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ABSTRACT The self-assembly of myosin into filamentous structures is a highly cooperative and rapid process.
Nevertheless, the presence of nonequivalent bonding interactions within the filament permits differential stabilization
of several macromolecular assemblies of myosin under well-controlled ionic conditions in citrate/Tris buffer at pH 8.0.
We have detected and characterized bipolar myosin minifilaments, myosin octamers, and tetramers by using light
scattering, analytical ultracentrifugation, and viscosity techniques. These structures have molecular weights of 8.0 x
106, 3.9 x 106, and 2.0 x 106 g/mol, sedimentation coefficients of 32S, 22S, and 18S, and radii of gyration of 990 A, 890
A and 790, A, respectively. The similar radii of gyration indicate similar bipolar geometry for all these particles. The
32S minifilaments in 10 mM citrate/Tris buffer (pH 8.0) are the most stable species. The smaller 18S and 22S
assemblies in 2 mM and 5 mM citrate/Tris, pH 8.0, are readily affected by low concentrations of KCI and fuse into the
minifilament particles. The instability of the 1 8S and 22S forms of myosin assembly is also revealed by their titration
with ATP. These structures are dissociated at lower ATP concentrations than the minifilaments and do not show the
cooperative dissociation transitions characteristic of filaments and minifilaments. Sedimentation velocity analysis of the
18S and 22S species in the presence of ATP reveals the involvement of lOS myosin dimer in the dissociation of
assembled myosin. The different forms of assembled myosin are discussed in the context of formation of myosin
minifilaments.

INTRODUCTION

The in vitro self-assembly of vertebrate skeletal myosin
into thick filaments was originally shown by Huxley
(1963). His observations indicated that the synthetic fila-
ments formed by decreasing the ionic strength of myosin
solutions are assembled by initial antiparallel (tail-to-tail)
association of myosin molecules to yield the central fila-
ment region known as the bare zone region. This step is
then followed by bipolar growth of the bare zone region
into long filaments, presumably by addition of monomers,
parallel (head-to-tail) dimers, and other preassembled
myosin units. Since then, numerous studies recently
reviewed by Harrington and Rodgers (1984) and Pepe
(1983) have greatly contributed to the detailed description
of the effects of pH, ionic strength, protein concentration,
etc., on the formation and the physical properties of
synthetic myosin filaments. Thus, long before the sequence
information could confirm the conclusions of solution
studies (McLachlan and Karn, 1982, 1983), Josephs and
Harrington (1966) emphasized the importance of ionic
bonding in the assembly of myosin filaments.
The past studies of the parameters involved in myosin

assembly provided the necessary background for the more
recent investigations of the mechanism of filament forma-
tion. Titrations and dissociation of native myosin filaments
with KCI (Trinick and Cooper, 1980; Niederman and
Peters, 1982) and sodium pyrophosphate (Ishiwata, 1981),

or their partial dissociation by water (Maw and Rowe,
1980), reveal the presence of different bonding interactions
along the myosin filament, with its central portion exhibit-
ing the greatest structural stability. Kinetic experiments
are consistent with such distinction between the formation
of the bare zone region and its growth into long filaments
(Davis, 198 la, b; Higuchi and Ishiwata, 1985). Perhaps
the best evidence for a two or multistep assembly of myosin
and the underlying bonding differences within the filament
is provided by the assembly of short, bipolar, and homoge-
neous minifilaments (Reisler et al., 1980). These minifila-
ments, which are made of 16-18 myosin molecules, and
correspond to a part of the central region of filaments, can
grow into regular-size filaments (Reisler et al., 1982). In
this paper we report the results of recent studies aimed at
clarifying the initial steps in myosin assembly. Two forms
of assembled myosin, tetrameric (18S), and octameric
(22S) species, are described and their properties are com-
pared with those of myosin minifilaments.

MATERIALS AND METHODS

Myosin was prepared and its concentration determined as previously
reported (Godfrey and Harrington, 1970).

Solutions of assembled myosin were prepared by a two-step dialysis
procedure. Purified myosin in 0.5 M KCI, 10 mM phosphate buffer (pH
7.0) was clarified by centrifugation, adjusted to a concentration of 5
mg/ml, and dialyzed against 5 mM sodium pyrophosphate (PPi) at pH
8.0. The dialyzed protein was centrifuged (30 min at 30,000 x g) and
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redialyzed against solutions of 2 mM citrate/10 mM Tris, 5 mM
citrate/20 mMTris, and 10 mM citrate/37 mMTris, all at pH 8.0 and in
the absence of any additional salt.

Sedimentation velocity experiments were carried out as described
earlier (Reisler et al., 1980) at rotor speeds of 20 x 103 rpm, at 200C in a
Beckman Model E analytical ultracentrifuge equipped with an ultraviolet
scanner (Beckman Industries, Palo Alto, CA).

Diffusion coefficient measurements on myosin solutions in 5 mM
citrate/Tris were made in synthetic boundary, double sector cells with
aluminum-filled Epon centerpieces. Diffusion was carried out at 3,000
rpm in an AN-J rotor in a Beckman analytical ultracentrifuge. Protein
concentrations ranged between 0.4 and 1.5 mg/ml. Although tempera-
ture was not regulated in these experiments (to improve boundary
stability), the runs drifted within 2-30C of -25°C. Diffusion coefficients
were calculated from the variance of gaussian curves describing the
diffusing boundaries (Elovson et al., 1985).

Viscosity (Reisler et al., 1980) and turbidity (Reisler et al., 1982)
measurements were made as before. Light scattering from myosin
solutions was measured at 900 with a Farrand Model MKI fluorescence
spectrophotometer (Farrand Industries, Inc., Valhalla, NY) (Reisler et
al., 1980).
The angular dependence of light scattered from myosin solutions was

determined as described by Jolly and Eisenberg (1976) using a modified
laser autocorrelation instrument (Malvern 4300, Precision Devices and
Systems Ltd., Malvern, United Kingdom) in the laboratory of Dr. H.
Eisenberg at the Weizmann Institute of Science, Rehovot, Israel. All
measurements were done with vertically polarized light (A = 514.5 nm) at
200C and covered the angular range between 120 and 1500. The scattering
data were presented in the form of Zimm plots (Zimm, 1948) and were
fitted to scattering curves calculated for thin rods (Eisenberg and Reisler,
1971). For further details see Eisenberg (1971).

FIGURE 1 Velocity sedimentation patterns of assembled myosin. Myo-
sin minifilaments and the 22S particles were run at a concentration of 3
mg/ml in 10 mM citrate/Tris (a, upper, wedge cell) and 5 mM
citrate/Tris pH 8.0 buffer (a, lower, regular cell). The 18S particles were
run in 2 mM citrate/Tris (pH 8.0) at 2 mg/ml (b, upper, wedge cell) and
3 mg/ml (b, lower, regular cell) concentrations. The sedimentation was
carried out at 200C and at rotor speeds of 20,000 rpm.

(solid curves in Fig. 2). The dashed line in Fig. 2 shows for
comparative reasons the 1/s vs. c dependence of myosin
minifilaments. We note that the sharp 1/s vs. c dependence
is similar for the 32S minifilaments, the 22S particles, and
over low protein concentrations for the 1 8S species as well.

RESULTS

Sedimentation Experiments
Sedimentation velocity experiments provide a simple and
reliable test for the self-assembly of myosin, and permit a
preliminary classification of the observed species. Thus, for
example, myosin minifilaments show characteristic hyper-
sharp sedimentation boundaries with so, = 32S (Reisler
et al., 1980). The larger synthetic filaments sediment much
faster (s%, .

= 1 5OS; Josephs and Harrington, 1966). Their
boundaries reveal in most cases significant size distribution
of the assembled particles, and at high rotor speeds these
filaments dissociate into monomeric or dimeric species.
The sedimentation boundaries of dissociated myosin are
broadened by diffusion, and yield sedimentation constants
between 6S and 1OS depending on the monomer-dimer
composition of protein solutions.
When solutions of myosin minifilaments prepared in 10

mM citrate/Tris (pH 8.0) or in 5 mM PPi (pH 7.0) are
dialyzed against 5 mM and 2 mM citrate/Tris, the hyper-
sharp sedimentation profiles characteristic of minifila-
ments remain unchanged at both high and low protein
concentrations (Fig. 1). The same profiles are also
obtained by dialyzing dissociated myosin (in 5 mM PP1,
pH 8.5) against the 2 mM and 5 mM citrate/Tris solvents.
These sedimentation boundaries are indicative of highly
homogeneous solutions of assembled myosin. The intrinsic
sedimentation coefficients of myosin in 5 mM and 2 mM
citrate/Tris, and in the absence of KCI are 22.2 and 1 7.8S
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FIGURE 2 Sedimentation coefficients of the 22S (o) and 18S particles
(A) in 5 mM citrate/Tris and 2 mM citrate/Tris (pH 8.0) solvents. The
dashed curve shows for comparative reasons the I/s vs. c dependence of
myosin minifilaments in 10mM citrate/Tris pH 8.0 (Reisler et al., 1980).
The solid symbols show sedimentation coefficients of the 22S particles (0)
and the 18S species (v) after addition of 10 mM KCI to their respective
solutions in 5 mM and 2 mM citrate/Tris.

MUSCLE FILAMENTS336



10.01

.8.01

.-Io
0Io

6.01

4.0

0/

////
0

0

0 1

0/ ,-
0

0
I-

~0

2.0k_

0 0.1

Figure 3

0.2

c (g/lOOmL)

FIGURE 3 Reduced viscosity of 22S particles in 5 mM citrate/Tris, pH
8.0 solvent. The dashed curve shows for comparative reasons the reduced
viscosities of myosin minifilaments in 10 mM citrate/Tris, pH 8.0.

TABLE I
MOLECULAR PROPERTIES OF MYOSIN

ASSEMBLIES

Assembly Form Hydrodynamic M X 10 R6,A§Coefficients g/mnol1 8,A

Minifilaments, [X] = 3.42 dl/g*
(1OmM s020, = 32.3S*
citrate/Tris) D020,w = 0.365 x 8.0 ± 0.4 (LS) 990 ± 80

10-' cm2/s*

22S [v]= 3.0 dl/g 3.85 (s,')
(5mM citrate/ so20w = 22.2S 4.15 (S, D)

Tris) D020, = 0.48 x 3.9 ± 0.3 (LS) 890 ± 40
10-7 cm2/s

18S S020,w = 17.8S 2.0 ± 0.2 (LS) 790 ± 40
(2mM
citrate/Tris)

*Taken from Reisler et al., (1980)
WMolecular weights were determined from light scattering measurements
(LS) presented in the form of Zimm plots (Fig. 4). Alternatively, the
values of Mw were calculated from intrinsic viscosity and sedimentation
data (s, [nq]) by using Sheraga-Mandelkern (1953) equation, or from
intrinsic sedimentation and diffusion data (s, D).
§Radii of gyration were determined from the limiting slopes of Zimm
plots. Scattering curves, calculated for thin rods with the tabulated radii
of gyration, fitted very well the scattering data for the 18S and 22S
particles. For minifilaments, the fit to calculated curves was poorer with
the optimal match obtained to thin rods with radius of gyration between
970 and 990A.

Such 1/s vs. c curves are indicative of the presence of highly
asymmetric polymer particles in the solutions. As dis-
cussed later, addition of small amounts of KCI (10 mM)
has a profound effect on the smaller forms of assembled
myosin (Fig. 2), but does not induce any detectable change
in the 32S minifilaments (Reisler et al., 1982).

22S Myosin Particles

To determine the molecular size of the 22S particles we
have measured the intrinsic viscosity, diffusion, and the
absolute intensity of scattered light on solutions of myosin
in 5 mM citrate/Tris (pH 8.0) buffer. Before taking each
set of measurements, stock solutions of 22S particles were
examined in the ultracentrifuge to provide a check on the
reproducibility of the preparations, and the presence of any
dissociated or aggregated species.
The reduced viscosities of the 22S particles are plotted in

Fig. 3 against protein concentration. The extrapolated
intrinsic viscosity, [X] = 3.0 dl/g, combined with the s°2, w =
22.2S (Scheraga-Mandelkern, 1953), yield the molecular
weight of 3.85 x 106 g/mol for the 22S particles. Although
the intrinsic viscosities of minifilaments and the 22S
species are rather similar, the two systems differ in terms
of solvent-solute interactions as reflected by their
respective n,p/c vs. c dependence (Fig. 3).

Diffusion coefficients of 22S particles measured in the
analytical ultracentrifuge extrapolate to an intrinsic coeffi-
cient D2% = 0.48 x 10-7cm2/s. The two coefficients, s and

D, yield a molecular weight of 4.15 x 106 g/mol (Table I).
Thus, the combined viscosity and sedimentation, or diffu-
sion and sedimentation data indicate that the 22S particles
are composed of 8-9 myosin molecules. In view of the
likely bipolar geometry of these polymers (as discussed
later), the octameric structure appears to be more plausi-
ble.
An independent determination of the molecular size of

the 22S particles was made by measuring the angular
dependence of light scattered from protein solution in 5
mM citrate/Tris down to an angle of 120. The Zimm plot
for the 22S material extrapolates to Mw = 3.9 ± 0.3 x 106
g/mol (Fig. 4), while comparable measurements of myosin
minifilaments yield Mw = 8.0 x 106 g/mol (Table I). Thus,
the light scattering results are in good agreement with the
molecular weights determined by hydrodynamic methods.
The radius of gyration of the 22S particles, Rg = 890A,

was determined from the limiting slope of the Zimm plot
shown in Fig. 4. The same value was derived by fitting the
angular scattering data between 120 and 900 with scatter-
ing curves calculated for thin rods. An excellent fit was
obtained for rods with Rg between 890 and 900 A. Similar
analysis of scattering data collected for myosin minifila-
ments (Rg = 1,050 A) produced a poorer fit to the
scattering curves of thin rods. The best fit was obtained for
rods with Rg between 970 and 990 A.
The attempts to visualize the 22S and 18S particles by

electron microscopy were frustrated by the instability of
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particles is rapidly changed to that of minifilaments after
,-0 - ° ,addition of 10 mM KCI.

Equally sharp transitions are noted when myosin is
,Li77./ 7/ -.' titrated in 2 mM citrate/Tris with KCI. In the presence of
Z.7.77 10 mM KCI the tetrameric myosin has the turbidity and

[ .77///X / 7sedimentation behavior of octameric species (Fig. 2), while
7 */./.// the presence of -20 mM KCI imparts to the 18S material

c/-7 7' ./MW.9 X 106 the properties of myosin minifilaments. Following these
RG 890A initial changes in sedimentation and turbidity of the 18S

and 22S myosin solutions, additional amounts of KCI, up
to a final concentration of 50 or 60 mM, have no further

0.25 0.50 0.75 1.00 125 150 impact on the above parameters. At final concentrations of
sin2 (e) 500C 70 mM KCI or more, we note a second phase of turbidity2

increases, reflecting the growth of synthetic filaments. The
Zimm plot of total light scattering intensity from solutions of biphasic effect of KCI on the 18S and 22S particles is
s in 5 mM citrate/Tris (pH 8.0) at 200C. K is the optical consistent with the formation of myosin minifilaments
is the protein concentration, Rc is the reduced scattering . . .dis the scatteingangle.tration, tionofthisreduced scttegc (between 10 and 20 mM KCI), the relative stability ofl00 is the scattering angle. Extrapolation of this plot to c =0 minifilaments in the presence of low salt concentrations

(Reisler et al., 1982), and the growth of filaments from
minifilaments at higher levels of monovalent salt.

tniese structures. It uncross-llnkec, tney were lissociatea at
dilutions required for the preparation of grids. On the other
hand, cross-linking reactions invariably caused rapid
aggregation of the 22S and 18S particles into minifila-
ments or larger heterogeneous structures.

18S Myosin Particles

The anomalous biphasic 1/s vs. c dependence of the 18S
particles in 2 mM citrate/Tris buffer (Fig. 2) indicates
that all extrapolations to the intrinsic parameters of these
species (at c = 0) need to be based on measurements
carried out at low protein concentrations, up to 1 mg/ml.
This requirement makes viscosity measurements impracti-
cal, and significantly decreases the precision and reliability
of so, w and Do, w determinations. Consequently, the molec-
ular size of the 18S particles was estimated from light
scattering measurements over the concentration range
between 0.1 and 0.9 mg/ml. The extrapolation of the
Zimm plot to c = 0, 0 = 0 (not shown here) yielded the
molecular weight Mw = 2.0 x 106 g/mol, while the radius
of gyration obtained from the limiting slope of the Zimm
plot was 790 A. The experimental data could be fitted very
well with scattering curves calculated for thin rods with
their radius of gyration falling between 780 and 790 A.
Judged by their molecular weight, the 1 8S particles corre-

spond to tetrameric myosin species.

Effect of KCI on the 1 8S and 22S Particles
The relative instability of myosin tetramers (18S) and
octamers (22S) is most strikingly shown in Fig. 2. Addition
of 10 mM KCI to solutions of 22S species leads to their
rapid conversion into minifilaments. In fact, the 1/s vs. c

curve of minifilaments is indistinguishable from that of
myosin in 5 mM citrate/Tris and 10 mM KCI (Fig. 2).
Moreover, the turbidity of solutions containing the 22S

Dissociation of Assembled Myosin by ATP
Earlier work of Harrington and Himmelfarb (1972)
showed that myosin and rod filaments could be coopera-

tively dissociated by ATP and by somewhat higher concen-
trations of MgATP. The destabilization of myosin poly-
mers is due to the binding of nucleotides to the low affinity
sites on the rod portion of the molecule. The highly
cooperative dissociation process leads to an apparent two
state monomer-polymer equilibrium (Harrington and
Himmelfarb, 1972), and can easily be monitored by light
scattering and analytical ultracentrifugation methods.
Titrations of assembled myosin and the ensuing dissocia-
tion processes can be analyzed in terms of the Hill equation
and thus can be used to probe the stability of these
structures. It is assumed in such analysis that the fraction 0

of dissociated myosin corresponds to the fraction of binding
sites occupied by ATP (and responsible for the dissocia-
tion, Harrington and Himmelfarb, 1972). This leads to a

formulation

(0] [sites occupied] cmonomer

[1 - 0] [sites vacant] Cpolymer

and

0

where K is the association constant, and n is the Hill
coefficient.
A representative light scattering (900) titration of myo-

sin minifilaments, the 22S, and the 1 8S particles with ATP
is shown in Fig. 5. Clearly, the midpoints of dissociation
are shifted toward lower ATP concentrations with decreas-
ing concentration of citrate/Tris solvent i.e., with decreas-
ing size of assembled myosin. This shift indicates lower
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FIGURE 5 Changes in the 900 light scattering from solutions of myosin
minifilaments in 10 mM citrate/Tris (e), the 22S particles in 5 mM
citrate/Tris (A), and the 18S species in 2 mM citrate/Tris (E) as a

function of added ATP. Protein concentrations were fixed at 2mg/ml.

stability of the 18S and 22S particles when compared to
that of minifilaments.
By plotting the residual fraction of minifilaments (cal-

culated from scattering data; Oriol-Audit et al., 1981) vs.

nucleotide concentration, and comparing such curves with
similar data obtained for myosin filaments in 0.1 3M KCI,
10 mM Tris (pH 8.0), we conclude that these structures,
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FIGURE 6 Fraction of filaments (0) and minifilaments (A) vs. logar-
ithm of MgATP concentration. The dissociation profile was obtained
under identical experimental conditions as those in legend to Fig. 5. The
filaments were dissolved in 0.13 M KCI, 10 mM Tris (pH 8.0) and the
minifilaments were in 10 mM citrate/Tris (pH 8.0). For comparison we

show the profile of minifilament dissociation by ATP (solid curve without
symbols).

quite different in size, show very similar stability (Fig. 6).
The Hill coefficient for the MgATP-induced dissociation
of minifilaments and filaments is 2.2. Similar behavior is
observed when the titrations of assembled myosin are

carried out with uncomplexed ATP.
The smaller 18S and 22S assemblies of myosin do not

conform to the Hill analysis, and their dissociation cannot
be characterized by a single Hill coefficient (Fig. 7).
Inspection of the dissociation of myosin assemblies in the
analytical ultracentrifuge reveals some qualitative differ-
ence between the different structures. In solutions of
minifilaments the sedimentation coefficient of the poly-
meric material increases with increasing concentration of
ATP (Fig. 8). This is consistent with decreasing concentra-
tion of minifilaments, caused by dissociation by ATP, and
their strong 1/s vs. c dependence. Thus, judged by its
sedimentation behavior, the polymeric material in these
solutions indeed corresponds to minifilaments (Oriol-Audit
et al., 1981). In contrast to the minifilaments, the sedimen-
tation boundaries of the 18S and 22S species broaden, and
their sedimentation coefficients decrease with increasing
ATP concentrations (Fig. 8). Thus, the dissociation equi-
libria of small myosin assemblies are more complex than
predicted by a simple two-state monomer-polymer model.
Notably also, the sedimentation coefficients of dissociated
myosin approach the value of 6S at high ATP concentra-
tions, but are close to 10S at low nucleotide levels. If the
10S species correspond to myosin dimers,' it would appear

'Reisler, E., P. Cheung, N. Borochov, and J. A. Lake. Monomers, dimers,
and minifilaments of vertebrate skeletal myosin in the presence of sodium
pyrophosphate. Manuscript submitted for publication.
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FIGURE 8 Sedimentation velocity coefficients of the polymeric (o, A, o)
and dissociated myosin (-, *) obtained by titration with ATP of myosin
minifilaments (o), the 22S (A), and the 18S particles (o). All solutions
were at a protein concentration of 1 mg/mL.

that the monomer-dimer equilibrium is affected by ATP as
well. It is indeed very likely that the dissociation of
assembled myosin involves dimeric myosin species. At least
in one case, the assembly of myosin in 10 mM PP, (pH
7.5), we were able to demonstrate a dynamic minifilament-
dimer equilibrium.'

DISCUSSION

The main goal of this study was to investigate the initial
stages of the self-assembly of myosin into minifilaments,
and to identify possible precursors of this structure. The
preferred route for minifilament formation involves the
transfer of dissociated myosin (in 5 mM PP, pH 8.0) into
10 mM citrate/Tris buffer. In principle, quick dilutions of
stock solutions of dissociated myosin into minifilament
solvent could yield kinetic data, and reveal information on
the individual steps of minifilament assembly. However,
the entire process of minifilament formation is too fast for
conventional stop-flow analysis. The alternative approach
taken in this work was to simulate the medium conditions
that affect the formation of minifilaments by changing the
solvent composition in discrete steps. Thus, we character-
ized the states of myosin assembly in 2 mM and 5 mM
citrate/Tris buffer.

In 5 mM citrate/Tris, we detected a homogeneous
population of 22S particles, which by all molecular weight
estimates should be composed of 8-9 myosin molecules.
This amounts to about half the myosin content of minifila-
ments. The hydrodynamic parameters (s, D, i7) and light

scattering intensity measurements for these species showed
similar dependence on protein concentration to that
observed for minifilaments, and did not reveal any anoma-
lous behavior. The smaller structures, the 18S particles in 2
mM citrate/Tris solvent, showed marked deviation from
linear 1/s vs. c (or 77p/c vs. c) dependence at protein
concentrations above 1 mg/ml. Such behavior might be
related to the low concentration of ions in solutions of 18S
particles, and consequent primary charge effects on hydro-
dynamic properties of assembled myosin (Alexandrowicz
and Daniel, 1963). This problem is circumvented by
working at low protein concentrations, which are easily
accessible to light scattering measurements. Thus, the
molecular weight estimates of the 18S particles are derived
from scattering experiments.

Determinations of the radius of gyration for particles of
the minifilament size require a more complete and model
dependent analysis of scattering curves (Eisenberg, 1971).
In general, the fit of scattering data over the angular range
between 120 and 900 to scattering curves calculated for
thin rods was very good, and correlated well with radii of
gyration obtained from limiting slopes of Zimm plots. The
values of radii of gyration for the 18S, 22S, and minifila-
ment particles (790 A, 890 A, and 990 A, respectively)
indicate similar geometry, and argue against major differ-
ences in myosin packing. It appears that such major
packing transition occurs between dimeric and tetrameric
myosin species. The radii of gyration of myosin monomers
and dimers are 450 A and 520 A.' Thus, the ratios
Rg, minifilament/Rg, 22s; Rg, 22S/Rg, 18S; Rg, 18S/Rg, dimer; Rg, dimer/
Rg, monomer are 1.11; 1.12; 1.52 and 1.15. In view of this
evidence, we assume that, by analogy to minifilaments, the
22S and 18S particles are bipolar assemblies of myosin,
and most likely correspond to octameric and tetrameric
species. The existence of such particles could be easily
reconciled with an antiparallel packing of parallel myosin
dimer in the initial stages of myosin self assembly (har-
rington and Burke, 1972; Reisler et al., 1973; Pepe, 1982;
Davis et al., 1982). Unfortunately, the attempts to obtain a
more direct electron microscopic evidence for the geometry
of the 18S and 22S species were unsuccessful because of
the instability of these particles.
The instability of the 18S and 22S particles is revealed

in their titrations with both ATP and KCI. Much lower
concentrations of ATP are required to dissociate these
myosin polymers than are needed for minifilaments. In
addition, the markedly reduced cooperativity of the disso-
ciation reaction indicates little structural stabilization in
the myosin tetramers and octamers. Similarly, the remark-
ably sharp effects of KCI and the rapid conversion of the
small myosin assemblies into minifilaments demonstrate
the inherent instability of the smaller structures. It appears
then, that myosin minifilaments may represent the small-
est stable form of organized myosin.
We have not found any conditions that favor a dynamic

equilibrium between minifilaments and the 22S and 18S
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material. If it exists, the concentrations of the smaller
particles must be very low. Although it is possible to model
the fusion of myosin octamers into minifilaments, and
perhaps even tetramers into octamers, we have so far no
direct way to monitor such transitions except for observing
their end products. Consequently, we cannot properly
assess the function of myosin monomers and dimers in such
reactions.

That dimers might be involved in the initial assembly
reactions of myosin is indicated by the presence of lOS
species in ATP titrations of the 18S and 22S particles. The
lOS material appears to be in equilibrium with the mono-
meric 6S form of myosin. We assume that the 1OS species
correspond to the lOS or 1 IS parallel myosin dimer
identified in a separate work.' Future work will be directed
at testing the importance of the small assemblies of myosin
in the formation of myosin minifilaments.
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DISCUSSION
Discussion Chairman: Thomas D. Pollard
Scribes: Gillian Henry, John Smuda, and Ayuko Yotsukura

GERGELY: Why were the endpoints different when you added KCI to
the 18S and 22S particles?

REISLER: The end product is controlled by the amount of KCI. By
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