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ABSTRACT Autoregulation of renal blood flow is ineffective when arterial pressure perturbations occur at frequencies
above 0.05 Hz. To determine whether wave propagation velocity to the macula densa is rate limiting, we estimated
compliances of the proximal tubule and the loop of Henle, and used these values in a model of pressure and flow as
functions of time and distance in the nephron. Compliances were estimated from measurements of pressures and flows
in early proximal, late proximal, and early distal tubules in rats under normal and Ringer-loaded conditions. A model of
steady pressure and flow in a compliant, reabsorbing tubule was fitted to these results. The transient model was a set of
nonlinear, hyperbolic partial differential equations with split, nonlinear boundary conditions, and was solved with finite
difference methods. The loop of Henle compliance was larger than the proximal tubule compliance, and impulses in
glomerular filtration rate were attenuated in magnitude and delayed in time in the loop of Henle. Simulated step
forcings revealed a similar pattern. Periodic variations ofGFR were attenuated at frequencies >0.05 Hz, and there was
a delay of 5 s between variations in GFR and macula densa flow rate. The high compliance of the loop slows wave
propagation to the macula densa and reduces the amplitude of high frequency waves originating in the glomerulus, but
other parts of the signal chain also contribute to the slow response of macula densa feedback.

INTRODUCTION

Autoregulation of renal blood flow is mediated, at least in
part, by a sensing mechanism in the macula densa that
responds to changes in the composition of tubular fluid
usually induced by changes in flow rate. The operation of
this mechanism, known as tubuloglomerular feedback
(TGF), has been studied extensively in the steady state
(14, 15, 18). The amplitude of the feedback response has
been well characterized, as has its modification under
several sets of experimental circumstances. Changes in
arterial pressure, the usual trigger for an autoregulatory
response, occur in conscious animals at preferred frequen-
cies (1, 3, 12, 19), and it is therefore of some interest to
determine the bandwidth in which TGF is effective, as well
as the mechanisms that determine the frequency response.
Here we will be concerned with factors that limit the
high-frequency response of TGF.
A transient increase in arterial pressure in the rat

provokes an autoregulatory response after a delay of
several seconds (17, 23). We have suggested that a signifi-
cant but as yet undetermined fraction of this time is
required to propagate the fluid disturbance from the
glomerulus along the nephron to the macula densa. This
propagation delay is probably a consequence of the physi-
cal properties of the tubule. In addition, when arterial
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pressure is made to vary periodically, autoregulation does
not occur at forcing frequencies >0.05 Hz. We suggest
that the tubule acts as a low-pass filter because of its high
compliance. This filterlike action prevents high frequency
changes in fluid flow rate from reaching the macula densa.
The goal of this work is to estimate the magnitude of the
delay and to compare it to the total delay of autoregula-
tion.
The approach we have taken is to derive a set of

nonlinear partial differential equations; one equation
describes pressure and the other volume flow in a renal
tubule as a function of time and distance. The initial
boundary condition on the volume flow equation is GFR
and the final boundary condition on both equations is
outflow resistance of the nephron segments distal to the
macula densa. The parameters of the model are well
known except for tubule compliance and the outflow
resistance. We have therefore measured steady state tubu-
lar hydrostatic pressures and flows in rats to provide a data
set from which to calculate the compliances of the proxi-
mal tubule and the loop of Henle, and the outflow resis-
tance. We then solved the boundary value problem numeri-
cally, using different time-dependent glomerular filtration
rate (GFR) patterns to force the system and to estimate
the fluid propagation delay between the glomerulus and
the macula densa. The results suggest that the compliant
tubule walls, especially in the loop of Henle, slow propaga-
tion of flow disturbances to the macula densa and attenu-
ate high-frequency response, but that other factors also
contribute to the overall frequency response of TGF.
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METHODS

Experimental Procedures
Experiments were performed on male Sprague-Dawley rats, weighing
260-350 g, anesthetized by intraperitoneal injection of Inactin (Byk,
Konstanz, Federal Republic of Germany), 80 mg/kg body weight. The
rats were placed on a temperature-controlled micropuncture table to
maintain rectal temperature at 37°C; a heat lamp provided fine control of
temperature. A tracheostomy was performed, and a polyethylene catheter
was placed in the left femoral vein to replace plasma lost during dissection
and to infuse '"I-Na-iothalamate for measurement of single nephron
glomerular filtration rate (SNGFR). The renal clearance of iothalamate
is the same as that of inulin. Blood was sampled from a catheter in the
right carotid artery; this catheter was also used to monitor arterial blood
pressure. Additional catheters were placed in the right jugular vein for
infusion of 1.2% lissamine green to aid in the identification of nephron
segments and in the dome of the urinary bladder to drain it. Blood
pressure was recorded continuously with a Statham pressure transducer
(model P23dB) and a recorder (Gould Inc., Recording Systems Div.,
Cleveland, OH). Plasma obtained from retired breeder rats was infused at
10 ml/kg/h for 1 h, and 1.5 ml/kg/h thereafter, to replace losses incurred
during surgery. Each animal received a continuous infusion of 26 ,C of
Na-iothalamate in 0.9% NaCl for 160 min; 45 min were allowed to elapse
between the beginning of the infusion and the start of tubular fluid
collections.

All the animals were surgically prepared for micropuncture of the left
kidney. The abdomen was opened with a left subcostal flank incision, and
the renal artery, vein, and the ureter were carefully dissected free of
surrounding tissue. The kidney was then placed in a Plexiglass cup,
supported with cotton, bathed in mineral oil preheated to 370C, and
illuminated with a fiber optic light guide.

Segments of early and late proximal tubules and of early distal tubules
were identified by visual inspection during intravenous injection of a
0.1 -ml bolus of lissamine green solution. Hydrostatic pressures were
measured with the servonulling method (Instrumentation for Physiology
and Medicine, San Diego, CA). Micropipettes for the pressure measure-
ments were 3 Am, outside diameter, and were filled with a solution of 1 M
NaCl. Collections of tubular fluid were made by standard micropuncture
techniques, using sharpened glass micropipettes filled with stained min-
eral oil. No nephron was used for more than one pressure measurement or
flow collection. Collections lasted 3 min and were made at a rate adjusted
to maintain a column of mineral oil at a constant position downstream
from the collection site. Collections were made from late proximal and
early distal tubules for determination of volume flow rate of tubular fluid;
SNGFR was measured from these samples and also by collecting from
random sites in the proximal convoluted tubule. Radioactivity was
measured in a gamma counter (Tracor, Inc., Instrumental Group, Austin,
TX). The volume of collected tubular fluid was measured in constant bore
capillary glass. SNGFR was calculated by standard methods (16).
Two series of animals were studied. One group was treated as described

above and was designated as control; the second group received an
additional infusion of 0.9% NaCl intravenously at a rate equal to 10% of
the body weight per hour. Collections and measurements in these volume
expanded rats were begun at least 90 min after saline infusion was
started.

Model
The equations describing the variation of pressure and flow in a
compliant, reabsorbing tube at low Reynolds number are
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(1)

where t is time in seconds, Z is distance along the nephron in centimeters,
P is tubular pressure in dyn * cm-2, Q is flow in cm3s-', p is the density of
tubular fluid in gm * cm-3, nq is tubular fluid viscosity in poise, R is
tubular radius in centimeters, and 4) is the rate of fluid reabsorption cm2*
s

The derivation of the model equations, given by Young and Marsh
(23), was based on local conservation of mass and momentum in an
incompressible fluid. The starting point was the usual set of Navier-
Stokes equations and the equation of continuity, in cylindrical coordinates
(2). Terms for radial velocity were assumed to be negligibly small,
laminar flow was assumed, and the equations were integrated over the
cross-section area of the tube. The present form of the equations was
reached after numerical evaluation of the remaining terms revealed that
the convective acceleration terms were 5 orders of magnitude smaller
than the others.

Fig. 1 depicts the model. The tubule was divided into three segments, a
proximal tubule, a descending limb, and an ascending limb. The lengths
of these segments were assumed to be 1.0, 0.3, and 0.3 cm, respectively.
The radius in each segment was assumed to be a linear function of the
transmural pressure difference. The coefficients of the radius function
were further assumed to be constant over the length of each segment.
Separate coefficients were evaluated for the proximal tubule and for the
loop of Henle, as explained below under "Parameter estimation."
Although the morphology of the descending and ascending limbs suggests
that the compliances might differ between the two segments, we lacked an
independent means for estimating each separately, and we chose there-
fore to use a single effective compliance for the entire loop of Henle.
The rate of fluid reabsorption in the proximal tubule was approximated

as an exponential function of distance, as in

4)(Z) = Cexp(-DZ ), (3)

where 4) is the local rate of fluid reabsorption, and C and D are
coefficients to be evaluated from the data. The need for an exponential
function in this study arose because the data dictated something other
than a constant rate of reabsorption (see below). The values of the
coefficients were estimated from measurements made during steady flow
conditions, and were then held constant during the simulations of
transients. Our formulation derives its justification from the experimental
observation that the early proximal tubule reabsorbs fluid most vigorous-
ly, and the late portion least vigorously (11). Fluid reabsorption in the
descending limb was assumed to be constant with distance, and was
calculated as the difference between the flow rate in the late proximal
tubule predicted by Eq. 3 and the measured flow rate in the early distal
tubule. As with the proximal tubule coefficients, the rate of fluid
reabsorption in the descending limb was assumed to remain constant in
the transient simulations. Finally, it was assumed that ascending limbs
reabsorb no fluid in any of the conditions we simulated.
The boundary conditions of the model were specified as the flow at the

beginning of the tubule (SNGFR) and the resistance to fluid flow offered
by nephron segments distal to the macula densa. The outflow resistance
from the distal tubule decreases as distal tubule pressure increases,

Outf low
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Proximol Tubule Descending Ascending

Limb Limb

Loop of Henle

FIGURE 1 The structure of the nephron model. The glomerulus is
located at x = 0, the descending limb of Henle's loop begins at x = 1, the

(2) bend of the loop is at x = 1.3, and the macula densa is at x = 1.6 cm. The
early distal tubule begins at a distance of 1.65 cm from the glomerulus.
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presumably because the tubule system dilates as local transmural pres-
sure increases (13). Because we wished to simulate experiments in which
flow into the distal tubule would vary with time, it was necessary to
specify the resistance function and to use it with the instantaneous flow
value to calculate pressure. The resistance function was derived from the
assumptions that the resistance can be treated as a single, lumped
variable, and that the usual laminar flow relationship holds within it. This
last assumption implies that the fluid admittance, known from the
experimental measurements of pressure and flow in this study, varies with
the fourth power of the radius. The fourth-power relationship yields
separate values for the effective radius of the lumped admittance in each
of the two experimental states we studied. Furthermore, we assumed that
the radius was a linear function of the distal tubule pressure, as in Eqs. 4
and 5

R,, = AJPC + B.

R.,, = A A,, + B,1

(4)

(5)

where R. is the radius of the outflow resistance, subscripts c and ve refer
to control and volume expanded states, respectively, P is the measured
pressure in the early distal tubule, and A,. and B, are the parameters to be
evaluated. The slope and intercept of the outflow resistance function were
evaluated by solving these two equations simultaneously, and the parame-
ter values were used in the calculation of the boundary condition
specifying pressure at the end of the simulated tubule.

Numerical Methods
The resulting nonlinear two-point boundary value problem was solved
with a finite difference method (20), using centered difference approxi-
mations. The time step was 2.5 x 10-2 s. The spatial difference was 0.05
cm, requiring 33 steps for the entire tubule. The zeroth step was the
glomerulus, where SNGFR was specified as a boundary condition, and
the last step was the macula densa, where the tubular hydrostatic pressure
and flow were used to calculate the value of the boundary condition.
Halving the spatial step size or the time step did not affect the steady state
solution using the transient model.
The local radius was calculated from Eq. 6

Rj(Z) = Aj [P(Z) - Pj + B, j = 1, 2 (6)

where Aj and Bj are compliance parameters, estimated as described
below, the subscript j = 1 refers to the proximal tubule and j = 2 to the
loop of Henle, and Pi is interstitial hydrostatic pressure, assumed to be 5
mmHg (16). P(Z) is the tubular hydrostatic pressure at Z, and was
calculated as the average of the pressures at the ith and (i + I )th spatial
step in the nth and (n + 1)th time step.
The resulting set of finite difference equations formed a bitridiagonal

matrix that was solved with an algorithm given by von Rosenberg. The
algorithm solved the equations forward in space from the glomerulus to

the macula densa, computed the boundary condition at the macula densa
with a root-finding scheme, and then solved backward to the beginning of
the tubule. This procedure was repeated at each time step until a
convergence criterion was satisfied, and then proceeded to the next time
step. Convergence was assumed to occur when the Euclidian norm of the
solution vector did not change in successive iterations by more than 1 x
10-6. In all cases, fewer than 10 iterations were required to satisfy the
convergence criterion. The finite difference equations are given in the
Appendix.

Parameter Estimation
Separate linear approximations of the compliances of the proximal tubule
and loop of Henle were assumed, as in Eqs. 7 and 8.

R,(Z) = Al P(Z) + B,

R2(Z) = A2P(Z) + B2.

(7)

(8)

The slope and intercept of these compliance functions were estimated by
fitting Eqs. I and 2, with the temporal derivatives set to zero, to the values
of pressure and flow, measured in experiments under steady flow
conditions. The two compliance slopes and two compliance intercepts
comprise four unknowns; the differential equations leading to the late
proximal and early distal pressures in normal and volume expanded
animals comprise the four equations needed to obtain values for these
unknowns. The initial conditions for the proximal tubule estimation were
the early proximal pressure in the control and volume expansion cases for
the pressure equation, and the measured SNGFR values for the flow
equation. The measured early proximal tubule pressures were assigned to
a point in the model 0.1 cm from the glomerulus, to account for the fact
that the earliest accessible measurement site on the surface is downstream
from the glomerulus. The measured late proximal pressures and flows
were assigned to a point in the model 0.6 cm from the glomerulus, the
location of the last accessible measurement site. The rate of tubular
reabsorption in the proximal tubule was expressed as an exponential
function of distance, as described above.
The initial conditions for the loop of Henle estimations were the

pressures and flows at a point 1.0 cm from the glomerulus, and were taken
from the solutions of the proximal tubule estimations. The rate of
reabsorption in the descending limb of Henle's loop was expressed as a
linear function of distance. The initial volume flow rate in the descending
limb was taken as the volume flow rate out of the proximal tubule, and the
final volume flow was taken to be equal to the early distal volume flow
rate, on the assumption that the rate of fluid reabsorption in the ascending
limb is zero. The measured early distal tubule pressures and flows were
assigned to a point in the model 1.65 cm from the glomerulus.
The flow and pressure equations were integrated forward with a

Runge-Kutta fourth-order integration method. The slope and intercept of
the linear compliance functions were adjusted iteratively until the com-

TABLE I
SUMMARY OF PRESSURES AND FLOWS

Tubule site n Hydrostatic Flow ratepressure

mmHg nl/min
Control Early proximal 9 13.3 ± .3(18) 31.2 ± 1.1(14)

Late proximal 9 11.5 ± .3(18) 15.6 ± 1.4(15)
Early distal 9 7.8 ± .4(13) 9.6 ± 1.0(13)

Volume expansion Early proximal 7 17.7 ± .4(13) 47.3 ± 3.8(18)
Late proximal 8 15.1 ± .5(15) 31.7 ± 2.8(10)
Early distal 7 13.2 ± .3(17) 22.5 ± 3.0(10)

Early proximal flow rate corresponds to SNGFR measured with Na-iothalamate collections. The numbers of individual measurements are in
parentheses; n is the number of animals. Averages and SE's were calculated from intraanimal average values.
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puted late proximal and early distal pressures matched experimental
values in the two experimental states to within 0.01%. These values were
obtained with a Newton-Raphson nonlinear equation solving routine. The
Newton-Raphson method requires a Jacobian that was calculated with a
finite difference method (6).

RESULTS

Experimental Results
The results of flow and pressure measurements made
under steady flow conditions are presented in Table I. The
flow values under control conditions agree well with
reports of similar measurements from several laboratories,
especially when care was taken to replace fluid losses from
surgery (4, 5, 10, 16). From the standpoint of this study, it
is worth noting that the rate of fluid reabsorption in the
accessible portion of the proximal convoluted tubule,
usually assumed to comprise 60% of its total length, is
-50% of SNGFR. This finding agrees well with the other
reports cited, but it implies that the rate of reabsorption in
the model cannot be represented as constant over the
length of the proximal tubule or else flow rates would be
predicted for the distal tubule that are much lower than
those measured. Therefore, we have used an exponential
approximation of the reabsorption function in the proximal
tubule. This formulation is consistent with the set of
experimental observations, derived mainly from isolated
tubule microperfusion studies, that the S1 segment of the
proximal tubule has a higher intrinsic rate of reabsorption
than the S2 segment, and that S2 has a higher rate than S3
(1 1).
The pressure measurements also are in general agree-

ment with those that have been reported for normal rats.
The results in Table I reveal a pressure drop along the
proximal tubule of 1.8 mmHg. The results of flow mea-
surements in volume-expanded rats are comparable to
those we have obtained previously, using the same rate of
volume expansion (16). Results of other studies in volume
expansion are not directly comparable because different
rates of expansion have been used (5, 8). The pressure
gradient along the proximal tubule was not significantly
different in volume expansion from the gradient found in
control animals. The pressure difference between the late
proximal tubule and the early distal tubule was signifi-
cantly less in volume expansion than in controls, despite the
fact that volume flow rate more than doubled. Similar
observations have been reported earlier (9) and have been

explained by comparing the compliance function of the
loop of Henle to that of thin-walled rubber tubing.

Compliance Estimates
The data of Table I were used in a steady state version of
the model to estimate compliances of the proximal tubule
and loop of Henle, under the assumptions that the radius in
each segment is a linear function of the local transmural
pressure difference, and that the compliance parameters
remain constant over the length of each structure. Table II
lists the parameters used for this procedure, and Table III
the compliance values and the outflow resistance coeffi-
cients obtained. The slope of the proximal tubule com-
pliance function was 1.33 x 10-5 cm * mmHg-', which is
in reasonable agreement with the value of 2.25 x 10-5
cm * mmHg-' obtained by Cortell et al., using different
experimental methods.
The results indicate that the loop of Henle is a signifi-

cantly more compliant structure than the proximal tubule.
Fig. 2 shows the dependence of tubular pressure in the
steady state on these values. As is clear in Fig. 2, the
assumption of constant compliance over the length of each
segment and the fact that luminal pressure in the loop of
Henle is close to the interstitial pressure leads to the
prediction that the pressure gradient in the loop of Henle
becomes more negative with distance. Thus, the flow
resistance appears to be localized to the last fraction of the
segment, and is not evenly distributed through the seg-
ment. This prediction does not appear to have been tested.
An alternative approach might be to assume that the
tubular radius and the resistance to flow are constant over
the length of each segment, but such a result would require
a compliance that varies with distance. There is no justifi-
cation for assuming a length dependent compliance func-
tion, and we have therefore elected to retain the constant
compliance assumption.

Fig. 2 also shows the effect on tubular pressure of
varying the slope of the compliance function in each
segment by 10 or 20%. The effect of varying proximal
tubule compliance over this range was minimal. Tubular
pressures were more sensitive to variations in the loop of
Henle compliance; pressures rose throughout the tubule by
1.1 mmHg when the slope of the compliance function was
decreased 20%, and decreased 0.8 mmHg when the slope
was increased by 20%. This greater sensitivity of tubule
pressure to variation in loop of Henle compliance reflects

TABLE II
PARAMETER VALUES USED IN ESTIMATING TUBULAR COMPLIANCES AND OUTFLOW RESISTANCES

Tubule length Tubular reabsorption

cm C,cm2. D,cm-'
Proximal tubule 1.0 Proximal tubule
Descending Henle's loop 0.3 Control state 5.6 x 10-7 1.13
Ascending Henle's loop 0.3 Volume expanded state 5.7 x 10-7 0.72

Descending Henle's limb 7.4 x 10-8
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TABLE III
ESTIMATED TUBULAR COMPLIANCES AND OUTFLOW RESISTANCES

Tubule compliance parameters
Distal tubule outflow parameters

Aj Bj

cm * mmHg-' cm
Proximal 1.33 x l0o5 1.31 A, 3.11 x 105cm * mmHg'
Loop of Henle 2.85 x 10-4 -.58 B<. 2.32cm

the interaction of three factors. First, the loop of Henle
compliance is greater than the proximal tubule compliance
by a factor of 20; a small percentage change in loop
compliance represents a larger absolute change than does
the same percentage change in proximal tubule com-

pliance, and the result is a greater effect on tubular radius.
Second, the pressure in the lumen of the loop of Henle is
nearer to the value of the interstitial pressure than is the
pressure in the proximal tubule; small changes in tubule
compliance cause a larger change in tubular radius in the
loop than in the proximal tubule. Third, this steady state
simulation was conducted under the implicit assumption
that both GFR and early distal tubule pressure were fixed.
Thus, any change in tubular resistance to flow was bound

14 r

12

_;

E

CL

90
8 ,-

L..

0

1 4

13

-- 12

E

11

c. 10

9

- - 20%

-- Base
+20%

to have produced an increase in upstream pressure, and the
effect would be greater the longer the distance from the
glomerulus. These effects, however, are relatively small,
and lead to predictions of experimentally reasonable pres-

sures over a 40% range of values. These estimates are

therefore likely to be reasonable approximations of the true
values, and will be used in the transient simulations that
follow.

Simulations of Transients

The general approach used in the following simulations
was to use standard, time-dependent forcings on GFR.
These included an impulse function, a step, and a sinusoi-
dal forcing pattern. Because the estimates of compliance
and outflow resistance were based on linear approxima-
tions, we restricted the range of forcings to those that
maintained GFR and early distal flow rate to values that
were found experimentally and listed in Table I.

Simulated Impulse Functions. We used an

impulse-like function to estimate the magnitude of the
propagation delay and to identify the tubular segments
that attenuate the magnitude of the response. The impulse
was given by the following function:

GFR(t) = GFR(O) [1 + kEXP(- x2/2)],
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FIGURE 2 The dependence of tubular hydrostatic pressure in normal
conditions on the value of the slope of the tubular compliance function.
(Top) Effect of varying proximal tubule compliance. (Bottom) Effect of
varying loop of Henle compliance.
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FIGURE 3 The effect on pressure and flow in the early proximal and
early distal tubules of imposing an impulse-like change in GFR. Three
curves are shown in each panel, representing the response to spikes with
maximum amplitude equal to 10, 30, and 50% of the initial GFR. Note
the difference in scales between early proximal and early distal
responses.
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where k is a parameter whose value was selected to provide
a curve with a desired maximum value, x = (t - r)/s, t is
the time, r is the time of occurrence of the maximum value
of the function, and s is a parameter that determines its
width. In all simulations reported here, the width of the
spike was held constant at 0.25 s and the maximum value
was varied.

Fig. 3 shows flow and pressure in the early proximal and
early distal tubules as functions of time, with maximum
impulse heights equal to 110, 130, and 150% of initial
GFR. As a test of conservation of mass, the time integral
volume flow in the 130% SNGFR impulse was compared
with the time integral of the early distal tubule flow
response. The two integrals agreed within 0.002, suggest-
ing good conservation of mass.

In all cases, the predicted early distal tubule flow rate
lagged several seconds behind the GFR change, was
broader, and of smaller amplitude, even though the rate of
tubular reabsorption remained constant. The time delay
between the peak of the GFR and the peak of the early
distal flow change was 3.05 s with the 10% perturbation,
3.15 s with the 30% perturbation, and 3.23 s with the 50%
perturbation.

Fig. 4 is a three-dimensional plot of flow and pressure as
functions of time and distance, using a spike forcing with a
maximum value equal to 150% of initial GFR. Fig. 4 shows
some change in the amplitude of the perturbation in the
proximal tubule, but most of the broadening and reduction
in the amplitude of the flow perturbation occurs in the loop
of Henle. The pressure wave caused by the perturbation of
GFR was also attenuated primarily in the loop of Henle.

Simulated Step Functions. Fig. 5 shows the
results of a simulation with a step increase in GFR of 30%
of the initial steady value. The forcing pattern was not a
pure step, but an exponential rise with a time constant of l/6
s. The exponential was chosen to ensure that a stable
solution would be obtained. Flow rose more slowly in the
early distal tubule than did GFR; the time to reach half the
maximum flow at the macula densa was 10.1 s. Pressure
followed flow. Similar patterns were obtained with GFR
steps of 110, 120, 140, and 150%, with one additional
detail. Fig. 6 shows the time to half maximum flow in the
early distal tubule as a function of the magnitude of the
increase of GFR. The time to half maximum flow
increased with step height. In a strictly linear system, the
half-time of response should be independent of the magni-
tude of the forcing. But tubular pressure increased with the
magnitude of the step forcing, tubular radius increased
with pressure, and pulse wave velocity varies inversely with
the square root of the radius. Thus, we would expect the
time to half maximum flow at the macula densa to vary
with the magnitude of the step.

Simulated Sinusoidal Functions. Simulations
were also performed with sine wave forcings of GFR.

Because the flows and pressures used as an initial condition
for these forcings correspond to those measured during the
control state in rats, a sine wave forcing necessarily lowers
pressures and flows below values that were used to estimate
tubular compliances and outflow resistance. We therefore
conducted this set of simulations with a variation of GFR
that was 1% of the control GFR value.
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FIGURE 4 Three-dimensional plot showing the variation of pressure and
flow as functions of time and distance in a tubule subjected to a spike
forcing of GFR with maximum amplitude equal to 50% of the initial
GFR.
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Fig. 7 shows the amplitude of the flow variation at the
macula densa as a function of forcing frequency. The flow
variation is shown normalized by the amplitude of the
GFR variation. Recall that the rate of tubular reabsorption
was held constant in all simulations. Thus, the full magni-
tude of the GFR variation should have appeared in the
macula densa flow, unless some dissipative process inter-
vened. The figure shows that the ratio of early distal flow
variation to GFR variation was unity only at low frequen-
cies. This ratio declined markedly at higher frequencies.
Fig. 7 also displays the time delay between the periodic
GFR forcing and the periodic variation in flow at the
macula densa. The delay reached a limiting value of 5 s at
low frequencies. Experimental studies of autoregulation
revealed delays at these frequencies of 20 s (17). These
results, when combined with those experimental findings,
imply that 15 s of the 20-s delay is attributable to factors
other than fluid propagation delays.

DISCUSSION

The motivation for this study was the experimental obser-
vation that renal blood flow autoregulation could not
respond to nerturbations of arterial blood pressure that
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FIGURE 6 Time to half maximum flow in the early distal tubule as a

function of the amplitude of the GFR step forcing.
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FIGURE 7 Flow variation in early distal tubule during sine wave forcing
of GFR, as a function of the forcing frequency. (Top) Amplitude,
expressed as a fraction of the amplitude of the GFR forcing. (Bottom)
Time delay between zero crossing ofGFR and zero crossing of early distal
tubule flow.

occurred at frequencies of 0.1 Hz or higher (17). A major
signal for renal autoregulation is a change in volumetric
flow rate past the macula densa, a collection of specialized
epithelial cells at the end of the loop of Henle that
communicate with the arterioles that supply blood to the
glomerulus of the same nephron. The transport properties
of the ascending limb are such that the NaCl concentration
in tubular fluid varies monotonically with the flow rate; the
resultant change in concentration is the real signal sensed
by the macula densa (22). Because the tubules are com-

pliant (7, 9, 21), it is to be expected that the tubular walls
can absorb some of the energy of a flow perturbation
initiated at the glomerulus. The effect of this high com-

pliance would be that the tubules, and the loop of Henle in
particular, serve as a low-pass filter for changes in flow
rate, and thus for the autoregulatory responses initiated at
the macula densa. The utility of the model lies in its ability
to generate estimates of the transfer function and propaga-
tion delays of the tubule for comparison with experimental
estimates of the same variables measured in the entire
blood flow-regulating system.

This boundary-value problem had decided nonlineari-
ties, despite the use of linear approximations for the radius
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functions and the boundary condition representing the
outflow resistance into the distal tubule. These nonlineari-
ties were unavoidable, because the radius calculation in the
tubule and the pressure at the second boundary depended
on the reciprocal of the fourth power of the radius.
Experimental data suggest that the tubules behave as
thin-walled tubing with constant circumference and ellipti-
cal cross section at low transmural pressure, but that they
are linearly elastic and with circular cross section at higher
transmural pressure (9, 21). This behavior can be approxi-
mated with a hyperbolic tangent function, among others.
We attempted to use such an approximation and were able
to obtain stable steady state solutions, but not transient
ones. Spike perturbations were not propagated along the
proximal tubule, and never reached the macula densa, a
prediction that is not consistent with experimental observa-
tions (23). Thus, we have been restricted to the use of
linear approximations, and we have therefore confined our
simulations to circumstances that maintain the calculated
dependent variables within the neighborhood of the experi-
mentally determined measurements used to predict the
compliances and the outflow resistance.
A major conclusion from this study can be seen in Fig. 4.

A simple spike disturbance in GFR was propagated rapidly
along the proximal convoluted tubule, and then lost ampli-
tude in the loop of Henle. The high compliance of the loop
appeared to delay transmission of the spike, to reduce its
magnitude, and to distribute it over a longer period of time;
the loop of Henle functioned as low-pass filter. When the
disturbance in GFR was periodic, the change in fluid flow
rate at the macula densa was attenuated at higher frequen-
cies. The functional implication of this result is that the
renal circulation cannot autoregulate at frequencies higher
than -0.05 Hz because the macula densa cannot receive an
adequate signal from which to generate an appropriate
response.
The time delay between the variations in flow at the

glomerulus and at the macula densa, calculated from the
periodic forcings, reached a limiting value of 5 s. The rat
kidney, tested with periodic variations in arterial pressure,
had an average delay of the order of 20 s (17). The
calculated delay is consistent with the interpretation that
the experimentally observed delay is mediated by the
macula densa because the flow change has ample time to
reach the sensing site and to initiate a sequence of events
leading to adjustments of arteriolar diameter. The results
suggest further that other events occupy a significant
fraction of the period length at frequencies in the range
0.01-0.05 Hz, and probably to lower frequencies as well.
Possibilities include delays in membrane transport in thick
ascending limb cells, such that changes in flow rate are not
translated immediately into changes in tubular fluid con-
centrations of NaCl; and time consumed in propagating
signals from the macula densa to the arterioles, and
converting these signals into an effective action.

Pressure changes in the early distal tubule measured

during a step increase in arterial pressure (23) had a time
course similar to those shown in Fig. 5. This last compari-
son supports the validity of the calculated results, and the
conclusion that other events in autoregulation consume a
significant amount of time. It should also be mentioned
that the rat kidneys used for the measurements of
frequency response included a population of nephrons
longer than those simulated in this study. This other
population, the juxtamedullary nephrons comprising
-25% of the total, should have longer propagation times
because of their longer length, all other factors being equal.
Juxtamedullary nephrons are not available for the mea-
surements that permit the estimation of compliances;
computing the time response of a distributed population of
nephrons is also a significantly more extensive computa-
tional problem than the one we have undertaken here, and
we are therefore not able to estimate the magnitude of the
effect they might introduce.

In summary, the results of this study are consistent with
the hypothesis that the delays inherent in tubuloglomerular
feedback operating via the macula densa are responsible
for the limited high-frequency response of renal blood flow
autoregulation. The tubular compliances, particularly in
the loop of Henle, attenuate the propagation of fluid
disturbances to the macula densa at frequencies >0.05 Hz,
and limit signal access to the feedback pathway. At lower
frequencies, changes in GFR are propagated without
significant loss, but with time delays that are due in part,
but probably not entirely, to the low wave velocities in the
tubules. These low velocities are also due to the high
tubular compliances.

APPENDIX

The differential equations describing the system are

dP p dQ 8t
AZ 7rR2t 7rR4Q

aQ _2RaRaP _=9 - 2i;rR--cI -4~(Z).az clOPOt

(Al)

(A2)

Centered difference equations were used for the numerical solution. The
approximations are

OQ\ 1 -Qi,+l - Qi ,-+! + Qin - Qia-az)k 1/2,n+1/2 2 A Z AZ

(M a \IQi+l - Qin+ Qi l.n+l - Qf ln
\at )i-112,n+ 1/2 2 At + At )

(a,p\ 1 (Pi+,,,+, - Pi,"+ Pi+,I - P i,n

\dZ/i+1/2,n+1/2
-

AZ AZ /

(pAa 1 P,+1,n+l - Pi+i+ Pi,n+ I - P-

8at i+1/2,n+1/2 2 At At /

(A3)

(A4)

(A5)

(A6)

Note that the position index, i, has a different value for Q than it has for P.
This different indexing was introduced to take into account the fact that
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the boundary conditions are split. Q is obtained from

Q -14(Qi,n+I + Qi l,n+l + Qi,n + Qi -1,) (A7)

Setting dR/dP - Aj and substituting Eqs. A3-A7 into Eqs. Al and A2
yields

7rR2
(Pi+l,n+l - Pi,n+l)

PAZ ~ ~~A

and

1 (Q Q ) 1 (
2rRA AZ i,n+ - i-l,n+l + (Pl,nl + i,n

2rR A2AZ

t (Pi+ I,n Pi,J) A .(9

At t pRA2

The value of the boundary condition, Qo,,+, was known from the
specification of the GFR forcing pattern. An algorithm given by von
Rosenberg (20) was used to solve the 64 equations. The algorithm calls
for the system to be solved forward beginning at position index i = 1 and
progressing to i =32. The value of Q32,,+, was then calculated using the
value of P33,, and the fourth power relationship between outlet pressure
and outlet resistance. A value for P32,,+1 was then calculated, and the
system of equations was solved backward from position index i = 32 to i =
1. Convergence was assumed when the Euclidean norm of the solution
vector changed <1 x 10o-6 in successive iterations.
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