, = 10 T,, and there appears sufficient time for
receptor redistribution.

Thus, the redistribution of receptors remains a possibil-
ity for explaining the small proportion of vesicles that
rapidly appear in superthreshold aggregates. That is, small
aggregates that have sequestered a substantial fraction of
their receptors will stick with smaller probability and
contribute only very slowly to the formation of super-
threshold aggregates. Such long-time behavior was not
followed in the experiments.

DISCUSSION

We have seen that an aggregation process in which the
state of aggregation changes only as a result of binary
collisions will lead to the appearance of mass (or volume) in
superthreshold aggregates at a rate proportional to the
square of the initial monomer concentration, as observed
by Hoffman and Edelman (1983). This result was derived
under the assumption that the collision rate constants, c;
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and sticking probabilities, p;;, are constants. Under the
experimental conditions of Hoffman and Edelman (1983),
it appears that both Brownian and shear-induced collisions
may be important, and we have estimated the maximum
rate of appearance of volume in superthreshold aggregates
for both types of collisions and compared the results with
experiment. The results are summarized by an aggregation
parameter, k,g,. For neuraminidase-treated “E-form brain
vesicles,” the calculated value of k., is close to the
observed value, whereas for all other experimental cases,
the observed values are smaller. In particular, for reconsti-
tuted vesicles, observed values of k,,, are smaller than the
theoretical maximum value by factors of ~10~*~10~2 This
suggests that the sticking probability has comparable
values (107*-1072). Our estimates for the probability of
bridge formation during a collision are consistent with this
range of sticking probabilities.

According to our theoretical model, all material should
eventually appear in superthreshold aggregates, whereas in
fact only a small fraction does so during the time of
observation. Shear-induced disaggregation is probably
responsible for this effect. This conclusion is supported by
the observation of further aggregation once large aggre-
gates have been removed, as noted previously. There is no
conflict between this conclusion and the finding that the
initial rate of formation of superthreshold aggregates is
proportional to the square of the initial vesicle concentra-
tion, because the constant rate of formation is strong
evidence that disaggregation leading to vesicle loss from
the superthreshold “compartment” is negligible during this
interval. One could test this conclusion by carrying the
experiment to longer times to see whether there is a real
plateau that has been reached and by running the experi-
ment at several shear rates to see how the rate of aggrega-
tion and the plateau are affected.

Quantitative calculations of the rate of formation of
large aggregates are scarcely possible because of the
uncertainty as to the shape of the aggregates and as to rate
constants for bridge formation and breakage.

We have given a theoretical model explaining the
remarkable dependence of k,z on the N-CAM concentra-
tion: there is an equilibrium trimerization of N-CAM
molecules, and each trimer can bond with a trimer on
another vesicle, forming a “bridging molecule.” This
model is in agreement with two of the three sets of data
presented, but it does not explain the behavior seen with
neuraminidase-treated vesicles. Ultimately, the validation
of the theory will rest on the observation of bridges
composed of two N-CAM trimers, possibly in “freeze-
fracture” experiments. The observed dependence may be
the manifestation of the type of regulation of N-CAM—
mediated cell adhesion in vivo. When more is known about
the “binding site” and the structure of the molecular units
bridging two vesicles, one can ask more detailed questions
about the kinetics of bridge formation in an experiment
such as we have analyzed here and in vivo.

APPENDIX

Aggregation for Special Collision Kernels

Brownian. For Brownian collisions (Chandrasekhar, 1943),
the collision kernel ¢;; is
¢y = 4D,R;, (A1)
where D is the mutual diffusion coefficient (D, = D, + D)), and R is the
collision radius [Ry = % (R, + R))]. Since the diffusion coefficient, D;, of
a (roughly spherical) particle is inversely proportional to its radius, R, it
is customary to set D;R, = DR, a constant =2 x 10~">cm®/s. Eq. Al then
becomes

(R, + RJ)2
- - A2
¢y =2xDR RR, (A2)
If R; = R, then ¢, is a constant,
¢,;=8xDR. (A3)

Note that for spherical particles R, ~ i'/%, so

i3 4 1y
ey 2eDR ALY
vy
and large aggregates can accrete monomers more rapidly than small ones.
If i = 45, corresponding to a threshold aggregate c,s, = 11.7xDR, only
46% larger than Eq. A3, then the approximation does not appear seriously
in error. Moreover, the shape of aggregates is not spherical but irregular,
so that refinements beyond Eq. A3 are unwarranted.
With the collision kernel A3, and assuming unit sticking probability
Py= 1,

(1) = mO)[(en)* /(1 + e)**'), k= 1,2, - - (Ad)
(Smoluchowski, 1916; Chandrasekhar, 1943) so that

k
n,(0)V; - cr dk,
cr(l + ¢7) Yk« \1 + 1

where, for large values of x, we have replaced the sum by an integral. The
integral is readily evaluated and, for large values of cr,

V(x, 7) = Voexp (— = :; 1)(1 + ﬁ) s

where ¥, is the initial volume of vesicles, ¥, = n,(0)¥,. Note that for
cr » x, V(k,7) — V,; ie., for large times, all the initial material is
predicted to appear in superthreshold aggregates.

Vx,7) =V, g‘_ kny (1) =

(AS)

Shear Flow. For uniform shear flow with shear rate G s,
the collision kernel is approximately

c,J = ‘/3 G(R‘ + Rj)3

(Smoluchowski, 1916; see also Bell, 1981). (An accurate treatment
including hydrodynamic effects would be much more complex; see Curtis
and Hocking, 1970, and Jeffery and Onishi, 1984.) If the aggregates are
roughly spherical, then it is reasonable to set R, = R,i'/? so that

(A6)

iy =4%h GRIG" + j'/*). (A7)

Since

fi= @*» +J-1/3)3 -+ 3 4 3RS
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we see that for i » j or i « j, it may be reasonable to set f;; = f§ = i + j.
However, for i = j, f;; = 4f §}. Thus, a more reasonable approximation for f;
is 2(i + j), since this is in error by no more than a factor of 2 as compared
with Eq. A7 for all i,j. This approximate kernel,
=% GR3(i + j), (A8)
gives simple solutions for n(r) and ¥(x, 7). Since aggregate shapes are
uncertain, we have taken Eq. A8 as a simple representation for shear-
induced collisions. It has at least the needed property of letting large
aggregates add monomers much faster than small aggregates can.
Trubnikov (1971) has shown that the kernel A8 gives
of
n(r) = n)(0) — ——
W) = m(0) )

exp {—k[1 — f — (1 — N1},
where f = exp(—@7), and 8 = % GR3. For large values of k and 87,
n(r) = m(0)(2xk*) *fexp (- o kf?) .

On summing over k = « and replacing the sum by an integral, we find

- erly/ )]

As for the Brownian case, it is predicted that for large 7, ¥ — V,, and
all material will be found in superthreshold aggregates. Whereas in the
Brownian case, the required time is 7 ~ «, for the shear kernal, + ~ 2n«
because large aggregates grow preferentially.

(A9)

(A10)

Vik,7) =V, (A11)

Numerical Results: Combined Kernels. The detailed
numerical results obtained by combining Brownian and shear kernels will
be published separately (Spouge, J., and G. I. Bell, manuscript submitted
for publication).

For the experimental conditions of Hoffman and Edelman (1983), it
appears that Brownian and shear collisions are of comparable importance.
The combined kernels will promote more rapid growth because the
Brownian collisions predominate for small aggregates, which, once they
reach a critical size, grow much more rapidly due to shear collisions. For
i = j, the critical size can be estimated by equating the collision kernels in
Eqgs. A3 and A6 to obtain a critical radius, R,

37 (DR)
R = owm i)
e

equal to ~0.36 um for the experimental conditions of Hoffman and
Edelman (1983).

As an approximation for the combined effects of Brownian and shear
motion, we can add the collision kernels given by Eqs. A3 and A8 to
obtain

(A12)

ciy=8TDR + % GR*(i + j) . (A13)
In the notation of Spouge and Bell (manuscript submitted for publica-
tion), the shear fraction, 4, in this kernel is given by

46 GR

= 9
1-6 3nDR

so that & = 0.01. For this value of 6, numerical results indicate that kg =
2k or approximately the sum of kg and ks.

More accurate treatments of the combined effects of shear and
Brownian motion are available for two colliding spheres of equal size
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(Zeichner and Schowalter, 1977; van de Ven and Mason, 1977, and
references therein), but not for more general cases.

The least-squares fits to the data shown in Fig. 1 were obtained by Dr.
Richard J. Beckman of the Statistics Division at Los Alamos National
Laboratory, using the NLIN procedure and the Marquardt Method of
the SAS package (Ray, 1982). We are indebted to S. Hoffman for
communication of unpublished results and to him, U. Rutishauser, and G.
Edelman for useful discussions.
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