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ABSTRACT There has been a significant controversy over the past decade regarding the relative information content of
bioelectric and biomagnetic signals. In this paper we present a new, theoretical example of an electrically-silent
magnetic field, based on a bidomain model of a cylindrical strand of tissue generalized to include off-diagonal
components in the conductivity tensors. The physical interpretation of the off-diagonal components is explained, and
analytic expressions for the electrical potential and the magnetic field are found. These expressions show that
information not obtainable from electrical potential measurements can be obtained from measurements of the magnetic
field in systems with conductivity tensors more complicated than those previously examined.

INTRODUCTION

Speculation that electrically silent magnetic fields may be
produced by electrically active tissue began with the very
first biomagnetic measurements (1), and a controversy
over their existence has continued to this day (2-9). In
1982, Plonsey presented one of the more mathematical
analyses, suggesting that measurement of the external
bioelectric field completely determines the external bio-
magnetic field (5). In this paper, we present a theoretical
example of a biomagnetic field that cannot be determined
from the bioelectric field. We term such a magnetic field as
"electrically silent" because information about the tissue is
present in the magnetic signal while absent in the electric
signal. Our example is based on an electrically active
strand of tissue that has a "spiral-like" or "helix-like"
conductivity, represented by off-diagonal terms in the
conductivity tensor. Such a conductivity tensor can arise in
multicellular tissues that have a complicated cellular
geometry. We shall first review the standard calculation of
the potential and magnetic field of an electrically active
fiber, and then show how this calculation can be general-
ized to describe strands of more complex multicellular
tissues that can give rise to electrically silent magnetic
fields.

nated nerve axon, can be calculated from the transmem-
brane potential, (m, using a volume conductor model (10,
1 1). We assume that an action potential propagates along
the fiber in the axial, z, direction with velocity u, and that
the fiber, of radius a, lies in an unbounded external bath
with conductivity a,. We further assume that all the fields
are quasistationary, and are measured at a radial distance
p from the center of the fiber. The electrical properties of
the intracellular cytoplasm can be described by a scalar
conductivity, vi, so that the current density inside the fiber,
Ji, is given by Ohm's law

(1)

with the intracellular electric field, Ei, given in terms of the
intracellular potential, 4),, as

Ei =-V4i (2)

The fundamental equation governing the quasistatic
distribution of current in a volume conductor is the
continuity equation,

V * J = 0. (3)

MATHEMATICAL DERIVATION OF THE
MODEL

A Scalar Conductivity
The electrical potential, 4), and the magnetic field, B,
produced by a cylindrical fiber, such as a single unmyeli-
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Combining the continuity equation with Ohm's law and
the relationship between the potential and the electric
field, we find that the intracellular potential is governed by
Laplace's equation

V2+i= 0. (4)

The potential in the bath, be, is also governed by Laplace's
equation, and 4), and be are coupled by the boundary
conditions at the fiber surface (10, 11). Since there is no
preferred angle, 0, the problem is cylindrically symmetric,
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so that Eq. 4 reduces to

10/p i) + 2°-024.
pop(~~-) +~-d=0 (5)P CIP 'ap ) Z

This equation can be solved analytically for the potential
and current density inside the fiber (10). Since the poten-
tial is independent of 0 and the azimuthal component of the
current density, .0, is proportional to X4,i/d0, there is no
component of the current density in the azimuthal direc-
tion. The remaining two components of the current density
produce a magnetic field that is entirely azimuthal (11).
This magnetic field has a one-to-one correspondence to the
electrical potential, so that no information is present in one
signal while absent in the other l. In this case, there are no
electrically silent magnetic fields.

A Diagonal Tensor Conductivity
A multicellular strand of tissue, such as a cardiac Purkinje
fiber, is more complicated than a single nerve axon because
of the underlying cellular geometry and interstitial space.
Ganapathy et al. (12) have modeled a strand of syncytial
tissue as a single "equivalent cell" with different intracellu-
lar conductivities in the axial and radial directions. This
model accounts for the anisotropy of the tissue, but not for
the interstitial space. A better way to represent such a
strand is to use a bidomain model (13-17)2. Both the
intracellular (i) and interstitial (o) conductivities have
been represented as diagonal tensors, so that Ohm's law in
each medium becomes

Ji = O ai° O E° , (6)

rO = °aO °E2o) . (7)

The conductivity may be different in the p, a and z
directions, and may be different in the intracellular and
interstitial media. In such a bidomain model, the compo-
nents of the conductivity tensors must be considered as
homogeneous, macroscopic parameters, useful when calcu-
lating the electric potential or current density averaged
over many cells, but not applicable on the cellular level,
where the tissue may be quite inhomogeneous.

'The transmembrane resting potential is an exception to the one-to-one
correspondence between the electric potential and magnetic field. We
could say that the resting potential is produced by a "magnetically silent
electric field".

'A more extensive bibliography of papers using bidomain models is given
in reference (17).

In a syncytium, the equation of continuity becomes (13,
14)

V . (Ji + Jo) = 0. (8)
Using this equation and Eqs. 6 and 7, and assuming
cylindrical symmetry, we find that the potentials in the
intracellular medium, 4),, and the interstitial medium, 4O,
satisfy the equation (17)

p dp--P d-(u)i +ac)0+ t(ai+ 4OO) = (9)

By assuming that the transmembrane potential is indepen-
dent of p (restricting our attention to action potentials that
propagate uniformly along the z-axis), we can use Eq. 9 to
derive analytical expressions for the potential and current
density in the intracellular and interstitial media, and from
the current density we can calculate the magnetic field
(17). We find that there is no azimuthal component of the
current density in either medium, the magnetic field is in
the 0 direction, and there is a one-to-one correspondence
between the magnetic field and the electrical potential
(17). Again, no electrically silent magnetic fields arise.

A Full Tensor Conductivity
The diagonal conductivity tensors in Eqs. 6 and 7 constrain
the direction of most or least resistance to current flow to
be either axial, radial or azimuthal 3. This is adequate for a
Purkinje fiber, in which the cells all lie parallel to the axis
of the tissue strand. But what if the cells have a more
complicated geometry, perhaps being twisted around each
other like the individual fibers in a braided rope? This
would require a more general conductivity tensor contain-
ing off-diagonal terms. In this case, Ohm's law for the
intracellular and interstitial media becomes

Ji vPZ \E

(J P a°P a,P iE
Jo = oP eO° a -° E'

JZ aO\I aO aO

cv?=4p aocr? z?J E lea
z

aZ a
zz \E

(10)

(1 1)

The presence of off-diagonal components in the conductiv-
ity tensor is neither mysterious nor unprecedented. The
diagonal tensors in Eqs. 6 and 7 would have off-diagonal
terms if expressed in other coordinate systems, such as
spherical. Full tensor conductivities are commonly used
when describing the electrical properties of an anisotropic

3 The "directions of most and least resistance" is a nonmathematical way
of refering to the eigenvectors of the conductivity tensor.
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crystal (18). Off-diagonal components of the conductivity
tensor were applied to a biological system by Mathias (19)
when studying a skeletal muscle fiber with a "helicoidal"
transverse-tubule system. He states that "the tilt of the T
system plane might cause a component of the radial
current to be projected onto the longitudinal axis; radial
voltage gradients in the T system would then drive part of
the longitudinal current in the fiber. The longitudinal
continuity of the T system could set up a cablelike network
within the fiber, so that longitudinal voltage gradients in
the sarcoplasm might drive current in the T system." Such
a conductivity could also arise in a multicellular tissue
when the underlying cellular geometry is complicated.
The conductivity tensor is always symmetric (18), and

therefore has three independent off-diagonal terms, each
of which has a physical interpretation. If MP is nonzero,
then the preferred current path (the direction of highest
conductivity) in the intracellular medium in a plane per-
pendicular to the z-axis is not in the radial or azimuthal
directions, but at some angle between them. Current
following the path of least resistance traces out a spiral, as
in Fig. 1 a. We will say that a conductivity tensor with a
nonvanishing uP has a "spiral-like" conductivity. If o', is
nonzero, then the path of least resistance in a cylindrical
shell of constant radius p does not lie parallel to z or 0. In
this case, the intracellular current tends to follow a helical
path, as in Fig. 1 b. We will say that a medium with a
nonvanishing oZi has a "helix-like" conductivity. If e-, is
nonzero, then the direction of highest conductivity in a
plane of constant 0 does not lie parallel to the p or z axes, so
that the intracellular current spreads out as if flowing over
a cone, as in Fig. 1 c. We will say that a medium with a
nonvanishing e-, has a "cone-like" conductivity. Similar
interpretations can be made for the interstitial medium.

Cylindrical symmetry is not broken by the introduction

a

of off-diagonal terms into the conductivity tensor; there is
still no preferred angle so that all fields are independent of
0. Using this fact, Eqs. 10 and 11, and the continuity
equation, we find that the potentials in the intracellular
and interstitial media are governed by the equation

p p[Pd (a ?O
i +

a"
+°)] + (or'(ai + a'o' o

pCIPCI10 r 0

+ d p d-(u t +ro4bo0)pdp [ z J

02
+-..(o,ez t + "Pz4O) = . (12)

The off-diagonal components e, and o-0 appear in Eq. 12,
but cyl, c/', 4J° and 'Or do not. For the remainder of our
discussion, we consider the case in which a ", and a Pz are
equal to zero, i.e. the conductivity is not cone-like, so that
Eq. 12 is identical to Eq. 9. The boundary conditions are
unchanged by e-i, Ai, eo, and A0, so that the potential
with these four off-diagonal components present will be
exactly the same as the potential due to a diagonal
conductivity tensor. As far as voltage measurements are
concerned, the two situations are indistinguishable, even in
the immediate vicinity of the active region of tissue. The
only electrical measurements that might be capable of
detecting the off-diagonal terms would be ones that detect
the potential distribution at the cellular-level, where the
concept of homogeneous, macroscopic intracellular and
interstitial conductivities is not applicable. Analytical
expressions for the electric potentials inside and outside the
strand are summarized in the Appendix. The parameters
oz, cri, oZ°, and "os' are not present in these expressions.
The current density inside the strand will not be the

same, however. The components of the intracellular cur-
rent density can be written as

J= 04af 04i

0z

(13)

(14)

(15)

Similar equations exist for the interstitial current density.
The component of the intracellular current density in the 0
direction depends on aP and a-i, and will not vanish, even
though we maintain cylindrical symmetry. It is this compo-
nent of the current density that ultimately leads to electri-
cally silent magnetic fields.

The Magnetic Field
The magnetic field can be calculated from the current
density using the law of Biot and Savart

c

FIGURE 1 The path of least resistance in a tissue with (a) a spiral-like
conductivity, a'#:O, (b) a helix-like conductivity, a'000, and (c) a
cone-like conductivity, a" 0.

(16)B = x (r - r') dV,47rf Ir-rr13
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which can be rewritten as

B = "r f l dV+ fJxlf dS}

For the cylindrically symmetric case, the source terms in
the integrands in Eq. 17 can be written as

VxJ=-- p+ -- GJ)+ -a (pJ)z (18)az az ap p ap

and

J x n = -J°z + J'6. (19)

If either od, ozi, do, or or, is not zero, then J° does not
vanish and there exists components of the magnetic field in
the p and z directions. We can consider these two compo-
nents as the "electrically silent" components of the mag-
netic field. Analytic expressions for the magnetic field,
based on Eqs. 17 through 19, are derived in the Appendix.
The absence of o`P, c,°, cpr, and oaZ from the expression for
the electrical potential but their presence in the expression
for the magnetic field is the key point of this paper. It is the
reason we claim that the magnetic field contains informa-
tion not present in the electric potential.

In this example we not only can show the existence of
electrically silent magnetic fields but also can determine
their size and spatial dependence. Fig. 2 is a schematic
representation of the current density and the magnetic
field corresponding to a strand of tissue with a spiral-like
conductivity. The azimuthal component of the current
density, which produces the axial and radial components of
the magnetic field, is closely related to the radial compo-
nent of the current density. Using the expressions in the
Appendix, we can calculate the magnetic field from the
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FIGURE 2 A schematic drawing of the (a) current density and (b)
magnetic field produced by an action potential propagating down a strand
of tissue with a spiral-like conductivity. In a, the current density at any
point in the strand is the vector sum of the axial and radial components
(solid lines) and the azimuthal component (bands). A similar scheme was
used to represent the components of the magnetic field in b. The figure is a
qualitative drawing, not meant to be quantitatively correct.
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FIGURE 3 (a) The transmembrane potential, 4m(Z), used as the basis
for the calculation. The calculated magnetic field: (b) the azimuthal
component, B', (c) the radial component BP, and (d) the axial component,
BZ. The parameters used in this calculation are a = 0.1, mm, p = 1 mm, u
= 15 m * s -', and all the components of the conductivity tensors, as well
as the bath conductivity, are equal to 1 -'m-.

transmembrane potential, as shown in Fig. 3. The parame-
ters used in this calculation are a = 0.1 mm, p = 1 mm, u =
15 m * s -1, and all nonzero components of the conductivity
tensors, as well as the conductivity of the bath, are set
equal to 1 Q 'm -'. Qualitatively, the azimuthal compo-
nent of the magnetic field, B°, is proportional to the first
derivative of the transmembrane potential, the radial
component, BP, is proportional to the third derivative, and
the axial component, BZ, is proportional to the fourth
derivative. The amplitudes of BP and BZ are small relative
to B°, but can be increased by making a larger. For a = I
mm, the radial and axial components of the magnetic field
have peak-to-peak amplitudes -10% as large as the azi-
muthal component.

There exists a nonzero azimuthal component B° of the
magnetic field in all cases we have discussed, but the
azimuthal component of the current density is nonzero only
for spiral-like or helix-like conductivities. This component
does not vanish because the laws of magnetostatics follow a
"right-hand rule" that determines the direction of the field.
The laws of electrostatics have no such "handedness," so if
the tissue geometry does not provide this handedness, then
there is nothing to distinguish between a positive or
negative J° (clockwise or counterclockwise around the
z-axis), and J° must be zero. A conductivity tensor with a
nonvanishing o-OP or rz9 gives a handedness to the tissue,
breaking the symmetry just enough to allow an azimuthal
component of the current density.

DISCUSSION

It is useful to compare the electrically silent magnetic field
calculated in this paper to those suggested by others. The
usual procedure for discussing the independence of the
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magnetic and electric fields is to write expressions for the
magnetic field and the electric potential in terms of the curl
and divergence of an "impressed" current density, Ji, that
is the biological source of the volume conducted current (2,
20). Wikswo and Barach (6) postulate a divergenceless
component of Ji that is electrically silent but magnetically
detectable. The point of view of this paper is somewhat
different, since our electrically silent magnetic fields are
produced by Ohmic, volume-conducted currents instead of
non-Ohmic impressed currents. However, both models
require a similar spiraling or helical tissue geometry to
produce azimuthal, or toroidal, current loops. The equiva-
lent impressed current density discussed by Wikswo and
Barach (6) is in fact the macroscopic result of a true
membrane current impressed upon a conductor with off-
diagonal terms in the conductivity tensor.
The impressed current density can also be investigated

by taking a multipole expansion of J, (7, 9). Wikswo (7)
shows that the antisymmetric part of the current quadru-
pole tensor can produce electrically silent magnetic fields.
Since any antisymmetric tensor has vanishing diagonal
components, it is clear that only the off-diagonal compo-
nents of the current quadrupole tensor lead to electrically
silent magnetic fields. An analogy to our calculation is
again evident, since in both calculations it is the off-
diagonal terms of a tensor that generate electrically silent
magnetic fields; in our case, the conductivity tensor, and in
Wikswo's case, the current quadrupole tensor. Our present
analysis provides a local mechanism for producing current
patterns described by an antisymmetric quadrupole tensor
that were previously thought to exist on only a much larger
scale.
The model in this paper was derived specifically for

strands of cardiac or smooth muscle syncytia with unusual
cellular geometries. It is not clear if such strands occur in
nature, but they might be created in the laboratory by
either growing strands in cell cultures or by carefully
twisting ordinary muscle bundles. However, the model
may apply to other tissues which do occur naturally. For
instance, it might be used to model single isolated skeletal
muscle fibers, for which the interstitial medium represents
the transverse-tubular system. There is evidence that the
T-tubules in skeletal muscle are "helicoids" (21), which
implies that the interstitial conductivity will contain off-
diagonal terms. If the myofibrils are helical (21), the
intracellular conductivity might also contain off-diagonal
terms. The implications of this T system geometry on the
electrical properties of a muscle fiber has been studied by
Mathias (19). He concluded that an effect would exist, but
that it would be small because the tubules were tilted at a
very small angle reletive to the transverse plane of the
fiber.

Electrically silent magnetic fields are not restricted to
syncytial tissues. The conductivity of the passive, nonsyn-
cytial tissue surrounding an active fiber in a nerve bundle
or skeletal muscle is an important parameter in calculating

the compound action potential or electromyogram. If these
passive tissues have unusual cellular geometries, their
conductivities might contain off-diagonal terms, leading to
electrically silent magnetic fields. The myelin sheath sur-
rounding a nerve axon is one such example of a spiraling
tissue geometry.

Syncytial and nonsyncytial tissues that do not have the
cylindrical geometry discussed in this paper may also
produce electrically silent magnetic fields if the underlying
cellular geometry is complicated enough. The apex of the
heart is an obvious example of a tissue with a spiraling
cellular geometry (B. J. Roth, W.-Q. Guo, and J. P.
Wikswo, Jr., manuscript in preparation). In fact, the
geometry of cardiac muscle is complicated enough (22)
that we feel it would be surprising if electrically silent
magnetic fields are not produced by the electrical activity
of the heart. This may have ramifications for experimental
comparisons of the electrocardiogram and the magnetocar-
diogram, and for the interpretation of the types of current
pathways that are responsible for re-entry-associated ar-
rhythmiagenesis.

CONCLUSION

If we accept the existence of off-diagonal terms in the
conductivity tensor, then this paper proves that the mag-
netic field can contain information that is absent in the
electric potential. The obvious question is whether such
electrically silent magnetic fields occur in nature? We have
presented several tissues which have a cellular or sub-
cellular geometry with a spiraling or helical structure. Our
calculations suggest that electrically silent magnetic fields
may be produced in these tissues, implying that it may be
possible to obtain new information about these biological
tissues from their magnetic field. Whether this possibility
can be exploited experimentally remains to be seen.

APPENDIX
The geometry of a cylindrical strand of tissue is simple enough that the
electric potential and the magnetic field can be calculated analytically.
We shall restrict our attention to the case of a strand, of radius a, having a
"spiral-like" conductivity, so that e', oe,, a, and co,,vanish, but M;' and c/°
do not. If we express the transmembrane potential 'm(Z) in terms of its
Fourier transform, 0.(k), where

c.m(Z) =
I I', km(k)e-ikzdk, (Al)

and

(A2)km(k) = ( Dm(z)e+ikzdz,
then we find that the Fourier transforms of the intracellular potential,
41(p,k), the interstitial potential, f,0(p,k), and the external potential,
te(p,k), are (17)

= c4Z [ Io(jkjXp) + z

) + z [Io(lkla)(Ikl ,a, X) Ja km(k) (A3)

e0(p, k) e"[ Io(IkIXp) - 11A km(k), (A4)or,Z + cr7 [zIo(IkIXa)13(tkj, a, X)J
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and

0c(p,k) = Ko(lkIp) j(k), (A5)KO(jkIa)a(Ikj, a, X)

with

a(lkl, a, X) =-[(ozzoz) + y(lkl, a, X)] (A6)

+,z \ 1
3(Ikl, a, X) = 1 + ( /A7)(kI a, X) )

'y(IkI, a, X) =
ooeKI(jkIa)Io(Ik|Xa) (A8)

and

Ax= 7|Z .+ (A9)

The parameters ui and oAu do not appear in the above equations. The
potential is not changed by the presence of a "spiral-like" conductivity.
The Fourier transform of the magnetic field outside the strand (p>a),

is given by

B°(p, k) = AoaI1(Ikja)Kj(jkIp)ik

#(Ikl, a, X) 6(IkI, a, A)-a(lkl, a, A)] m(k) (A10)

BI(p, k) = -1oaI1(Ikja)K,(Ikjp)ik (I0Ia X)

x 1 [- 6(lkl, a, A)] /m(k), (All)

ff(p, k) = uoaIo(jkIa)Ko(jkIp)jkj(oIjk X)) A I(jkjXa)
#3(Ikl, a, X) 'tIO(jkjXa)

[ 1 X2 - X26(lkl, a, A))}Om(k) (

where

6(Ik1, a, A) = I1(IkIXa)IO(Ikja) (A13)XIn(IkIXa)I1(IkIa)(A )

In the limit when o'i + o'o = ei + eo (A = 1), Eqs. AIO through A12
reduce to

B°(p, k) = IOaI1(Ikja)K1(jkjp)ik
x ror, -~ 1 4m(k), (A14)[#(Ikl, a, X) aY(lkl, a, A)] X() A4

BP(p,k) =-poaI,(Ikla)Kl(lklp)ikjkla(oric + u?o)
x Ii(lkla)

2IO(Ikja),3(Ikj, a, A)

2+2I(Ikla) (o(IkIa )j)

BZ(p, k) = AsaIo(jkIa)Ko(IkIp)jkI(ofP + a'P) II(klka)
,3(IkI, a, X)Io(IkIa)

2ka (1I(kIa) Io(jkla) km(k). (A16)I2i (Io(IkIa) Ii(IkIa)
The radial and axial components of the magnetic field are both propor-
tional to (rl + A.
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