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ABSTRACT Stochastic theories of stem cell renewal are shown to predict turnover of intestinal crypts. While I found
ample evidence of production of new crypts from direct in vivo studies in adult mice, I failed to find evidence of crypt
loss. Thus, it would appear that the simple stochastic models may not provide an adequate theory of control of intestinal
stem cell function.

INTRODUCTION

Extensive cell production and loss is a normal component
of the function of many tissues (e.g., gut and blood).
Central to renewal in these tissues are stem cells that have
the potential to divide throughout life and to produce either
stem cells or cells that differentiate (Leblond and Cheng,
1976). The nature of the process governing whether, when,
and where stem cells differentiate is a matter of long and
intensive interest. Among the more widely discussed theo-
ries of the control of stem cell behavior are the stochastic
theories that assume that stem cell differentiation occurs
randomly (Till et al., 1964; Vogel et al., 1969). Here I
present evidence that a key prediction of the stochastic
theories does not appear to hold in the intestinal epithe-
lium.

In general the stochastic models of stem cell function
assume (a) stem cells have independent and identically
distributed cycle times; (b) stem cell mitoses are indepen-
dent and symmetric (Bjerknes, 1985) in the sense that they
produce either two stem cells (with probability a) or two
cells that differentiate (with probability 1 - a), with the
expected number of stem cells resulting from a stem cell
mitosis m = 2a; and (c) the stem cell to differentiating cell
transition is irreversible.

Under these assumptions, the stochastic models predict
that a population of stem cells has a finite probability of
eventual extinction through differentiation of all stem cells
in the population (these models are age-dependent branch-
ing processes; Karlin and Taylor, 1975; Harris, 1963). The
probability of extinction will be 1 ifm - 1, and <1 ifm > 1
(Karlin and Taylor, 1975; Harris, 1963). From this simple
statement it seems reasonable to assume that m > 1 in
normal renewing tissues, otherwise, the tissues would die
out with certainty. Even with m > 1, the extinction
probability of any given stem cell may be quite high. An
example makes this obvious. If a stem cell has probability a
= 0.6 of producing stem cells, then the probability of
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extinction of that stem cell will be at least 0.4 because it
can go extinct on its next cell division with that probabili-
ty.' Stochastic theories of stem cell behavior get around
this prediction by reminding us that the stem cell popula-
tions contain large numbers of cells, and hence the proba-
bility of extinction of all stem cells is very small. However,
in a situation where only a small number of stem cells are
under consideration, extinction is likely. This prediction
forms the basis of the test that I describe here.

The small intestinal epithelium is a renewing tissue
containing stem cells in the base of structures known as the
crypts of Lieberkuhn (Cheng and Leblond, 1974; Leblond
and Cheng, 1976; Bjerknes and Cheng, 1981b). Our
estimate is that crypts contain an average of - 15 stem cells
each (see Discussion and Bjerknes and Cheng, 1981b).
There do not appear to be any long term resting, that is,
noncycling stem cells in the epithelium (Cheng and
Leblond, 1974). When all stem cells in a crypt are lost, for
example as a result of radiation or drugs, the crypt
disappears in a few days. These properties of the intestinal
epithelium make it an ideal test system for the prediction
made by the stochastic theories that a pool of stem cells has
a finite probability of extinction.

If a stem cell (and its offspring) had probability q of
eventual extinction, then given the assumption of indepen-
dence of stem cells from each other, a crypt containing k
stem cells would have probability qk of eventual death
through differentiation of all its stem cells. I argued above
that m > 1. Since m = 2a it follows that a > 0.5. I would
now argue that in the adult intestine, a must be only
slightly >0.5 (also see footnote 2 below). This is because

'In fact the probability of eventual extinction of a stem cell and all of its
offspring may be shown to be equal to the smallest positive root of s =
¢(s), where ¢(s) is the probability generating function for the offspring of
a stem cell mitosis. Under the assumptions of the present model, the
probability of eventually extinction, q = (1 - a)/a (Karlin and Taylor,
1975). In this case, q = (1 -0.6)/0.6 = 0.67.
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the tissue is in an approximate steady state. The tissue as a
whole is growing slowly (Cheng and Bjerknes, 1985), but
the rate of growth is low relative to the stem cell cycle time.
If a was significantly >0.5, say 0.6, then the rate of growth
of the tissue would be enormous. For the model under
consideration, q = (1 - a)/a. It follows that, because a
must be only slightly > 0.5, q -1. Thus, the stochastic
models predict that most stem cells and hence many crypts
should eventually regress. Those crypts that did not die
would grow and, presumably, would eventually branch to
form new crypts (crypt branching is known to occur during
growth and repair; Cairnie and Millen, 1975; Maskens and
Dujardin-Loits, 1981; Cheng and Bjerknes, 1985). Thus,
the stochastic theories of stem cell behavior predict a
rather extensive turnover of crypts, but just how exten-
sive?

As a simple approximation, let us determine the proba-
bility of crypt extinction with each stem cell cycle (in other
words, discretize the model by concentrating on stem cell
mitosis). The probability generating function (PGF) of the
nth cycle of the discrete branching process may be shown
(Karlin and Taylor, 1975; Harris, 1963) to obey the
recursive relation

oIn+ 1(S) = 01(<An(S))'

where Ol(s) = 1 - a + as2 is the PGF for the number of
offspring of a stem cell mitosis and 4,,(s) = s. It follows by
substitution that

On+1(5)= 1 - a + a[qn(s)). (1)

Since the probability of extinction of a stem cell by the
n+ Ith cycle is On+ 1(°), the probability of extinction by the
n+ 1th cell cycle in a crypt initially containing k stem cells
is 1In+1(0)]k. An average intestinal epithelial stem cell has
a cell cycle time of - 16 h (Al-Dewachi et al., 1979). Thus,
an average stem cell would have undergone -31 mitoses in
3 wk. Under the assumptions of the stochastic model (i.e.,
by Eq. 1 with a -0.52), the probability that the offspring of
a stem cell present at time 0 would be extinct 3 wk later is
-0.945, that is 031(0) = 0.945. The probability that a crypt
containing k stem cells at time 0, and all of the offspring
of the crypt, would die out within 3 wk would then be
-0.945k = O.945'5 = 0.43, if k = 15. Thus, under the
assumptions of the stochastic theories we might expect that

2Estimates of a based on the stochastic theories may also be derived from
the data and the fact that a super-critical branching process grows
exponentially (see Harris, p. 142 and p. 150). If we assume that the stem
cell cycle time follows a gamma distribution with parameters b and n,
then it may be shown that a = (1 + B/b)M/2, where B is the exponential
growth rate (B 2.708 x 10-4h 'from the results here). Estimates for b
and n may be derived from the literature, b - 0.901, and n - 14
(computed from Table I, rows 1 and 2 in Al-Dewachi et al., 1979). From
these results, an estimate of ca is a - 0.502, which is near the 0.5 expected
from the arguments in the text. I use 0.5 for simplicity, but the reader
should remember that a > 0.5.

in 3 wk =40% of crypts observed at time 0 should die out
from loss of their stem cells. I report here that no evidence
of crypt loss was found.

METHODS

In Vivo Recording of Crypts
Three male Swiss albino CD-I mice were given a 5% glucose solution but
no solid food over night. The next morning, the mice were anesthetized
(sodium pentobarbitol, 60 mg/kg) and the loop of jejunum immediately
distal to the ligament of Trietz exteriorized. The gut was placed on a
sterile slide and bathed in saline. Video recordings of crypts seen through
the muscularis mucosa were made with transillumination on an ACM
microscope (Carl Zeiss Inc., Thornwood, NY). The field diaphragm of
the condensor was closed as far as was possible to provide the necessary
contrast. When the recording was completed, the animal was closed, and
allowed to recover. Then, the same region of gut was observed 1 and 3 wk
later. The vascular pattern made possible the ready identification of the
same point in the gut. The animals weighed an average of 20.7, 26.4, and
29.6 g at the initial timepoint and 1 and 3 wk later, respectively. The
recordings were compared to look for changes in the crypt population.
Only small groups of crypts (<25) encircled by a vascular net were used
in the comparisons. The recordings allowed a direct crypt by crypt study
of crypt survival. A potential flaw in this experiment is that I may have
missed a lost crypt because a new one filled its place. I must say that this is
a possibility, however, the chances of it are lower than might appear to be
the case. When crypts did not branch, I was able to match up crypt by
crypt the data from different time points. Crypts or their neighborhood
had distinguishing features that allowed a precise matching crypt for
crypt. If a branching occurred, the new crypts obviously did not match up
with their predecessor, however, even in many of these cases a precise
matchup was possible because the week before the predecessor showed
signs of getting ready to branch, for example it had a slight constriction or
had a large base.

Branching Index
Epithelial sheets from five mice (29 g) were isolated by ventricular EDTA
perfusion as described in Bjerknes and Cheng (1981a). Proximal jejunum
comparable to that studied in the animals described above was used.
Counts were made of the percentage of crypts that were in the process of
branching (Cheng and Bjerknes, 1985).

RESULTS

I followed the fate of 328 crypts over a period of 3 wk (Fig.
1). While I found that 49 of the crypts divided within that
period (20 crypts within the first week, and 29 in the last
two weeks), I found no missing crypts. I also estimated the
proportion of crypts in the process of branching in isolated
epithelium from five other animals. This was -3.2% +

0.32% (X ± S.E.).

DISCUSSION

The results of the study appear inconsistent with a simple
stochastic model of stem cell behavior. It was indicated in
the Introduction that under the assumptions of the stochas-
tic theory of stem cell control, -40% of crypts and their
offspring should have been lost within the 3-wk observation
period. I observed no evidence of crypt loss. To determine
the degree of incompatibility between the stochastic model
and the results, we should note that in the stochastic model,
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FIGURE 1 Small intestinal crypts in vivo. (a) shows a photograph from a video monitor of an initial recording made of crypts. Note the two
crypts in the region encircled by the small vascular ring. (b) same region three weeks later. Note that where there were two crypts there are
now three. The change probably resulted from a crypt branching. Scale bar; 30,im.

stem cells, and hence crypts are assumed to behave inde-
pendently. Thus, the number of randomly selected crypts
observed at time 0 that survive until time t should approxi-
mate a binomial distribution. It follows that the probability
that each of 328 crypts observed at time 0 survives until
time t is -r328, where r is the probability that a single
randomly selected crypt survives until time t. Since all 328
crypts studied survived, we can be certain at the 95% level
that 1 < r s (1 - 0.975)1/328 = 0.99,3 yet under the
stochastic model we would expect that r = 1 - [031 (0)]k =
- 0.43 = 0.57 if the number of stem cells in a crypt, k =

15. To state this in another way, under the stochastic
theory, if we followed 328 crypts for 3 wk an average of
-0.43 x 328 = 141 crypts should have gone extinct. I
found no evidence of crypt loss indicating that the proba-
bility of crypt loss in 3 wk, 1 - r, is somewhere between 0
and 1%. Thus it would appear that if crypts contain an
average of - 15 stem cells, the observations reported here
are inconsistent with the stochastic theory.

An important feature of the stochastic theory is that the
larger the number of stem cells in a crypt, the lower the
probability of extinction of that crypt. Thus, it would be of
interest to compute an estimate of the minimum number of
stem cells that crypts must contain so that the lack of
evidence of crypt loss does not conflict with the stochastic
theory at the 95% level. This would be the point at which
the 95% confidence bounds for r estimated from the data
was equal to the value for r computed from the stochastic
theory with k stem cells in a crypt. Recall that from the
stochastic theory r = 1 - [031(0)]k, while the results
indicate that 1 < r < (1 - 0.975)1/328 = 0.99. We want to

3This result follows from the confidence interval theory outlined in
Kendall and Stuart 114-115 pp., or may be read off of the confidence
limit table for the binomial parameter found in the Biometrika Tables
(Pearson and Hartley, 1966).

find the value of k for which the former value of r is equal
to the lower confidence bound of the latter value of r. After
substituting and solving for k, the number of stem cells in a
crypt, it is found that unless crypts contain more than

log (1 - 0.025"'328)/log (031 (0))
= log (1 - 0.025"'328)/log (0.945)
= 79.4

stem cells, the results are inconsistent with the stochastic
model at the 95% confidence level.

It is possible that some time would be required for a
crypt to disappear after its stem cells were lost. However,
even if it took one week for a crypt to disappear after losing
its stem cell pool, the results of this study would still be
inconsistent with the stochastic model unless crypts con-
tained more than about log(1 - 0.025'/328)/log[021(0)] =
56 stem cells.
A critical issue in the interpretation of my results is the

reliability of the estimate of the number of stem cells in a
crypt. This can be a confusing point because a distinction
between functional stem cells and potential stem cells or
clonogenic cells has arisen in the field. The evidence,
primarily morphological and behavioral, is that in normal
crypts there are 10-20 cells in the base of the crypts that
act as stem cells under normal conditions (Bjerknes and
Cheng, 1981; Wright and Alison, 1984). These are the
functional stem cells. The other proliferating cells in the
crypt are nonstem cells thought normally to have limited
proliferative potential. The concept of clonogenic cells
comes from studies of crypt regeneration after irradiation.
After sufficiently high doses of radiation, it is thought that
many regenerating crypts represent clones of a single
surviving cell, hence cells with the ability to regenerate
crypts are called clonogenic cells. It is not known whether
the functional stem cells form a part of the clonogenic cell
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population, but this is usually assumed to be the case.
Experiments involving regeneration after irradiation have
been interpretated as indicating that crypts contain 2-305
with a mean of -80 clonogenic cells per crypt (for review
see Potten and Hendry, 1983; Wright and Alison, 1984).
The latest estimate from C. S. Potten, J. H. Hendry, and
J. V. Moore (submitted for publication) is that there are
-32 clonogenic cells per crypt. The wide variation is an
indication of the many difficulties inherent in this type of
experiment. In addition to the experimental difficulties,
the conclusions drawn from the data are very model
dependent (see for example Yau and Cairnie, 1979; Hen-
dry, 1979), the computed estimate of the number of
clonogens is very sensitive to model parameters, and the
assumptions underlying the models are not without serious
pitfalls. If the results of these radiation experiments are to
be taken seriously, they would suggest that either our
understanding of normal renewal in the epithelium is
incorrect, that is that the crypt base columnar cells are not
the only stem cells, and thus that the number of stem cells
in the normal crypt could be > 15, or we must conclude that
drastic injury results in dedifferentiation of some nonstem
cells. The latter possibility conflicts with a major premise
of the stochastic model as presented (assumption c of
Introduction), while the former may or may note be at odds
with the stochastic theory depending on the true number of
clonogenic cells in the crypt. This discussion points up the
urgent necessity for an indisputible and independent esti-
mate of the number of stem cells in a normal crypt, for
example, an estimate based on gene function.

If k, the initial number of stem cells in a crypt, is a
random variable, and hence may change from crypt to
crypt (as would be expected under the stochastic theories
or under the crypt cycle model presented below), then my
computations using the mean number of stem cells in a
crypt, k - 15, are not correct. I have underestimated the
extinction probability of some crypts and overestimated
that of others. I will show, however, that as long as the
distribution of the number of stem cells in a crypt meets
certain reasonable criteria, then the probability of extinc-
tion I have computed using the mean number of stem cells
is a reasonable lower bound to the true crypt extinction
probability. To begin, note that the probability of extinc-
tion of a crypt containing k stem cells, [0j(O)]k, is a
decreasing function of k (0 ' On(0) < 1). The probability
of extinction of a randomly chosen crypt is 2k-- P(k)
['p0(0)]k, where P(k) is the probability that a crypt contains
k stem cells. Assume for the moment that the distribution
of k is symmetric about its mean k. Since [0"(O)]k is a
decreasing function, the probability of extinction for a
crypt with <k stem cells will be higher than that for a crypt
with >k stem cells. It follows that zk-l P(k) [4n(O)]k >
[,O(O)]k, since P(k) was assumed to be symmetric about k.
Furthermore, since we have assumed that the number of
stem cells will not grow above a maximum value, because
crypts that get that large begin to branch dividing the stem

cells among smaller daughter crypts, the distribution of the
number of stem cells in a crypt will in fact be skewed
towards smaller numbers of stem cells. If this is so, then
similar arguments show that since the distribution is
skewed, more crypts contain <k stem cells than contain
>k, and hence that 2;-, P(k) [."(O)]k > [0/(O)]k. It
follows that the conclusions reached here, that the stochas-
tic theories are not consistent with the results at the 95%
level unless crypts contain a mean of <80(56) stem cells
each, are conservative.4

A Crypt Cycle?
The observation of crypt branching but no crypt loss
suggests that there may be a crypt cycle (by analogy with
cell cycle) at the end of which crypts branch. Under the
simplest of assumptions about this process, all crypts would
cycle and the crypt population would undergo exponential
growth, N(t) = Noexp[(t log2)/tc]; where N(t) is the
number of crypts at time t, N. is the initial number of
crypts, and tc is the crypt cycle time. A least squares fit to
the observed rate of expansion in crypt numbers (N(0) =
328, N(7) = 348, N(21) = 377; t is in days) yielded N(t) =
330exp(0.0065t), and hence tc = (log2)/0.0065 = 107 d.
The counts of branching crypts in the isolated sheets of
epithelium yielded a fraction of crypts in the process of
branching, Ib = 0.032. From this result, I may estimate the
time for completion of the branching process by the
approximate formula tb = Ibtc/log2 = 5 d (see for example
Steel, 1968). Exponential growth of the crypt population is
consistent with the observation of a steady increase with
age in the number of crypts associated with villi (Cheng
and Bjerknes, 1985). Thus, it is possible that crypts in the
upper jejunum in Swiss albino CD- 1, mice of 21-29 g have
a crypt cycle time of -107 d, 5 of which are spent
branching.

In conclusion, while I found ample evidence of crypt
branching, I found no evidence of the extensive crypt loss
predicted by stochastic models of stem cell control. I would
conclude that the simple stochastic models of stem cell
renewal do not provide an adequate representation of
reality, and hence one or all of the assumptions on which

41t is worth noting that a subset of the data can be used to obtain an
estimate of the lower bound of k consistent with the stochastic theory
which might be less sensitive to variation in stem cell numbers per crypt.
Twenty of the original 328 crypts divided in the first week producing 40
new crypts. It is likely that new crypts resulting from crypt branching
contain similar numbers of stem cells. Thus, we may identify a subpopula-
tion of crypts with a similar initial number of stem cells (which,
incidentally, may be <k). With this assumption, we can use the
arguments above to compute a lower estimate of the survival probability
of a new crypt over the remaining two weeks of the experiment. The
probability of extinction of a single stem cell in two weeks is -021(0) =
0.923. The result is that unless newly formed crypts contain more than
about log(l - 0.025'/328)/log(0.923) = 30 stem cells, the observed
survival of the 40 new crypts for two weeks is not consistent with the
stochastic theory.
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these models are based are invalid. For example, it is likely
that there is at least some degree of dependence of stem cell
behavior on local conditions (Bjerknes and Cheng, 1981b,
1985). The stochastic model of stem cell behavior have
formed the basis of a number of recent theories of cancer
(Whittemore and Keller, 1978; Moolgavkar and Venzon,
1979; Knudson el al., 1975; Mackillop et al., 1983). If the
results and interpretation presented in this paper is correct,
these important theories may need modification.
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