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ABSTRACT We stimulate the dynamical behavior of dissociated cytoplasm using the Reactive Flow Model (Dembo,
M., and F. Harlow, 1986, Biophys. J., 50:109-121). We find that for the most part the predicted dynamical behavior of
the cytoplasm is governed by three nondimensional numbers. Several other nondimensional parameters, the initial
conditions, and boundary conditions are found to have lesser effects. Of the three major nondimensional parameters, one

(D#) controls the percentage of ectoplasm, the second (CO) controls the sharpness of the endoplasm-ectoplasm
boundary, and the third (R#) controls the topological complexity of the endoplasm-ectoplasm distribution.

If R# is very small, then the cytoplasm contracts into a single uniform mass, and there is no bulk streaming. If R# is
very large, then the cytoplasmic mass breaks up into a number of clumps scattered throughout the available volume.
Between these clumps the solution undergoes turbulent or chaotic patterns of streaming. Intermediate values of R# can

be found such that the mass of cytoplasm remains connected and yet undergoes coherent modes of motility similar to

flares (Taylor, D.L., J.S. Condeelis, P.L. Moore, and R.D. Allen, 1973, J. Cell Biol., 59:378-394) and rosettes (Kuroda,
K., 1979, Cell Motility: Molecules and Organization, 347-362).

INTRODUCTION

The reactive flow model is a putative description of motile
cytoplasm based on the formalism of multifield fluid
mechanics (Dembo and Harlow, 1986). In this model the
cytoplasm is viewed as a finely divided mixture of two
distinct material phases: an isotropic contractile network of
actin and myosin filaments and an aqueous solution. The
laws of mass and momentum conservation for such a
system, as well as the incompressibility condition, are
formulated in terms of a system of field equations.

In the reactive flow model we usually assume that the
cytoplasm is enclosed within a fixed region of space called
a "reaction vessel." Much of the physical content of the
model is expressed by the detailed boundary conditions
used to describe the many possible interactions that can
occur between the network and solution phases and the
surrounding material.

For easy reference the field equations of the reactive
flow model, as well as boundary conditions of relevance to
the present discussion, are summarized in Appendix A.
The various symbols we use to denote important coeffi-
cients and variables of the model are listed and defined in
Table I.
A numerical algorithm for solving the reactive flow

model has been developed for the special case of a two-
dimensional reaction vessel with rectangular boundaries
(Dembo et al., 1986). This algorithm has been applied for
the analysis of some simple experimental systems involving
so-called unreactive or slowly reactive contractile networks

(Dembo et al., 1986). Here we will consider two experi-
mental systems in which chemical reaction is an essential
part of the dynamics. One system under study will be the
dissociated cytoplasm of the giant carnivorous ameba,
Chaos carolinensis (Taylor et al., 1973). We will also
consider the behavior of cytoplasm removed from the
acellular slime mold, Physarum polycephalum (Kuroda,
1979).

EXPERIMENTAL BACKGROUND

The first description of motility in dissociated cytoplasm seems to be due
to Allen et al. (1960). These authors reported that dissociated cytoplasm
of a single organism of the species Chaos chaos would continue active
motility for several minutes when confined to a narrow glass capillary
tube. Immediately after the rupture of the cell membrane, the cytoplasm
flowed in the fountain pattern typical of the intact organism. However,
this pattern was not stable and rapidly devolved into a state of random or
chaotic streaming. Random or chaotic streaming was also reported by
Thompson and Wolpert (1963) and by Pollard and Ito (1970) using
pooled high-speed extracts of cytoplasm from Amoeba proteus.

In their study of Chaos cytoplasm, Taylor et al. (1973) observed several
distinct modes of behavior, depending on the composition of the physio-
logical medium. The so-called stabilized state of the cytoplasm occurred if
the cell membrane of a single ameba was ruptured after the organism has
been placed in a physiological medium lacking both ATP and free
calcium ion. In this medium the cytoplasm flowing from the ruptured
membrane rapidly lost its fluidity and turned into an inert viscoelastic
mass that adhered to glass surfaces. The solidified cytoplasm was quite
stable for long periods and could be separated easily from the remnants of
the cell membrane. The stabilized state was viewed as analogous to the
state of rigor in muscle.

If the stabilization medium was replaced by medium lacking calcium
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TABLE I
PHYSICAL PARAMETERS OF THE REACTION

FLOW MODEL

Dependent variables
O, (x, y, t) Solution volume fraction
On (x, y, t) Network volume fraction
On(x, y, t) Network velocity field
Q5 (x, y, t) Solution velocity field
PF(x, y, t) Effective pressure field
RCD Threshold value of rending number

for C - D transition
RDE Threshold value of rending number

for D - E transition
Network volume fraction at mechanical equilibrium

Independent variables
fin Network volume fraction at chemical equilibrium
Teq Chemical relaxation time of network synthesis and

breakdown
a Swelling number
*F Effective contractile stress
4) Drag coefficient
M. Network shear viscosity
An Network dilation viscosity
M, Solution shear viscosity
A, Solution dilation viscosity
LX and LY X and Y dimensions of reaction vessel

ing a drop of endoplasm after puncture of the plasmodium. The cytoplasm
thus obtained was quickly transferred to a special solution that inhibited
remembranation. The central cytoplasmic mass had a diameter of up to
1,000 ,um and exhibited many fountains of flowing material up to 300-,Rm
long. Vigorous fountain flow continued for 30 min or longer (see Fig.
1 B). The convection cells were tightly packed and completely covered the
surface of the cytoplasmic mass, giving rise to a so-called "rosette"
morphology. The flow velocity in the individual fountains was up to 100
,m/s at the point of eruption (the velocity of return flow was not
reported). No difference in refractive index could be observed between
the outgoing and returning streams. Nevertheless, filaments could be seen
to form and contract at the extremities of individual flares. Kuroda did
not describe the effects of changing the physiological medium; in particu-
lar, an analogue of the relaxed state was not described.

After -30 min of continuous fountain activity, Kuroda observed that
the cytoplasmic mass appeared to lose its coherence and began to slowly
"spread out." Within this more diffuse organization of filaments, Kuroda
observed small foci of intense contractile activity called "contractile
centers." Formation and contraction of filaments in the vicinity of the
randomly scattered contractile centers continued for an additional 30
min. After this period, movement slowed and eventually stopped.

In summary, demembranated cytoplasm can exist in a stabilized state,
a relaxed state, and can also exhibit states of continuing automatic
motion. In many experiments the observed motility has been chaotic;
however, two related forms of coherent motility (i.e., flaring and roset-
ting) have also been reported.

COMPUTATIONAL PROCEDURES

ion but containing -1 mM Mg+2-ATP (relaxation medium), then the
cytoplasm remained passive but gradually regained its fluidity. In this
condition the cytoplasm was said to be in the relaxed state. Transient
contraction to a small percentage of initial volume was observed if the
relaxation medium was supplemented by adding calcium ion in excess of
1 gm (contraction medium).
To obtain a state of continuing automatic motion, Taylor et al. (1973)

used a medium containing Mg+2-ATP together with a level of free
calcium ion just above the threshold required for contraction (i.e.,
-0.7 x 10'6 M). The form of motility produced under these conditions
typically consisted of numerous fountains or loops of flowing material.
The fountains erupted from the cytoplasmic mass at various points,
flowed outwards for up to several hundred microns, and then return
toward the central mass. (A micrograph of a cytoplasmic mass undergo-
ing this form of motility is shown in Fig. 1.) The streaming fountains of
cytoplasm were called "flares" because of their resemblance to solar
prominences. The medium containing threshold calcium together with
Mg+2-ATP was called flare solution.

In the studies of Taylor et al. (1973), the duration of the flaring
reaction was usually between 10 and 20 min. Taylor et al. did not describe
the detailed properties of their system after flaring activity had subsided.
During the flaring reaction the maximum velocity of flow in the outward
streaming arm of a flare was typically in the range of 20-50 ,m/s. The
returning arm of a typical flare flowed at a much slower rate, and in some
cases the returning arm did not flow at all (range 0-12 ,gm/s). In addition
to its greatly reduced flow rate, the material in the returning arm of a
cytoplasmic flare had a much higher refractive index than the material in
the outward flowing arm. This change in refractive index occurred near
the outermost extremity of the flare and was presumed to represent a
change in the density of contractile filaments.
The change in refractive index at the tip of flares seems to be analogous

to the endoplasmic-ectoplasmic transition that occurs near the tip of
intact pseudopods of Chaos carolinensis. The size of flares, the speed of
outward flow, and the slower speed of return flow are also typical of the
so-called fountain flow observed in intact pseudopods.

Kuroda (1979) has reported observations of cytoplasm from Physarum
polycephalum that differ in some details from the observations of Chaos
cytoplasm. In the case of Physarum, cytoplasm was obtained by extrud-

The Reaction Vessel

The existing algorithm for integrating the reactive flow
model can only deal with a finite two-dimensional compu-
tational region that has fixed rectangular boundaries. With
these limitations in mind, we must devise a reaction vessel
that can in some sense contain or capture the dynamics of
demembranated cytoplasm.

Fig. 2 shows a schematic of a cross-section through a
cytoplasmic mass. We assume that motion does not occur
perpendicular to the plane of section. Superimposed on the
drawing in Fig. 2 are lines indicating boundaries or walls
with which we propose to delimit a finite computational
region. As shown, the computational region is rectangular
with horizontal sides of length LX and vertical sides of
length Ly.
At the bottom wall of the reaction vessel we desire to

represent the behavior of stagnant material deep within the
cytoplasmic mass. At the top wall we desire to represent
the behavior of material located beyond the outermost
extent of mixing and disturbance at the surface of the
mass. The left and right boundaries are simply artificial
cutoff sections perpendicular to the surface of the cytoplas-
mic mass.
We have experimented with two approaches for dealing

with the artificial left and right walls: periodic boundary
conditions and mirror symmetry boundary conditions.
Periodic boundary conditions were prone to induce certain
artificial modes corresponding to rotations of the cytoplas-
mic mass about a central axis. We will therefore restrict
consideration in our subsequent discussion to mirror sym-
metry conditions only.
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FIGURE 1 Experimental observations. (A) Dissociated cytoplasm of a single organism of the giant amoeba, Chaos carolinensis. Loops of
streaming material (flares) extend out from the cytoplasmic mass. Field width equals 850 pm. Reproduced from Taylor et al. (1973) by
copyright permission of the authors and Rockefeller University Press. (B) Demembranated droplet of cytoplasm removed from the
plasmodium of Physarum polycephalum. Numerous lobes of streaming material completely surround the cytoplasmic mass forming a rosette
morphology. Field width equals 2,000 Am. Reproduced from Kuroda (1979) by copyright permission of the author and the Yamada Science
Foundation.
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FIGURE 1B (Continued)

The condition of stagnation deep within the cytoplasmic
mass is expressed by the vanishing of all components of
velocity for both network and solution at the lower bound-
ary. This treatment of the lower boundary seems plausible,
but only under the assumption that the cytoplasmic mass is
sufficiently large and stable. In particular, we expect

difficulties if the cytoplasm tends to break up or "dissolve"
in some manner (cf. Results). As a check on the assump-
tion of stagnation of the solution phase, we have considered
the effects of allowing positive hydraulic conductivity of
the lower boundary (cf. Results).
We used two alternative methods of dealing with the
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FIGURE 2 The reaction vessel. To capture the essential behavior of a
dissociated mass of cytoplasm, we define an imaginary reaction vessel as
shown. At the lower wall of the reaction vessel we employ boundary
conditions that model the behavior of stagnant material well beneath the
surface of the cytoplasmic mass. We attempt to place the upper wall at a
position far enough above the surface of the mass so as to be outside the
domain of dynamical interest. The left and right walls are regarded as
simple mirror symmetry slip-planes.

boundary conditions at the top wall of the reaction vessel:
the reservoir method and the no-stick method. In the
no-stick method we assume that the top boundary is an
impermeable barrier that is free-slip and that has no
adhesive sites for network (e.g., an interface with air). An
important aspect of this treatment is that, although the top
boundary prevents upward flux of network, it offers no
resistance if network material attempts to move in the
downward direction. The detailed mathematical formula-
tion of the no-stick boundary condition was discussed
previously (Dembo and Harlow, 1986).

In the reservoir method we assume that the upper
boundary represents a permeable interface between the
reaction vessel and an infinite domain of homogeneous
solution material at constant pressure.' This implies that
the normal gradients of all components of velocity vanish
outside the upper boundary. The main advantage of the

'Without loss of generality, we take the pressure in the reservoir to be
zero.

reservoir method is that we do not prevent either network
or solution material from passing out of the reaction vessel
across the upper boundary. This much is quite realistic;
however, unlike the real situation, network material that
leaves the computational mesh is assumed to be instantly
annihilated due to depolymerization or mixing with an
infinite amount of solution material. Furthermore, we
assume that de novo chemical formation of network in the
reservoir is negligible. Thus, the only phase that is allowed
to re-enter the reaction vessel from the reservoir is the
solution phase.

Numerical Parameters
Our algorithm for integrating the reactive flow model uses
four adjustable parameters: the spacing between grid cells
along the X and Y axes (DX and DY); a parameter for
adaptively controlling the size of the time step, DEL; and a
convergence parameter for the time step iteration, EPS.
The detailed use of these parameters has been described
previously (Dembo et al., 1986).
The default values of numerical parameters in this study

were DX = DY = 9,u (40 x 40 grid), EPS = 10-3, and
DEL = 0.1. Controls for accuracy were carried out by
increasing and decreasing the numerical parameters as
described previously (Dembo et al., 1986). In such bench-
mark tests, the effects of refinements in the numerical
parameters were smaller in magnitude than effects caused
by small perturbations to the initial conditions. The major
systematic effect of refinement in spatial resolution was to
increase the sharpness of gradients of network density.
Thus our numerical solutions seem to represent smoothed
or spatially averaged approximations to the underlying
exact solutions.

Physical Parameters
In the reactive flow model the rheological and chemical
properties of the cytoplasm are described by nine coeffi-
cients. (For the present study these are taken to be constant
in space and time.) Before we compare the model with
experiment, we desire to understand the consequences of
taking any and all possible choices of these nine coeffi-
cients. We also need to consider various choices for the size
and aspect ratio of the reaction vessel (Ly and LI/Ly): a
total of 11 independent variables (see Table I). To pursue
this objective systematically, it is helpful to recognize and
use relevant scaling laws and limiting cases of the reactive
flow model. Two limiting cases are particularly important
in this regard; the inviscid solution limit and the dilute
network limit.
The inviscid solution limit is applicable provided that the

two nondimensional quantities (M, + AJ)/(,Ly) and
(M, + A,)/(Mn + A.) are both much less than 0n.
The dilute network limit requires not only these conditions
but also that 2/o << 1. We have high confidence that both
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limits are applicable in systems of biological interest (see
Dembo and Harlow, 1986, for a detailed discussion of
parameter estimates).

If we use both the inviscid solution limit and the dilute
network limit and also introduce appropriate internal
scales with respect to time, distance, density, and pressure,
then we can reduce the effective dimensionality of parame-
ter space from 11 to 5. As usual, the reduced parameter
space can be expressed in terms of a set of nondimensional
numbers. Except for changes of scale, any choice of
physical parameter that gives the same nondimensional
numbers will give the same performance of the reaction
flow model. A convenient manner in which to choose the
five fundamental nondimensional parameters is given in
Table II.

Initial Conditions
We have carried out computations based on more or less
baroque variations on two simple initial scenarios-the
chemical equilibrium scenario and the mechanical equilib-
rium scenario.

In the chemical equilibrium scenario we assume that at
the start of the reaction the network is uniformly distrib-
uted throughout the reaction vessel with density of A,n.
Usually some sort of small perturbation is added to this
basic distribution to simulate thermal fluctuations.

In the mechanical equilibrium scenario, we consider a
cytoplasmic mass that is initially in the relaxed state (i.e.,
the mass is bathed in relaxation medium). We then
suppose that a reaction is started by adding an appropriate
amount of calcium to the medium. In setting up a particu-
lar calculation of this sort we must specify three pieces of
information: (a) the initial configuration of the surface of
the cytoplasmic mass, (b) the density of network within the
cytoplasmic mass, and (c) what happens to change the
stability of the relaxed state when calcium is added.

With reference to the reaction vessel discussed previ-
ously (see Fig. 2), we can specify the initial surface of the
cytoplasmic mass by an arbitrary curve connecting the left
and right boundaries. Below this curve we set the initial
network density equal to some constant value; above the

TABLE II
NONDIMENSIONAL PARAMETERS

Parameter Symbol Definition

Rending number R# ?L2/(2M, + An)
Density ratio* D# 0,,/2
Contraction-reaction
number C# *FTeq/(2Mn + A.)

Network viscosity
ratio V# A./M.

Reaction vessel aspect
ratio A0 LX/LY

*This terminology comes from the fact that D1 -.-O/O if a is large (See
Eq. Ib).

curve we set the starting network density equal to zero. For
the most part we have investigated starting conditions in
which the surface of the cytoplasmic mass is horizontal,
with small vertical perturbations.
To specify the starting density of network within the

cytoplasmic mass, we must make an interpretation of
exactly what is meant by the "relaxed" state. First,
consider the minimal properties of the relaxed state as
documented by Taylor et al. (1973). (a) The relaxed state
of cytoplasm is a state of mechanical equilibrium (i.e., a
state in which the total kinetic energy is zero). (b) The
contractile network in the relaxed state has a step function
density distribution. (The network density is approxi-
mately constant within a well-defined region called the
cytoplasmic mass and is approximately zero outside the
cytoplasmic mass.) (c) The cytoplasmic mass in the
relaxed state is "fluid" but maintains constant volume.

Fortunately, there is only one class of solutions of the
reactive flow model that has the properties of the relaxed
state. These solutions are the states of mechanical equilib-
rium that occur when an unreactive network shrinks or
expands to the point where solvation stressed exactly
counterbalance contractile stresses (see Dembo et al.,
1986).
We conclude that in terms of the reactive flow model,

one is forced to identify the relaxed state of Taylor et al.
with the state of mechanical equilibrium of an unreactive
network. It follows that the network density in a relaxed
cytoplasmic mass can be computed by assuming a balance
between solvation and contractile stresses. In more detail,
the reactive flow model predicts that the network density in
the initial cytoplasmic mass depends only on a quantity
called the swelling number (a) and that this density is
given by the nontrivial root of the transcendental equation

of + o[O, + Qn(1 - an) = 0. (1 a)

For practical purposes the solution of Eq. la is given with
sufficient accuracy by the Pade approximation

an - (I + 2o) / (1 + av) (1 b)

To understand the role of calcium as the initiator of
motility in demembranated cytoplasm, it is sufficient to
consider the stability requirements of the initial state.
According to the reactive flow model, the equilibrium state
of an unreactive network will remain unchanged if and
only if two conditions are met. First, the swelling number
must remain constant so that Eq. 1 a continues to be
satisfied. Second, the network must remain unreactive
(i.e., the relaxation time for the chemical reaction of
network assembly and density, T<q, must be effectively
infinite). If we look at these stability conditions from the
inverse point of view, we conclude that there are only two
ways that the reactive flow model can explain the effect of
calcium. (a) We can suppose that calcium causes a change
in the swelling number, and (b) we can suppose that
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calcium causes a decrease in the relaxation time. It is also
possible that calcium should cause a change in both a- and
T.q2 Hypothesis a is equivalent to the assumption that the
network remains unreactive both before and after the
addition of calcium.

If this is the case, then the network simply undergoes a
transient expansion or contraction leading from one equi-
librium state to another. Such behavior is interesting and is
certainly observed in demembranated cytoplasm (see
Experimental Background). However, detailed calcula-
tions of transient contractions have been discussed by us in
a previous publication (Dembo et al., 1986). Thus in
referring to the mechanical-equilibrium scenario, we will
restrict consideration to hypothesis b. In summary, this
scenario assumes that, for negative times, T,,q is effectively
infinite and that the density of network in the cytoplasm is
equal to fi. At T = 0, Toq is suddenly lowered to a finite
value in response to the addition of calcium.

RESULTS

We have carried out many numerical experiments using
the various procedures outlined in the previous section. In
all cases we find that during the initial phases of a
computation the results depend strongly on the elapsed
time. However, if computations are carried to sufficiently
large times, then the results cease to evolve in time.3

Factors can be grouped according to the importance of
their influence on the long-term behavior of the model. For
example, the exact choice of initial condition has a rela-
tively minor effect on results after sufficiently long times.
Similarly the treatment of the boundary conditions, the
choice of numerical parameters, the aspect ratio of the
reaction vessel, and the network viscosity ratio all were
rather subtle in their effects on long-term behavior. These
observations led us to divide our investigation into two
phases. In phase 1 we held all factors fixed except for the
rending number, the contraction-reaction number, and the
density ratio. In phase 2 we allowed the secondary factors
to vary so as to observe modifications to the results
obtained in phase 1.

In phase 1 studies, we used the hard-wall method for the
top boundary condition, mirror symmetry conditions on the
left and right sides, and stagnation conditions at the lower
boundary. Both the aspect ratio of the reaction vessel
(Lj/L5) and the network viscosity ratio (A"/M") were set
equal to one. The initial conditions consisted of a mechani-
cal equilibrium scenario with horizontal interface and
superimposed sinusoidal perturbation. The average height
of the interface was equal to the product of Ly and the

2Calcium might or might not affect other parameters such as the network
viscosities. Such effects are not relevant in the present context since they
would not cause a destabilization of the equilibrium state.
3We use the term "evolve" advisedly. For example, a system in periodic
motion or turbulent motion does not evolve.

density ratio. This ensures that the average density of
network in the reaction vessel at the start of the reaction is

Ofn. The maximum amplitude of the perturbation was
30% of the average interface height, the phase was equal to
ir/2, and the wave length was equal to 2L. The solutions
obtained under such default conditions could be organized
into five classes according to increasing degrees of dynami-
cal complexity.

Class A. At long times the system approaches a
state of complete chemical equilibrium. This means that
the network density is equal to ti at all points in the
reaction vessel, the pressure is everywhere constant, and all
components of velocity for both solution and network
vanish.

Class B. At long times the system approaches a
state of chemical equilibrium except in a thin layer adja-
cent to the top boundary of the reaction vessel.

Class C. At long times the system approaches a
unique steady state that is far from chemical equilibrium.
In this steady state horizontal components of velocity are
zero, and the network density is monotone decreasing from
the bottom to the top of the reaction vessel.

Class D. Type D dynamics fall in the grey area
between types C and E. In type C dynamics the behavior of
the reactive flow model at long times is simple, unique, and
deterministic. In type E dynamics the behavior of the
model at long times is chaotic. In the D-type dynamical
regime, simple solutions of type C are not stable, and yet
the behavior of the model is not yet sufficiently complex as
to be chaotic. Thus we define type D in negative terms.
This is admitedly rather unsatisfactory, but the situation
will hopefully become clearer as we discuss specific exam-
ples.

Class E. At long times the system follows a slow
aperiodic tragectory through a manifold of structurally
similar unstable states (i.e., a strange attractor).

TABLE III
DYNAMICAL MODES PRODUCED IN VARIOUS

SUBREGIONS OF PARAMETER SPACE*

Nondimensional variable

Rf C,DC

A 0<R' O<C# <D'
B O<1R# C#< (I -D#)-2 D#< 1
C O< R# < RcD (I -D#) 2< C D#< I
D RCD < R < RDE (I - D#)-< C#DC< I
E RDE < RF (1 -D#)2 < C D < I

*A# and V# are both equal to 1. Other default conditions for phase 1 also
hold.
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The various dynamical categories are caused by dif-
ferent choices of the fundamental nondimensional num-
bers as summarized in Table III. Due to the purely
empirical basis for the classifications, there is an inevitable
ambiguity as to where to draw the line between some of the
classes. Except for such semantic difficulties, the various
categories we have described cover the whole of the
three-dimensional parameter space spanned by CO, R#, and
D#.
We refer to dynamical classes A and B as cases of trivial

dynamics. Class A is characterized by a density ratio
greater than one. This means that at chemical equilibrium
the network tends to expand rather than contract. Thus,
existing network swells and new network is synthesized
until the entire reaction vessel is uniformly filled. At this
point further expansion is prevented by the boundaries. In
class B dynamics the network tends to contract at chemical
equilibrium, but this contraction is effectively counter-
acted by the chemical reaction. The result is that chemical
effects dominate mechanical effects, and the network
density remains very close to chemical equilibrium except
in a thin boundary layer at the top of the reaction vessel.
This boundary layer occurs because there is always a slight
tendency for network to retract from a no-stick surface.
For the remaining three dynamical classes (C, D, and E),
the product C#(1 - D#)2 is larger than one and D# is
smaller than one. Both of these elements are necessary to
obtain nontrivial results.

Detailed physical and numerical parameters for various
computations of type C, D, and E are summarized in Table
IV. The nodal computation of type C is designated Cl.
Other type C computations are designated C2, C3, etc.
Computations of types D and E listed in Table IV are
designated DI, D2, . .. and E1, E2, . .. , respectively. Note
that Table IV gives the full complement of independent

variables actually used in various computations. This is
done for thoroughness even'though some of the parameters
are irrelevant (see preceding discussion on parameter
space). Nondimensional numbers corresponding to each
computation can be computed using the definitions in
Table II.

Fig. 3 A is a computer-generated image illustrating the
final steady state in computation C,. Within this figure the
effective pressure field, the network density field, the
network velocity field, and the solution velocity field are
displayed by four subplots. The physical time in seconds is
written at the top-center of each figure. To the left of each
subplot is an abbreviated label indicating its content. The
label on each subplot is followed by a semicolon and a
numerical scale parameter written in FORTRAN E for-
mat. As described below, these scale parameters allow
quantitative interpretation of the various subplots.
The top-left subplot in Fig. 3 A gives a color-contour

map of the natural logarithm of the normalized network
volume fraction. The reference contour in this map (blue
contour line drawn in triple thickness) is taken at Qn
(01"/0O) = 0. The scale parameter to the left of the subplot
indicates the value of the normalization constant, 00.
Contour lines in this plot are spaced at half-log intervals:
Qn(00/00) = 0, ± 1 + 3/2.... Contour lines that fall in
the range 1o-2 <O,/0O < 10 are colored green; lines in the
range 101 < 0,,/0O < 1 are colored yellow; the reference
contour is colored blue; lines in the range 1 < 0,,/0O < 10
are colored red; and lines in the range 10 < ,,/0O < o are
colored magenta.
To avoid the distracting clutter produced by contour

lines corresponding to extremely low densities, we delete
contour lines below a certain cutoff. Unless otherwise
noted, the cutoff is set at a level 100-fold smaller than 00.

In the present study we consistently take the scale

TABLE IV
PARAMETERS OF SELECTED COMPUTATIONS*$I

an Teq.F a Mn An Ml A, Lx Ly

s dyn/cm2 P P P P P/cm2 cm cm

Computations
C, 1.0 x 10-3 1.5 x 10' 6.0 x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0 x 10-2 1.0 x 10-2 1.0 x 108 3.6 x 10-2 3.6 x 10-2
C2 1.0 x 10-3 3.0 x 10' 6.0x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0 X 10-2 1.0 X 10-2 1.0 x 108 3.6 x 10-2 3.6 x 10-2
C3 1.0x 10-3 3.0x 10' 6.0x 104 8.0x 102 2.0x 104 2.0x 104 1.0x 10-2 1.0x 10-2 1.0 x108 3.6x 10-2 3.6x 10-2

El 1.0 x 10-3 3.0 x 10' 6.0 x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0 X 10-2 1.0 X 10-2 1.0 x 1010 3.6 x 10-2 3.6 x 10-2
E2 1.0 x 10-3 3.0 x O' 6.0 x 104 1.0 X 103 2.0 x 104 2.0 x 104 1.0X 10-2 1.0 x 10-2 2.0 x 10'° 3.6 x 10-2 3.6 x 10-2
E3 1.0 x 10-3 3.0 x 10' 6.0x 104 1.0 x 102 2.0 x 104 2.0 x 104 1.0 x 10-2 1.0 x 10-2 2.0 x 10'0 3.6 x 10-2 3.6 x 10-2
D, 1.0 x 10-3 3.0 xlO' 6.0x 104 6.0 x 102 2.0 x 104 2.0 x 104 1.0 x 10-2 1.0 x 10-2 1.0 x 109 3.6 x 10-2 3.6 x 10-2
D2 1.0 x 10-3 2.5 x 10' 6.0x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0X 10-2 1.0 X 10-2 1.0 x 109 3.6 x 10-2 3.6 x 10-2
D3 1.0 x 10-3 3.0 x 1O' 6.0x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0X12 1.0X 10-2 0.7 x 109 3.6 x 10-2 3.6 x 10-2
D4 1.0 x 10-3 3.0 x 1O' 6.0x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0 x 10-2 1.0 x 10-2 1.0 x 109 3.6 x 10-2 3.6 x 10-2
D5 1.0 x 10-3 9.0 X lO' 6.0x 104 4.0 x 102 2.0 x 104 2.0 x 104 1.0 x 10-2 1.0 x 10-2 1.0 x 109 3.6 x 10-2 3.6 x 10-2
D6 1.0 x 10-3 9.0 x 1O' 6.0x 104 6.0 x 102 2.0 x 104 2.0 x 104 1.0 x 10-2 1.0 x 10-2 1.0 x 109 3.6 x 10-2 3.6 x 10-2

*Default boundary conditions: hard-wall method for the top boundary, zero flux at the lower boundary, and mirror symmetry at the left and right
boundaries.
tDefault initial conditions: mechanical equilibrium scenario. The initial surface of the cytoplasmic mass was flat with small verticle perturbations.
§Default numerical parameters: DX = DY = 9 x 10-4 cm (i.e., 40 x 40 grid), EPS = 10-3 , DEL = 0.1.
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FIGURE 3 The C-mode. A-C show the solutions obtained at long times in computations Cl, C2, and C3 (detailed parameters are given in
Table IV), respectively. All cases of the C mode are characterized by a completely stable and unique final state. In this final state the network
density distribution decreases in a monotone fashion from the bottom to top of the reaction vessel. Solutions are independent of the horizontal
coordinate, and horizontal components of velocity vanish. If the CO is much greater than one, then the reaction vessel can be approximately
divided into subregions of endoplasm and ectoplasm. Increasing the CO causes an increase in the density gradients at the interface between
endoplasm and ectoplasm without changing the position of the interface (compare C, and C2). Increasing the DO causes an expansion of the
ectoplasmic volume and simultaneously decreases the maximum density within the ectoplasm (compare C2 and C3).

parameter of network density contour plots equal to the
chemical equilibrium density (i.e., 00 = 6,). This means
that regions of a reaction vessel enclosed by the reference
contour correspond to regions where the balance of chemi-
cal reaction favors breakdown of network. Below the
reference contour, the balance of chemical reaction favors
formation of network.
The top right subplot in Fig. 3 A gives a color contour

map of the effective pressure field. The scale parameter to
the left of the pressure subplot gives the spacing between
pressure contours in dynes /cm2. In most figures the
reference contour PF = 0 is shown as a thick blue line.
However, in Fig. 3 A the zero pressure contour is not
visible because it coincides with the top boundary of the
reaction vessel. In cases where hard-wall boundary condi-
tions are used, the pressure field is normalized so that the
mean pressure acting on the upper boundary is zero. This

means that contour lines corresponding to negative pres-
sure do not occur.
The lower left subplot in Fig. 3 A is a vector map of the

network velocity field. In producing this map, vectors are
drawn emanating from various evenly spaced points
throughout the reaction vessel. The direction of the arrow-
head on each vector shows the direction of network flow,
and the length of the tail of the arrow is proportional to the
speed of flow (if the speed is very slow, then the tail is not
visible.) The scale parameter to the left of the subplot gives
the speed in centimeters per second corresponding to an
arrow of standard length. The standard length is equal to
the spacing between the tick marks that border the subplot.
The magnitude of the scale parameter is adjusted inter-
nally so as to prevent neighboring arrows from overlap-
ping.
The lower right subplot in Fig. 3 A is a vector map of the
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solution velocity field. The format of the solution velocity
map is the same as for the network velocity map except
that the scale parameter on the two subplots is usually
different.
The basic behavior illustrated by Fig. 3 A is typical of all

class C computations. In the upper portion of the reaction
vessel (yellow and green contour lines) the network density
is below On. In the lower portion (red contours) the density
is above 6,n. On balance, network is formed in the upper
regions of the vessel, and contractile stresses pull the
network down towards the lower regions where it is broken
down.
As a result of the incompressibility constraint, the

downward flow of network creates a countervailing pres-
sure gradient that in turn drives an upwardly flow of
solution material. The upward flow of solution is very slow
compared with the downward flow of network. (Compare
the scale parameters on the velocity vector maps in Fig.
3 A). Despite its slow velocity, the actual volume trans-
ported by the solution flow is everywhere equal and
opposite to the volume transported by the network flow.
This means that the total volume flux is identically zero at
all points in the reaction vessel (i.e., OAsls + 6,,n = 0).
The fact that total volume flux is zero in the C mode

presents an interesting experimental difficulty. This is
because there are no dramatic convection currents to serve
as unequivocal indicators of motility. To demonstrate the C
mode would probably require using some sort of special
marker particle or stain to follow the steady inward motion
of the dilute network filaments in the region surrounding
the cytoplasmic mass. These considerations may help
explain why C-type dynamics were not observed by Taylor
et al. or by Kuroda.

Fig. 3 B shows the results of computation C2 (detailed
parameters in Table IV). C2 is similar to C1 except that the
contraction-reaction number, CO, is increased by a factor
of two. This change causes contour lines corresponding to
low network densities to be displaced downward while lines
corresponding to high densities are displaced upwards.
Thus the gradient of network density at the interface
between the low and high density regions greatly increases,
but the position of the interface and the value of the
maximum density remain the same. If the contraction-
reaction number is further increased, the network density
distribution more closely approaches a step function. If the
contraction-reaction number is decreased, gradients of
network density decrease gradually until C' (1 - D#)2
equals one. At this point there is a transition to class B
dynamics.

Both computations Cl and C2 are characterized by a
rather sharp division of the reaction vessel into regions of
high and low network density. This dynamical feature
occurs irrespective of dynamical class provided the CO is
much greater than 1. (In practice a CO of 10 or larger is
usually sufficient.) The sharp distinction between regions
of high and low network density predicted by the reactive

flow model may provide an explanation of the common
cytological observation of distinct regions of endoplasm
and ectoplasm. Whether or not this proposal is correct, it is
convenient to use cytological nomenclature. We will thus
refer to the portions of a reaction vessel where the network
density approximates 63n as ectoplasmic regions. We will
refer to regions of low density as endoplasmic regions. We
will never use these terms to refer to material in the "inner"
and "outer" portions of the reaction vessel.
The degree of sharpness of the density gradient observed

at an endoplasm-ectoplasm interface can be affected by
the choice of numerical parameters (see section on numer-
ical parameters). Thus it is important to point out that in
the case of computations Cl and C2, the gradients are very
well resolved by the default grid. This was shown by
control computations in which changing the spatial resolu-
tion had no detectable effect on the spacing of contour
lines. Therefore, in Fig. 3 A and B the degree of smooth-
ness of the transition from low to high density regions is
real and is not significantly affected by numerical artifact.
The default grid causes detectable numerical smoothing of
the endoplasm-ectoplasm interface in type C computa-
tions only if CO >_ 60.

Fig. 3 C shows the results of computation C3 (detailed
parameters in Table IV). C3 is similar to Cl except that the
value of D# has been increased by a factor of two. One
consequence of this change is a twofold increase in the
fraction of the reaction vessel occupied by ectoplasm.
Simultaneously there is a proportional decrease in the
maximum network density within the ectoplasm. (Note
that only one red contour line appears in Fig. 3 C.) In other
words, the total mass of network in the ectoplasmic region
remains the same, but the volume occupied by the region
has been increased.

In all three computations discussed thus far, it can be
verified that the fraction of the reaction vessel occupied by
ectoplasm in the final state is very close to the value of the
density ratio. This observation turns out to be quite general
(see Appendix B for a derivation).
The general correlation between density ratio and the

fraction of ectoplasm provides a simple experimental
means of determining the density ratio. For example, from
Fig. 1 A it can be seen that the volume of the central
ectoplasmic region can be approximated by a sphere. For
the volume of the reaction vessel, we take a sphere at the
same center that includes the outermost extent of mixing
and disturbance caused by the reaction. Such a sphere has
radius of two or possibly three times the radius of the
ectoplasm. We thus conclude that to simulate this experi-
ment using the reactive flow model, we must use a density
ratio of between (1A)3 and (1/3)3. In a two-dimensional
analysis of the experiment, the appropriate density ratio is
in the range 3) 2

Fig. 4, A-C illustrates some cases of class E dynamics
(computations El, E2, and E3). In both classes E and C, the
boundary and initial conditions predispose the network to
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FIGURE 4 The E mode. A-Cshow the solutions obtained at long times in computations El, E2, and E3, respectively (detailed parameters are
given in Table IV). All cases of the E mode are characterized by a chaotic or aperiodic final state in which the flow and distribution of network
and solution phases constantly change. El represents a case with rending number of 216 and density ratio of 0.2. For these parameters large
amorphous blobs or clumps of ectoplasm of constantly varying shape and position are suspended in streams of vigorously flowing endoplasm.
E2 shows a case with rending number of 432 and density ratio of 0.5. For such parameters endoplasm is confined to a system of branching
channels that cut through the ectoplasmic material. In contrast, E3 shows a case with rending number of 432 and density ration of 0.05. As in
the case of type C computation, decreasing the density ratio decreases the proportion of ectoplasm while increasing the maximum density.

retract from the top boundary and to stick to the lower
boundary. The new element in class E is the fact that
localized lateral contractions are now fast compared with
motion along the vertical axis. Thus, the network in the
upper regions of the reaction vessel collects into a number
of amorphous clumps or blobs of ectoplasm before reach-
ing the lower regions. Each of these ectoplasmic blobs is
suspended in violent currents of streaming endoplasmic
material. Each blod acts as an independent focus for local
contractile activity; network material is added by accretion
to the periphery of the blob and lost due to chemical
breakdown in the interior. The original ectoplasmic mate-
rial of the cytoplasmic mass has been absorbed into the
suspended ectoplasmic clumps. Only a thin layer of mate-
rial and a few adherent clumps remain at the bottom of the
reaction vessel. The latter are probably artifacts caused by
the bottom boundary condition. All but a faint semblance

of vertical polarity, so prominent in class C dynamics, has
been lost.

In all cases of class E dynamics, the dynamical state at
long times is turbulent or chaotic. This means that on a
slow time scale the dynamical state continuously changes
in a random non-evolutionary fashion. Some of the ecto-
plasmic blobs grow; others shrink; all slowly tumble and
rotate. Occasionally two clumps come too close together
and fuse. Occasionally a large gap develops between
neighboring clumps, and a new clump spontaneously forms
to fill the void. Occasionally a very large clump will
undergo fission. In short, the details are constantly chang-
ing but, in a time-averaged or probabilistic sense, the basic
situation remains constant. In terms of the jargon of
dynamical systems theory, one would say that the strange
attractor was of low dimensionality with respect to the
phase space.

DEMBO Mechanics of Motility in Dissociated Cytoplasm 1175



If the contraction-reaction number is large compared to
one, then class E computations display a strong endo-
plasm-ectoplasm differentiation. As in all such cases, the
percentage of ectoplasm is approximately equal to the
density ratio even though the disposition and organization
of the ectoplasm is constantly changing. In computation
E1, ectoplasm fills 20%O of the reaction vessel. Computa-
tion E2 illustrates what happens when there is 50% ecto-
plasm (Fig. 4 B). As can be seen, if both rending number
and percent ectoplasm are high, then the random flows of
solution material become confined to a branching and
anastomosing network of channels. In computation E3,
there is only 5% ectoplasm. In this case, the majority of the
reaction vessel is filled by endoplasm, with uniformly
scattered foci of very dense ectoplasm.

It is difficult to resist noting the similarity between
solutions of the type shown in Fig. 4 B and the well-known
cytoplasmic organization of Physarum polycephalum.
This similarity, though suggestive, does not extend to the
periodic flow patterns observed in Physarum (i.e., shuttle
streaming). In the reactive flow model the endoplasmic
flow, though confined to channels at high D#, is nonethe-
less aperiodic and has only short range spatial correlations.
Some additional factor (e.g., a chemical oscillator) is
probably necessary to bring order out of chaos.

Starting with parameter values that yield type C
dynamics, one can obtain type E dynamics by increasing
the value of the rending number, leaving the density ratio
and the contraction-reaction number fixed (compare com-
putations C2 and E2). This means that by progressively
increasing the value of the rending number, one can study
the so-called "path to chaos." Such studies have become
fashionable in recent years because they sometimes reveal
universal features such as the well-known period doubling
cascade (Feigenbaum, 1980).
We are loath to be fashionable, but it is nevertheless true

that progressive variation of the rending number at fixed
density ratio and contraction-reaction number is a natural
and systematic approach to exploring the complexities of
type D behavior. By such studies we find that for fixed
initial conditions there is always a very sharp threshold for
the transition from class C to class D. We denote the
threshold value of the rending number for the C - D
transition by RCD. We have determined the value of RCD by
a series of numerical experiments for various values of Co
and D#. Within the error of these calculations, RCD does not
seem to depend on the CO. RCD is weakly dependent on D# if
D# is small, but RCD -- as DO 1. Note that if CO
(1 - D#)2 < 1, then the dynamical class is independent of
the rending number (i.e., class B cannot progress to class
D).

After the sudden onset of type D behavior, further
increases in the rending number at first produce smooth
variations in dynamical behavior. In this interval, increas-
ing the rending number causes the long-term dynamical
state of solutions to become more and more complicated by

FIGURE 5 The crypt subtype. The final steady state in computation DI
is shown. Crypts or vacuoles of endoplasm surrounded by ectoplasm are a
commonly found subtype of the D mode. This subtype is favored at
intermediate values of C', particularly if DO is large.

a series of small transitions. Eventually, if the rending
number is made large enough, one obtains fully developed
class E dynamics. We surmise from these observations that
there exists a value of the rending number, RDE, at which a
D - E transition occurs.

Precise determination of RDE requires use of some
quantitative measure of the degree of chaos (e.g., power
spectrum or Lyapunov exponent). For the present study,
there seems little to be gained by using such measures since
they are expensive and since we arq aware of no cases
where they significantly contradict or expand one's quali-

FIGURE 6 The layer subtype. The final state in computation D2 is
illustrated. A layer of ectoplasm suspended in the middle of the reaction
vessel frequently occurs in type D solutions if the CO is not too large. In the
case shown, the solution is not steady but demonstrates complex waves of
contraction that pass back and forth across the suspended layer.
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tative impression of random versus orderly behavior. On
such a qualitative basis we find that the range of type D
behavior spans no more than a factor of five in the rending
number (i.e., 1 _ RDE/RCD _ 5). The ratio RDE/RCD
approaches its lower limit as CO (1 - D#)`2 and
approaches its upper limit as CO-oo.

Within the general category of class D solutions, we
have observed three subtypes based on the morphology of
the endoplasm-ectoplasm distribution. These subtypes are
called crypts, layers, and fortifications. Fig. 5 shows an
example of a layer-type solution (computation D1); Fig. 6
shows a case of a crypt-type solution (computation D2);
and Fig. 7, A-D show some cases of fortification-type
solutions (computations D3-D6). Parameter values for
these various computations are listed in order of appear-
ance in Table IV.

It can be verified that the length of the endoplasm-
ectoplasm boundary in a D-type solution is always greatly
increased relative to the underlying C-type solution. At the
same time the volume of the endoplasmic and ectoplasmic
regions in the two sorts of solutions remains approximately

the same (compare Fig. 7, A and B with 3 B). Fortifica-
tions, crypts, and layers simply represent several topologi-
cally distinct mechanisms for producing this sort of
change. This observation is quite revealing as to the
underlying physical factors that cause the breakdown of
the C mode. The instability seems to be driven by the need
to make a shorter path for the outflow of solution material
from the interior of the ectoplasmic mass. Alternatively,
one could say that the transition is driven by the need to
relieve the buildup of pressure inside the ectoplasmic
areas.

Kinetically, the crypt subtype (Fig. 5) frequently occurs
by growth of point-like defects in the ectoplasmic layer.
Ectoplasm retracts away from such points in a motion that
resembles the tearing of a stretched fabric. Retraction of
the ectoplasm ultimately results in an observable crypt. As
the crypt grows in size, the stresses driving the instability
are gradually relieved, and the situation finally reaches a
stable equilibrium. The example shown in Fig. 5 represents
a single very large crypt formed by fusion of three smaller
crypts. The solution shown is a completely stable steady

FIGURE 7 The fortification subtype. A-D illustrate the final steady states in computations D3, D4, D5, and D6, respectively. Comparison of
D3 and D4 illustrates the effect of increasing R#. Comparison of D4 and D5 illustrates the effect of increasing CO. Comparison of D5 and D6
illustrates the effect of increasing DO.
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state. In other cases, particularly if D# . 1, a number of
small crypts can be scattered at various points.

Outwardly, the main observable consequence of the
crypt subtype is a bulging of the surface of the cytoplasmic
mass at points overlying each crypt. Such bulges lead to
vigorous eddies or convective cells in the endoplasmic
material outside the cytoplasmic mass (Fig. 5, lower left).
In calculations that use the reservoir method for the top
boundary condition, it can be shown that such convection
cells will extend for hundreds of microns into the outer
solution and can have very fast flow velocities (c.f., phase II
computations). It therefore seems possible that the rossette
phenomenum observed by Kuroda can be explained as a
manifestation of the crypt subtype of the D mode.

In support of this view, we note that if one looks carefully
at the edge of the cytoplasmic mass in Fig. 1 B, one can
detect what appear to be small bumps or blebs.
The layer subtype is simply a special case of the crypt

subtype in which the crypts grow and fuse with each other
to the point where they completely span the reaction vessel
from left to right. Layers can also form by direct fusion of
clumps in the upper part of the reaction vessel. In the
example shown in Fig. 6 there are a few clumps of network
remaining attached to the lower boundary. In other cases
the lower boundary is completely covered by a continuous
layer of ectoplasm.
The layer subtype is very stable and uniform at low

values of the CO (i.e., values less than - 15). At large values
of the CO, layer solutions are subject to complex limit cycle
oscillations, indicating that they are of marginal stability
(the example shown in Fig. 6 is such a case). At even larger
values of CO, layers will, in fact, break apart into separate
clumps.

In a three-dimensional system, the layer subtype of the
type D mode would correspond to a thick spherical shell of
ectoplasm completely surrounding a central core of endo-
plasm. When viewed in this way, the relation of the crypt
and layer subtypes is obvious. In both cases it seems that a
cytoplasmic mass can swell and fill with one or more
internal pockets of endoplasm like a balloon. This is rather
a dramatic prediction of the reaction flow model, but we
know of no experimental observations that might corre-
spond to such a structure. This may be because crypts and
layers are unstable in three-dimensional space. Neverthe-
less, it would be of interest to somehow fix and section some
dissociated masses of cytoplasm to see whether or not crypt
and/or layer solutions can occur experimentally.

Kinetically, fortification solutions occur in three ways.
Crypts can develop breaks in their top surface, creating a
passage for flow of solution out of the interior of the
cytoplasmic mass. Alternatively, clumps can form in the
region outside the cytoplasmic mass. Such clumps can then
be pulled downward until they contact and fuse with the
surface. Finally, small perturbations in the surface of the
cytoplasmic mass can grow by accretion or retraction until

large prominences and/or cavities develop. In all three
cases the final result is the same.

Consider the general similarities of type D solutions that
have the fortification morphology. In common with class C
computations, there is a strong top-to-bottom polarity in
the reaction vessel. Network is synthesized in the upper
regions of the vessel and flows downward due to contractile
stresses. In the ectoplasmic regions at the bottom of the
reaction vessel, the network is disassembled for recycling.
In common with class E computations, contractile stresses
produce some tendency for the network to aggregate
laterally as it flows downward. However, instead of form-
ing disconnected blobs, the network collects into arching
ectoplasmic protrusions. Within the protrusions, the net-
work continues to flow downward toward the main cyto-
plasmic mass, but at a greatly reduced speed.

Because of the relatively high network density, the drag
force acting on the solution phase within ectoplasmic
protrusions is large. This causes both network and solution
within protrusions to flow in the same direction with almost
the same speed. Thus, unlike the case of class C motion, the
volume flux does not vanish at all points. Channels of
downward volume flux follow the protrusions of high
network density.
To satisfy the condition of incompressibility, it is neces-

sary to balance the channels of downward volume flux by
channels of upward flux. When network material moves
laterally to form ectoplasmic protrusions, regions that are
somewhat depleted in network remain behind. Thus,
between the ectoplasmic protrusions there are cavities of
endoplasm that offer reduced hydraulic resistance to the
passage of solution. In response to the high pressure at the
base of the reaction vessel, the upward flow of solution
through these endoplasmic cavities is quite fast.
The detailed form and behavior of fortification, crypt,

and layer solutions can be predictably altered by variations
in CO, D#, and R#. For example, in the case of the
fortification subtype increasing the CO causes sharper
gradients at the endoplasm-ectoplasm interface. A sharp
interface can support fine details such as sharp corners,
bumps, and indentations. Large values of CO also decrease
the height of protrusions and increase the thickness of the
ectoplasmic layer at the lower boundary (compare Figs.
7, B and C).

Increases in the rending number cause the ectoplasmic
protrusions to become longer, more vertical, and more
closely spaced (compare A and B of Fig. 7). If the value of
R 0 is close to RDE, then the ectoplasmic protrusions
become unstable and tend to pinch off at the tips. If this
happens, clumps of ectoplasm can be suspended in the
outer portions of the reaction vessel overlying the typical
fortification pattern. Such hybrid solutions display com-
plex limit cycles.

Fig. 7 D illustrates the characteristic form of the fortifi-
cation subtype when the value of D# is large (compare C
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and D of Fig. 7). This illustration is interesting because the
protrusions of ectoplasm are little more than small bumps
while the endoplasmic pocket remains wide and deep. As in
the case of the crypt solutions, unless sections are taken,
the only manifestation of such a solution would be the
eddies of flowing endoplasm that lie outside the cytoplas-
mic mass.

In the results discussed thus far, all factors except for the
primary nondimensional numbers CO, R#, and D# have
taken their default or phase I values. We will now consider
the effect of secondary factors. These secondary factors
are: the initial conditions, the boundary conditions, the
aspect ratio of the reaction vessel (A #), and the viscosity
ratio (V#). As far as we can tell from our numerical studies,
these latter factors have negligible effects except under
circumstances where the balance of primary factors is close
to a turning point. Thus for the most part, if CO, R#, and D#
are fixed, then a type A, B, C, D, or E computation will
remain of the same type no matter how one varies the
secondary factors. On the other hand, secondary factors
can cause changes in the detailed features of a computa-
tion; for example, changes in initial conditions can affect
the subtype of a type D computation.

Initial conditions can also affect the transition from the
C mode to the D mode. In other words, the values of RCD
given in Table V refer only to a particular initial condition.
By changing the initial condition, it is possible to increase
or decrease the value of RcD by up to a factor of two. This
effect is most pronounced when the CO is large (i.e.,
CO > 30). We conclude that for large CO, there is a range of
R# such that both the C mode and the D mode are locally
stable. In this range the C mode will break down only if a
sufficiently large perturbation of appropriate wavelength is
imposed (the default initial conditions are close to optimal
for breakdown of the C mode). This makes a testable
experimental prediction: that under slightly subcritical
conditions a moderate mechanical perturbation such as
pricking with a needle or sucking with a micropipette can
induce or "excite" a transition from a state of low or
invisible activity (i.e., the C mode) to a state of high
activity (i.e., flaring).

TABLE V
CRITICAL POINTS FOR THE C - D TRANSITION*

DE

RCDt 0.1 0.2 0.4 0.8

C#
3 11.5+2 15.1 ±2 00 00

10 11.5 ± 2 15.1 + 2 23.8+ 2 0

30 10.5 + 2 14.0 + 1 19.4 +2 108 + 25

*Phase 1 default conditions were used for all determinations. In particu-
lar, Vi and A 4 are both equal to one.
tAn RCD value of implies that no transition to Class D could be detected
for rending numbers of up to 103.

FIGURE 8 The reservoir boundary condition. Parameters in this compu-
tation are matched with D4 (Fig. 7 B) except that the reservoir method is
used for the top boundary condition instead of the hard wall method.
Notice the change in the solution velocity field.

Variations of the network viscosity ratio (V# = A"/M")
between 0 and 10 can shift the subtype of class D computa-
tions and cause other minor variations similar to the effects
of perturbing the initial conditions. Aside from such small
effects, it seems that for the most part the behavior of the
reactive flow model depends only on an effective or lumped
network viscosity, 2Mn +A±

Fig. 8 shows a computation that is exactly matched with
the computation shown in Fig. 7 B, except that it uses the
reservoir method to describe the top boundary condition.
By comparing Figs. 8 and 7 B, it can be seen that there is
very little change in the general motion and distribution of
the network phase. The magnitude of these changes is
similar to the magnitude of change caused by variation of
the initial conditions. In contrast, comparison of the solu-
tion velocity fields for Figs. 8 and 7 B shows that in the
hard-wall method an eddy or vortex of solution is trapped
against the upper boundary, whereas in the reservoir
method this vortex does not exist since mass in the solution
phase can freely leave the reaction vessel through the top
boundary. Except for such minor but interesting effects, we
have found no cases where the treatment of the top
boundary is important.

In cytoplasmic flaring, it is observed that endoplasmic
material erupts from the surface of the cytoplasmic mass.
Concerning such eruptions, it is important to know the
source of the fluid. A distant source of fluid implies that
this is a tendency for solution phase material to percolate
deep into the interior of the cytoplasmic mass. Such deep

4A similar result was obtained previously in our study of unreactive
network (Dembo et al., 1986). However, in that case there was a slightly
different definition of effective viscosity.
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percolation could allow contraction of network at one point
on the perimeter of the cytoplasmic mass to drive an
eruption of endoplasm at a distant point. Furthermore, this
sort of phenomenon would contradict our assumption of
zero flux at the bottom of the reaction vessel. To investi-
gate the possibility of deep percolation, we carried out
controls in which a large hydraulic permeability of the
lower boundary of the reaction vessel was assumed. In such
computations there is some percolation of fluid through the
lower boundary. But for realistic values of the permeabili-
ty, the velocities of flow are negligible. This is because the
pressure head caused by contraction at the base of an
ectoplasmic protrusion has many opportunities to be dissi-
pated locally. In particular, there is less resistance if
solution flows outward or laterally rather than down into
the interior.

Fig. 9 illustrates the effects caused in a class D computa-
tion if the width of reaction vessel is increased while the
height remains unchanged. All parameters for the compu-
tation shown in Fig. 9 are the same as in D2 (Fig. 7 B)

FIGURE 9 The aspect ratio of the reaction vessel. Parameters in this
computation are matched with D4 (Fig. 7 B) except that the aspect ratio
of reaction vessel is doubled. As shown, use of a wide reaction vessel
simply leads to quasi-periodic repetition of the tableau found in a square
vessel.

except that the value of Lx is doubled. In many such
matched computations we find that if the width of the
reaction vessel is increased (i.e., ifA #> 1), then in the final
steady state there is little effect on the dynamical mode or
on spatially averaged quantitative features of the motion
(compare Fig. 9 with Fig. 7 B).
We conclude that a wide reaction vessel simply leads to a

quasi-periodic repetition or piecing together of tableau that
are similar in structure and size to the patterns seen in a
square reaction vessel. The natural spacing between pro-
trusions is always about twice the height of an individual
protrusion. The natural spacing is independent of the
initial conditions. We conclude that the use of mirror
symmetry boundary conditions on the left and right walls
of the reaction vessel and the use of square reaction vessel
does not preclude an analysis of laterally extended physical
systems.

DISCUSSION

A necessary feature of any successful mechanical model of
the cytoplasm is the existence of states of continuous
automatic motion. The computations we have reported
here demonstrate that the reactive flow model satisfies this
fundamental requirement. For states of automatic motion
to occur in the reactive flow model, an appropriate form of
the chemical reaction of network assembly and breakdown
is an absolutely indispensable ingredient. The form of the
terms describing the chemical reaction in the reactive flow
model [i.e., the term (bOn - 0O,)/T,q in Eq. A3] is such that
chemical reaction tends to produce a distribution of con-
tractile network that has high entropy (i.e., a uniform
distribution). Mechanical factors tend to produce a distri-
bution of low entropy (i.e., a clumped or contracted
distribution). Generalized models that retain the spirit of
the dialectic between mechanics and chemistry envisioned
by the reactive flow model will also predict continuous
automatic motion.

In many of the computations we have described there
exists a sharp dichotomy between regions of low and high
network density. After some attempts, we have found it
very difficult to understand or discuss the predictions of the
reactive flow model without introducing terminology (i.e.,
the terms "endoplasm" and "ectoplasm") for denoting this
dichotomy. (We could have just as well used the terms
"sol" and "gel," but these have undesirable rheological
connotations.) The endoplasm-ectoplasm dichotomy de-
rives from the form of the constitutive law governing the
combined stress produced by solvation and contraction,
i.e., the term lI/F[On + C(O, + Qn As)] that appears in Eq.
A5. The essential factor is that as the network density
increases, there is a point at which the stress driving
contraction vanishes. A large class of models that include
this properly will also give rise to an endoplasm-ectoplasm
dichotomy.

For many years cell biologists have recognized that
something resembling what we call the endoplasm-
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ectoplasm dichotomy exists in the cytoplasm of amoeboid
cells. Furthermore, parameters such as "the percentage of
gel" have long been measured and have been found to have
important correlations with physiological activity (see Al-
len, 1961, for a discussion of these data). In light of these
facts, we presently regard the predicted existence of endo-
plasm and ectoplasm to be a successful and desirable
aspect of the reactive flow model. We know of no other
model that offers a quantitative formulation of the free
boundary problem of endoplasm and ectoplasm nor one
that offers the practical possibility of computing the behav-
ior of these two elements. Nevertheless, it must be remem-
bered that this whole house of cards rests on a question of
interpretation of remote observations. It is necessary to
obtain better evidence that the regions of high network
density predicted by the reactive flow model are actually
equivalent in all relevant details to the ectoplasmic regions
of real cells.
Our analysis of the reactive flow model has brought to

light the importance of dynamical modes and of the
interconversions of dynamical modes. The results of Taylor
et al. and of Kuroda establish that the mechanical activity
of dissociated cytoplasm also falls naturally into various
modes. Interconversions between modes were shown to
occur as a result of depletion of the physiological medium
or as a result of specific alterations in the medium.
Of the various modes of motility predicted by the

reactive flow model, the chaotic, or E mode, has the
greatest degree of experimental support. An example of
such support is Kuroda's observation of a regime consisting
of scattered contractile centers; other examples are dis-
cussed in the section on experimental background.
Recently it has even been possible to obtain chaotic modes
in reconstituted cytoplasm consisting of specified amounts
of purified actin, myosin, and other well-characterized
reagents (Higashi-Fujime, 1982).
The prevalence of type E behavior under in vitro condi-

tions is a predictable and natural consequence of the phase
structure of parameter space (see Table III). A system that
has enough contractility to give rapid motion will satisfy
the condition CO (1 - D#)2 > 1, and any system that has a
sufficiently large volume will have a rending number
greater than RDE. To obtain the other modes predicted by
the reactive flow model, physiological conditions and sys-
tem size must be controlled within specified tolerances.

In terms of the various dynamical modes of the reactive
flow model, one naturally identifies the cytoplasmic flares
reported by Taylor et al. as a case of the fortification
subtype of the D mode. Some of the simulations we have
presented of the fortification mode (particularly D5) have
many of the basic features described by Taylor et al.:
material flows outward from the surface of the cytoplasmic
mass for a considerable distance, makes a loop, and
returns. Near the point of turning there is an endoplasm-
to-ectoplasm transition. The relative rate of outward endo-
plasm flow is much faster than the speed of downward flow

within the protrusion. The speed of return flow is highly
variable and can even be zero if the rending number is such
that the ectoplasmic protrusion is close to pinching off
from the main cytoplasmic mass. We have even arranged
the choice of physical parameters (see Table IV) so that
the actual size and spacing of the ectoplasmic protrusions
and the actual flow velocities in computations D3-D6 are in
rough agreement with the observations of Taylor et al.

Although the reactive flow model can reproduce much
of the detail observed in the flaring reaction, other aspects
of the simulations are not so satisfactory. Even in the best
cases, the flares that one obtains numerically are too thick,
especially at the base; and they lack the kind of long,
graceful loops and bends described by Taylor et al. Fur-
thermore, the ratio of inter-flare spacing to flare height is
too large by at least a factor of two. Part or all of these
difficulties could arise from the fact that the numerical
simulations are two-dimensional (i.e., numerical flares are
flat, whereas real flares are cylindrical).
A related source of error could arise because the simula-

tions neglect the effects of adhesion between the cytoplasm
and the glass slide and/or coverslip. Other factors that
could contribute to the deficiencies in our calculations are
discussed in detail elsewhere (see Appendix I of Dembo
and Harlow, 1986).

Consistency with the reactive flow model requires that
the rosettes observed by Kuroda be interpreted as a case of
type D behavior. However, it is not clear whether the
phenomena should be regarded as an example of the crypt
subtype or of the fortification subtype (see discussion of
Figs. 5 and 7 D). In either event, the basic configuration of
a large ectoplasmic mass surrounded by a close packed
array of vigorous convection cells can be obtained. For both
fortification and crypt solutions, the model predicts that
each convection cell is associated with a small bump or bleb
on the surface of the ectoplasm. Close examination of Fig.
1 B reveals the presence of bumps of the sort expected.

In addition to an account of the existing observations,
the reactive flow model makes several predictions about
the systems of Taylor et al. and Kuroda that offer the
possibility of additional tests. The model predicts that for
certain conditions the system of Taylor et al. will give rise
to states of E type behavior analogous to the contractile
centers reported by Kuroda. The model also predicts the
existence of C-type modes for both systems. According to
the model, a simple way to induce E-type behavior would
be to proportionally enlarge the volumes of the cytoplasmic
mass and the physiological solution. C-type behavior could
be induced by scaling down the volumes. Finally, for
special conditions the model predicts the occurrence of
endoplasmic crypts within the cytoplasmic mass for either
system.

In formulating models of cytoplasmic mechanics (e.g.,
the frontal contraction model or the ectoplasm contraction
model), there is a tendency to focus excessively on the site
or locus of contractile activity. This implicitly leads to
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violations of the principal of material objectivity. In the
case of contractile networks, material objectivity requires
that the various filaments of the network can have no a
priori knowledge of their position in space. Each infinitesi-
mal element of the network must act as an independent
automaton on the basis of purely local information. In
particular, all elements of a network, no matter where they
are in space, must obey the same constitutive law for
development of contractile stress.
A license to violate material objectivity is frequently

justified by proposing that gradients of concentration of
calcium ion or some other diffusible factor can play the
part of Deus ex machina. This is really a variation on the
old hypothesis of "morphogens" in developmental biology.
There is no doubt that calcium ion and other diffusible
substances can greatly influence the important rheological
and chemical parameters of contractile networks, but this
does not justify a morphogen model. The critical question
concerns the encoding of information. One must thus ask
whether functional gradients of morphogen occur for more
than a short time, or whether diffusion plus the mixing
action of the cytoplasmic motion itself is enough to rapidly
destroy any such gradients. In the case of Ca"+ control of
contractility, this means that one must distinguish between
(a) models in which Ca"+ causes a long-term but spatially
global increase in contracivity, (b) models in which Ca"+
cause a spatially localized change in contractility that
rapidly dissipates, and (c) a true morphogen model in
which Ca++ causes spatially localized variations in con-
tractility that remain stable for long times.

There is nothing contradictory about the idea of mor-
phogens and the idea of the reactive flow model (see
Appendix I of Dembo and Harlow, 1986). Nevertheless,
the present study indicates that the observed phenomenon
in dissociated cytoplasm can be understood, at least to
some extent, without involving a morphogen-like sub-
stance. It remains to be seen if this is also true of intact
cells.

APPENDIX A

Summary of Equations
In this appendix we summarize the various dynamical equations that
constitute the Reactive Flow Model of contractile networks. In the
interior of the reaction vessel the equations are: the excluded volume
relation

o" + 0, = 1;

the momentum conservation equations

0 = V(A,0VV * Q5) + 2(V * M05V)sfl + V x (M,65v x Q5

+ 400,0(Q% - Qs) - Os VPF (A4)

and

O = V(AnO, V * QnI) + 2(V. M6,,O V)Qn, + V x (MAOn V x Qn,)

+ 400,()f5I Qna) - On VPF

+ V{14F[Ofn + o(O, + Qn Oj)]}. (A5)

If Rb is a location on the boundary of the reaction vessel, then the
relevant characteristics of the reaction vessel at Rb are specified by five
functions:
SLP5(Rb) = + 1 if the boundary is free-slip with respect to solution

= - I if the boundary is no-slip with respect to solution.
SLP,(Rb) = + 1 if the boundary is free-slip with respect to network

- 1 if the boundary is no-slip with respect to network.
STK(Rb) - + 1 if the boundary is sticky with respect to network

1 if the boundary is no-stick with respect to network.
Hc(Rb) = hydraulic conductivity of boundary.
Pex(Rb) = effective external pressure on the boundary.
In terms of these descriptive functions, we obtain the tangent boundary

conditions on solutions and network velocity fields:

(1 + SLPs)(n * V)(Q5 * r) + (1 - SLPs)(fls *) 0 (A6)

(1 + SLPn)(n * V)(fln * r) + (1 - SLPn)(On T) 0; (A7)
the normal boundary conditons on the solution and network velocity
fields

n * Rl = HC(PF - Pex) (A8)

and

0 = (1 + STK)(n 0

+ (1 - STK) (AV.* Qn + 2Mn(n * V)(n. fln) + IF); (A9)

and finally, the boundary condition on the network density

(1 + STK)(n * VO3N ) + (1 - STK)On = 0 (A IO)

APPENDIX B

In this appendix we wish to show that if there is a strong endoplasmecto-
plasm differentiation and if the network phase is everywhere dilute, then
at long times the fraction of the reaction vessel occupied by ectoplasm will
be approximately equal to the density ratio, Di.

By hypothesis, the reaction vessel can be divided into subregions of
endoplasm and ectoplasm. Furthermore, if the volumes of these subre-
gions are V¢,tO and V¢,,, respectively, then

VKm0 + Vendo Vtotal
The total amount of network contained in the reaction vessel is

(Al)

(Bl)

I on (r)dr- fV 0"(r)dr + fV O(r)dr.
the mass conservation equations

0 = V * (0sQs ) + V * (OnS2 )

and

6-0.= -V * (j.Q.) + (On - On) / T;

(B2)

By definition, the density of network in endoplasmic regions is very low;
(A2) whereas the density in ectoplasmic regions is approximately equal to 6.J

Therefore we conclude from Eq. B2 that

f an(r)dr - enVo - 2 Vcc/o,V,I
(B3)

(A3) where we have used the fact that En - 2/a in the dilute network limit.
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If we now integrate the equation of network mass conservation (see
Appendix A) over the entire reaction vessel, we obtain

At
f Odr = f V (Ofl,,)dr'at n ~~~~VT,,,

+ y (On- O)dr. (B4)Teq V~

The first integral to the right vanishes due to the boundary conditions.
We thus conclude that

d1.
dt JOVndr nTfVTotal Ondr. (B5)dtfVT.1 eq eq

This expression makes clear that at long times

fV. ondr - an VTotal. (B6)
VT,,

At this point, substitution from Eq. B6 into Eq. B3 directly yields the
desired result:

Vt anl=n- D#. (B7)
VTOt,I
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