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ABSTRACT The electrical source strength for an isolated, active, excitable fiber can be taken to be its transmembrane
current as an excellent approximation. The transmembrane current can be determined from intracellular potentials
only. But for multicellular preparations, particularly cardiac ventricular muscle, the electrical source strength may be
changed significantly by the presence of the interstitial potential field. This report examines the size of the interstitial
potential field as a function of depth into a semi-infinite tissue structure of cardiac muscle regarded as syncytial. A
uniform propagating plane wave of excitation is assumed and the interstitial potential field is found based on

consideration of the medium as a continuum (bidomain model). As a whole, the results are inconsistent with any of the
limiting cases normally used to represent the volume conductor, and suggest that in only the thinnest of tissue (<200
,um) can the interstitial potentials be ignored.

INTRODUCTION

Electrocardiograms are, of course, measured with elec-
trodes placed at the body surface. Surface electrograms are
obtained from cardiac fibers lying in a tissue bath and are
measured with electrodes placed in the bathing medium.
Interstitial electrograms are obtained from within the
ventricular walls, using electrodes that are mounted on a
penetrating shaft. In all these cases, the measured poten-
tials are regarded as samples of a potential field arising
from cardiac electrical sources acting through an interven-
ing volume conducting medium.

Because they are complicated, the effects of the inter-
vening volume conducting medium have been evaluated by
a simplification to one or another of two limiting extremes:
One has been to treat each fiber as behaving like that of a
single fiber in a uniform unbounded conducting medium,
where currents spread as freely through radial as through
longitudinal pathways. The other limiting case has been to
envision a fiber deep within a multicellular structure,
where currents could spread only along longitudinal path-
ways.

While each case could be a good approximation under
limited circumstances, many in vivo or in vitro measure-
ments arise under conditions that are not so clear cut. For
example, how close to the endocardial surface must a
ventricular fiber be before the electrophysiological sources
are materially affected (if at all) by the highly conductive
blood within the cavities? How many fibers must be
present in a Purkinje strand before current flow loses the
ability to easily flow radially into the surrounding vol-
ume?

Addressing such questions requires a quantitative evalu-
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ation of the changes in the effect of the volume conducting
medium under circumstances that lie between the tradi-
tional limiting cases. The objective of this paper is to
provide such an evaluation. The task is significantly simpli-
fied by using the properties of the bidomain model of
cardiac tissue, since this permits the formulation of analyt-
ical expressions.

OVERALL STRATEGY

"Sources"
There are several ways of describing the distant electric
field arising from active tissue. One can show that the
solution is uniquely determined by the membrane currents
through its relationship to the measured potentials by a set
of transfer coefficients (Green's functions) based on calcu-
lations that include the interactions with the surrounding
tissue and the enclosing medium (boundary conditions).
Another way is to determine the electrical "sources" that,
when immersed in a uniform conducting medium, will
produce the observed effects. The advantage of the source
formulation is that source-field relations are dual to elec-
trostatic fields of charges and dipoles in free space. Conse-
quently, they correspond to our usual way of thinking
about and evaluating sources and their fields.

Geometry
The geometry used for the active tissue in this paper is that
of a semi-infinite block. This is obviously different from
that of any actual preparation, and as such does not
directly provide the answers to any of the above questions.
We use this geometry partly because it makes the analysis

$1.00 547



of a complicated problem easier. However, it also has
conceptual merit in its own right, since it is easy to identify
the relative behavior of fields located deep within the
sample, at the surface (and thereby in good contact with
the surrounding isotropic conducting solution), and
throughout a transition region.

Interstitial Potential Waveforms
Most of the analyses and results here are in terms of
interstitial potential waveforms evaluated relative to a
boundary between active tissue and an overlying isotropic
conducting region. Although the essential elements of the
results might also be expressed in terms of current flow
pathways or volume conductor transfer coefficients, poten-
tial waveforms and their changes are used since they have
an unambiguous meaning and are readily compared to
experimental records. Furthermore, there is a more techni-
cal reason why examining the interstitial potential is
advantageous. The limiting cases that now are used corre-
spond to assuming the interstitial potential to be zero or
have a simple relation to the intracellular potential, as
reviewed briefly below. Examining the interstitial potential
provides a means of determining the adequacy of such
assumptions.

SINGLE FIBER IN AN UNBOUNDED
MEDIUM

One of the limiting cases for which the effects of the
intervening volume conductor is well established is that of a
single fiber in a uniform unbounded conducting medium.
For such a fiber, the flow of current across the fiber
membrane into the surrounding medium constitutes a
source for the extracellular field. If im is the current per
unit length, then a current element imdz behaves like a
point source which (if we could forget the presence of the
fiber itself) sets up an unbounded space field.

1 r imdz-t= I~
47rae J r

(1)

where ae is the medium conductivity and r the distance
from source element to the field point.

Eq. 1 can be obtained through a more rigorous develop-
ment that requires the extracellular surface potentials be
very small compared to intracellular, ((e < < (i), a
condition that appears to be ensured for isolated muscle
and nerve fibers in unbounded media (2). In fact, this
inequality is also the basis for setting the extracellular
longitudinal resistance re = 0 in the linear core-conductor
model resulting in (1)

1 a24p 1 O2Vm
r az2 ri az2 (2)

From Eqs. I and 2 the second derivative of the transmem-
brane potential can be interpreted as a line source density.

Despite the simplified conditions under which Eq. 1 is

obtained, it has been applied to three-dimensional cardiac
tissue (multicellular preparations) (3) element by element
and it is of interest to examine the possible errors in doing
so. A related study by Geselowitz et al. (4) considered the
error in applying an unbounded free space lead field to a
thin multicellular (anisotropic) cardiac tissue sample (and
in this case discovered the anisotropy to have little effect).

MULTICELLULAR MODEL

The other limiting case where volume conductor effects
have been evaluated in detail is when current flow is
strictly longitudinal, as it is in some experimental prepara-
tions or under some circumstances in which the fiber is
deep within a structure.
A multicellular preparation, viewed as consisting of

many parallel fibers, is depicted in Fig. 1. Such a view
would exactly characterize skeletal muscle tissue. Clerc (5)
showed that such a structure also models cardiac muscle
effectively. In fact, because of the syncytial nature of
cardiac tissue, Fig. 1 can be used to represent propagation
(or electrotonus) either along or even across the actual
physical fiber direction (5).

If the fibers in Fig. 1 were bounded by a nonconductor
(e.g., oil), then for identical axial propagation or electroto-
nus of all fibers the intracellular and interstitial currents
would be essentially axial. Moreover, if the fibers and their
distribution were uniform and if propagation were initiated
synchronously at the same axial position, then every fiber
would behave in exactly the same way.

Linear Core-Conductor Model
In particular, the electrical properties of the fibers of Fig. 1
can be described by the linear core-conductor model, as
shown in Fig. 2. Among other important relations that
arise from this model are those noted by Hodgkin and
Rushton (6), namely, that

i = +r) Vm

4c = - (r )VM+

(3)

(4)

where re' ri are the interstitial, intracellular resistance per
unit length. The transmembrane current per unit length
per fiber, im, then turns out to be (1)

1 a2Vm
I (r, + r,) OZ2

It is this expression, in fact, that is used by Geselowitz et al.
(4) to evaluate the cardiac source in their tissue model.
However, the conditions that lead to Eq. 5, namely intra-
cellular and interstitial current that is both uniform and
axial, cannot be true for fibers near the surface of a
preparation in a tissue bath (or for fibers near a boundary

(5)
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FIGURE I (A) Side view and cross-section of ventricular trabecular muscle showing the interconnection of cardiac cells facilitating uniform
propagation (and action current flow) in any direction; (B) an equivalent linear model for longitudinal currents along fiber axis; and (C) across
fiber axis. From Clerc (5).

of cardiac tissue in the whole heart), since interstitial
current is actually not constrained to the axial direction.

SEMI-INFINITE TISSUE MODEL

This section contains a description of the geometric aspects
of the model that will be used in this paper for investigating
the transition between tissue deep within the structure and
that in contact with a surrounding extracellular solution.

Model Description

Consider the semi-infinite model of cardiac tissue drawn in
Fig. 3. We assume that the physical fibers lie in the z
direction (in and out of the plane of the figure). Because
actual propagation in the left ventricular free wall is
mainly across fibers (7), we assume propagation is in the x
direction. Following Clerc (5), we consider the tissue as if
the fibers extended in the x direction (see Fig. 1).
We assume the applicability of the bidomain model (8),

in which it is assumed that both intracellular and intersti-
tial spaces are continuous (and uniform). Note that extra-

----Ple
re6AX re AX reAX reAX reAX refX

(Di
r AX ri AX ri AX riAX riAX ri AX

Ii

FIGURE 2 Linear core-conductor model of a fiber with intracellular
resistance r, per unit length and extracellular resistance r, per unit length.
The membrane is represented by an unspecified network that, under
subthreshold conditions, can be modeled as a parallel Rm/vAx and C,,Ax
element. Eqs. 3-5 depend on the assumption that intracellular and
extracellular currents are axial (only).

cellular space within the tissue is referred to as interstitial
to distinguish it from the extracellular medium that lies
outside the tissue.

For a uniformly propagating plane wave in x, it is a good
approximation that Vm(t) is essentially the same every-
where (9). Consequently, the space-time field may be
designated Vm(t - x/O), where 0 is the velocity. For a first
order solution we have chosen 0 to be a constant.

Extension of Core-Conductor Model
The linear core-conductor model can be extended to a
semi-infinite geometry. Doing so is worthwhile not only
because the results are interesting in themselves, but also
they can be compared with the more general results found
below.

Extrocellulor Medium

(Do~~~~~~~~~~ ,Xo

Bidomoin Tissue Medium
Introcellulorgil ,g I(Di
Intostitiol : geg (Ds

r Y,Y
FIGURE 3 Semi-infinite uniform tissue extends from 0 < y < Z.
Propagation in +x direction with isochrones at x = constant. Because of
assumed uniformity c/Oz = 0.
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We expect that for sufficiently large values ofy (i.e., at a
sufficient depth into the tissue) the presence of the extra-
cellular space can be ignored in which case the intracellu-
lar and interstitial fields are governed by the linear core-
conductor model; in particular Eqs. 3-5 apply. A conse-
quence is that the exact (equivalent) axial dipole source
expression for the field relative to the extracellular
space (valid for single or multifibered preparations), name-
ly, (2)

4iXjeI (reF(e aibi) V (I) * a dxdydz, (6)
41r,, f dx r

can be evaluated using Eqs. 3 and 4. One obtains

¢=oA1GJm(f)V(x ) adXdydz, (7)
41r dx r

where

G

aAi + OeAe (8)

and A i, A e are the fractional intracellular, interstitial
cross-sectional areas, while the integration is over the
active tissue volume. In Eq. 8, G can be interpreted as the
effective parallel conductance of the intracellular and
interstitial paths (10). (In the above, reference is to the x
component of cross-sectional area and conductivity.) The
quantity aVm/ax in Eq. 7 is a line source density (which
operates in a uniform medium of infinite extent).
A related question (which we will not consider here) is

the local application of Eqs. 3 and 4 at isochrones that are
not planar, since the alternative is to separately require (D
and (be a possibly difficult determination (11, 12).

ONE-DIMENSIONAL PROPAGATION IN
SEMI-INFINITE CARDIAC TISSUE

Although the linear core-conductor model applies to the
semi-infinite geometry at large depths into the tissue and
leads to the useful result in Eq. 7, it is uncertain how large
the depth, y, must be. If, say, y must exceed 1 cm, then
since cardiac tissue itself is less in thickness, it is possible
that Eqs. 3 and 4 do not apply to one-dimensional activa-
tion of real tissue.

Consequently, in this section we formulate a simple
problem for which we can find an exact solution for (e(X,
y). The exact solution then can be compared to the result
that is obtained by using the core-conductor model Eq. 4.

The conductivity coefficients are defined on the total tissue
space, as is characteristic of the bidomain model (8).

Function '

Following Roth and Wikswo (1 3) we define a scalar
function ' by

= (Di + ge = Vm+ix be
gix gix

(1 1)

where we have used Vm = 4bi - 4.e. We also impose a linear
transformation to new coordinates X,Y where

X = x

Y = VI(gix + gx)/(giy + gey) Y

(1 2a)

(1 2b)

Transmembrane Current
The transmembrane current can be found from the diver-
gence of Ji or negative divergence of Je. Consequently,

V- (Ji+J)=0. (13)

Substituting into Eq. 13 from Eqs. 9 and 10 results in

_i _2_i a24.te a2.e
gix '+a+ 2 + geX 2 + gey 0

Solution for v 2*
Using Eq. 11 allows conversion of Eq. 14 to

gi X -2gE ax2 + g9y ay2

giygex +aa2aaC12+e a24)e

y2 + ex + eYa

From Eq. 12 we now obtain

a2i (gix + gex\ a2*i / giygex\ a2(=
g. 2+ gg + -A +

g eO
a9x gy+ geyj c31 jay2

(14)

(15)

(16)

Substituting for be in Eq. 16 the value found in Eq. 1 1, and
recalling that avm/ay = 0, gives finally

_,_ (gix + gex\ da2*
gix-+ gi + gey a2

+ (gie g1 )( g= (g± g ad =0 (17)
gx /gx + gex) ~gy + gey) a9y2

Longitudinal Currents
Referring to the geometry of Fig. 3, the bidomain longitu-
dinal intracellular (subscript i) and interstitial (subscript
e) currents are given by (8)

i= -[gi.da4i/lax-a + giybilay-ay]
J=- [g- acxa /axai + g,-a4'/dyayAi].

or

a2gd' (gix + gex\( ± gixgey_ gyygex\ a2*i'
g gixy+ + gey)l gix + gex )ay20

or
(9) al*i+ a2=i'

ax2±aYwyi0, (Y>0).(10)
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From Eq. 11, and with v2 =d- /X' ++al/ay2 we have

V2 =I=OV2V+(& + ge ) V2e. (20)

Solution for bIe
Eq. 20 shows that be satisfies Poisson's equation in the
transformed X,Y coordinate system. The classical solution
to this equation in integral form (14) is

Ige +gJ+ V Vm ln (R)dX'dY' (21)

where

R = 7(X-X')2 + (Y- Y')2

is the distance from a source point (X,Y) to a field r
(X,Y).

Boundary between Tissue and Surround
Medium

Eq. 21 gives the contribution to the interstitial pote
field from the sources in the tissue (primary sour
However, the boundary condition at y = 0 must als
taken into account and this can be accomplished by
method of images (1). At y = 0, we have continuil
current requiring

a4De gex+ g Oe - woaIogey(Yy =-g,Y +g aY ay
where co is the conductivity of the isotropic extracell
conducting medium (y < 0). In addition, the continui
potential at the boundary is required namely

4t(X, 0) = -o(X, 0).

Eqs. 23 and 24 will be satisfied if all sources are image
the mirror image point but with a relative amplitud
determined by the effective conductivity in Y > 0 (nan
from Eq. 23, gey I(gix + gex)l(giy + gey)) and the con
tivity in Y < 0 (namely o,). The constant, F, is (1)

F gey V(gx + gex)/(giy + gey) -O
gey V(gix + gex)/(giy + gey) + go

Consequently, for field points in the tissue interstitial s
of the region (Y > 0) we have

27r Y)g+ ) [J j X in (R)dX' dY'

+ F f f , In (R)dX'dY']

voint

ing

ntial
ces).
,o be
' the
f-,l nf'

Elimination of Integration to Infinity
The evaluation of Eq. 26 requires one to use numerical
procedures for approximating the double integrals.
Because ln(R) increases without bound with increasing Y,
it is not immediately obvious that the integral converges.
The integral of O2Vm/0X2 over X is zero since it equals
a0/rn/OX evaluated at the plateau and resting regions, and,
in each case, aVm/OX equals zero. Consequently, even
though ln(R) increases without bound for Y - 00, the
double-integral converges with integration over increasing
values of Y, and a finite limit in the Y integration is
satisfactory.
One can avoid this difficulty entirely by rearranging Eq.

26 in a way that eliminates the infinite integrals. For a field
point with Ycoordinate Y,, Eq. 26 can be rewritten as

4)e(X, Y() I
g,, j J '2 in (R)dX'dY'

+ f tx,2 ln (R)dX'dY'

+ Ff' f I,ln (R)dX'dY'

- F f' , , ln (R)dX'dY] . (27)

Ly Ul In the second and third integrals the source constitutes
exactly half of an infinite uniform double layer sheet;
consequently, each contributes to the interstitial potential,

(23) a value given by the linear core-conductor equation divided
by 2. Based on this, Eq. 27 becomes

lularI
ty of 4be(X, ) = - ( + F) [Vm(X)l

1- FIg.\ rY, c _
(24) + (g ) JJ)4 In (R)dX' dY'} (28)

ed at
e, F, and R = 4(X - X,)2 + (yl - Y'). Eq. 28 not only avoids
nely, the infinite integrals of Eq. 26 but is generally easier to
duc- evaluate numerically. Furthermore, a physical interpreta-

tion of source-field relationships can be obtained, as will be
discussed below.

(25)

pace

(26)

and R is from the integration (source) point to the fixed
field point.

Reduction to One Integral
A final approach to the evaluation of Eq. 26 is first to
integrate by parts with respect to X. The result is

I_____ OVrn (X - )4'(X,Y) - dxaX R2 dX'dY'

a

1/, (X X') dX'dY'] (29)

In Eq. 29, but not Eq. 26, one can first integrate over Y in
the infinite interval. The result leaves a one-dimensional
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integration, namely

4~e(,, Y) =
x ( + F) [V.m(x)I

12 gx + g&)
-(11F) ~4X~~) , ~ tan-'( r-~dXj,. (30)
(2v )gix + gext axt ta X- x)XI l (0

From a computational standpoint Eq. 30 is superior to Eq.
26 or 28. Application of any of these Eqs. requires that the
geometric coordinates be transformed correctly according
to Eq. 12.

NUMERICAL METHODS

Inspection of the potentials can be accomplished by the
numerical evaluation of Eqs. 26, 28, or 30, which permits
an examination of 4e(X,Y) as a function of the parameter
Y (distance from the surface). The results then can be
compared with the limiting cases, e.g., compared with the
potentials from Eq. 4 that are based on the core conductor
model.

Accomplishing the numerical evaluation requires a
numerical tabulation of an action potential, and of the
conductivities. The following subsections show how we
obtained each of these as idealizations of previous mea-
surements in the literature.

Synthetic Action Potential
The shape and magnitude of the rising phase of a cardiac
action potential is similar to the function

Vm(x) = lOOe-8(x/)4 - 50, x > 0

= 50, x<0, (31)

where a uniform plateau is assumed for x < 0, and where x
is expressed in millimeters and 0 in meters per second.' We
also assume, in Eq. 31, that the temporal action potential is
independent of velocity, in which case the spatial distribu-
tion depends on the velocity, 0, as shown. Consequently,

m2V 3,200 (x2/84) [32(x/)4 - 3]e , x 0. (32)ax,

A plot of Vm (Eq. 31), 9 Vm/Ox, and d2Vm/ C3X2 (Eq. 32) for
0 = 0.2 m/s is shown in Fig. 4. Note that since the
transformation of Eq. 12a is an identity; all expressions in
terms of x and X are also identical.

' The resting potential of Vm is normally suppressed since its inclusion (or
that of any constant term) contributes nothing to the evaluation of
currents and potential fields (1). In Eq. 31 the introduction of -5OmV
also contributes nothing to subsequent calculations of (be; its role is simply
to reduce to zero, the total direct current (d.c.) component of Vm(x). Its
inclusion is simply a convenience since the derived expressions for ib(x)
will be seen to have zero d.c. component, and, consequently, its relation-
ship to Vm through Eqs. 31 and 4 will require no subsequent adjustment
for a possible d.c. component difference.

0) 5
0.0

0)5

0.00 005 0.10 0.15 0.20 0.25 0.30
x mm

FIGURE 4 Behavior of Vm(x), c Vm/Ox, and a2Vm/8X2 as functions of x
for velocity of propagation, 0, of 0.2 in/s. Expressions are given in Eqs. 31
and 32.

Conductivities
For cross-fiber propagation we chose 0 = 20 cm/s (3), and
using the data derived from Clerc (5), but expressed in
bidomain format (8), we have2

giX= 2.21 x 10-5S/mm giY= 2.21

x 10-5S/mm gi = 1.94 x 10-4S/mm (33)

gex = 1.57 X 10-4S/mm gy = 1.57

x 10-4S/mm g¢Z = 4.17 x 10-4S/mm. (34)

Based on these values and on Eqs. 4 and 31 the core-
conductor interstitial potential has a potential swing of 100
x [0.221/(0.221 +1.57)] = 12.3 mV associated with the
rising phase of Vm. The extracellular fluid was assumed to
have a conductivity of 2 x 10-3 S/mm (resistivity of 50
ohmcm). These values lead to the parameter, F, defined in
Eq. 25 having the value of -0.854. Note that because of
the particular geometry of this example, and the equal
transverse conductivities in x and y, Eq. 1 2b yields Y = y.

RESULTS

Using the parameters of Eqs. 33 and 34 in Eq. 26
permitted the potential fields at Y= 0, 0.05, 0.5, 5 mm to
be evaluated. The same potential fields were confirmed
using Eq. 30. The potentials are shown in Fig. 5. Also
shown is the field that is predicted by the linear core-
conductor model of Eq. 4.

In looking at the waveforms of the figure, one notes that
each is drawn as a function of space (x). However, the
assumption of constant propagation velocity implies that

2 The values have been computed for an assumed 80% volume cell density
rather than the 70% value assumed by Clerc.
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FIGURE 5 Plot of interstitial potential vs. axial distance, x, at different
depths (as labeled) from interface of tissue with extracellular fluid.

the same waveforms would be computed as functions of
time.

Limiting Potentials
Inspection of Fig. 5 shows that the potential waveform with
the lowest amplitude corresponds to the field point at the
surface, i.e., depth of zero into the tissue, as expected.
Experimental waveforms made at the tissue surface always
decline toward the baseline on their leading and trailing
edges. The waveform shown does not do so as a result of the
excitation wave extending infinitely deep.
At the other extreme, the largest waveform is that from

the core-conductor model, as expected. This waveform is
not expected to decline toward the baseline in its leading
and trailing edges, since an infinitely long interval before
and after the depolarization is assumed.

Changes with Depth

As depth increases (i.e., increasing Y), the interstitial
potential departs from the shape of the surface waveform
and approaches that predicted by Eq. 4 (i.e., the linear core
conductor values). Note the sharp increase in the magni-
tude of the waveform for Y = Y, = 0.05 mm, whose peak is
roughly six times the magnitude of the surface waveform.
Moreover, the shape is markedly different. These effects
are even more strongly present in the waveform at 0.5-mm
depth. At a depth of 5 mm, however, the waveform is
approaching its limiting magnitude, and the shape has
returned to its original step appearance, though at a much
larger magnitude.

Examination of Eq. 28 is helpful in indicating the cause
of these changes with depth. At the surface (YI = 0), the
integral in Eq. 28 drops out and the potential distribution is
seen to be proportional to Vm(x). Therefore, at the surface

the potential has a peak magnitude of 0.5 x 6.2 x 0.146 =
0.45 mV, as seen in the plot in Fig. 5.
At increasing values of Y the contribution from the first

term in Eq. 28 remains the same. Modifications are
introduced by the additional (integral) expression in Eq.
28.
The integral can be viewed as generating an interstitial

field due to a dipole source density that lies in the confined
region 0 < Y < Y1, and in the range of X over which
aVm/aX . 0. For small Y1 the source extent is small and
this field is consequently small and falls off rapidly with
increasing X-distance from the sources. For large Y1 the
integral contributes substantially to the total amplitude,
while its influence extends to large values of X (to a
distance comparable to the Y,).
At a large depth into the tissue, which from Fig. 5

appears to be a depth of Y = 0.5 mm or more, the
interstitial field is essentially the same as that given by the
linear core-conductor model, at least out to the X = + 1.0
mm that is plotted. According to Eqs. 4, 33, and 34 the
core-conductor magnitude should be equal to 12.3/2 =
6.15 mV, as calculated earlier, a value that is correctly
reflected in Fig. 5.

DISCUSSION

Relation to Experimental Findings
While some aspects of this paper deal with conceptual and
mathematical points that are interesting in their own right,
all the particular aspects of the model and the analysis are
closely tied to well established experimental results,
expressed in mathematical form, as cited specifically in
each section. As such it is to be expected that the numerical
results should correspond to actual measurements except
for discrepancies caused by the assumption here of an
infinitely deep excitation wave. There are, of course, a
large number of reported experimental recordings of elec-
trograms measured at varying depths in many different
tissue preparations. However, recordings that might be
compared with the results presented here in a detailed way
do not yet exist, other than for the limiting cases.
As for the latter, Spach and Dolber (15) (see their Fig.

4) show around 1.5-mV peak-to-peak surface potential for
transverse propagation (compare with 0.9 mV in this
simulation) and 6.5-mV surface potential for longitudinal
propagation. For longitudinal propagation, if Eqs. 33, 34,
and 28 are used, one obtains 4.0-mV peak-to-peak surface
potential. Since the measurements are taken on their
tissue, they can only be compared in an approximate sense,
of course.

For potentials at a "large" depth the simulated values
are 12.3 mV, peak-to-peak, for transverse propagation, as
discussed earlier, while using Eqs. 33, 34, and 4 one
evaluates 31.7 mV for longitudinal propagation. Measured
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values in the literature normally do not assess the nature of
anisotropic propagation at deep measurement sites; how-
ever, typical amplitude values of 27 mV, peak-to-peak, are
obtained (16).

Source-field Equations
Discussion of the results is aided by using the rigorous
source-field Eq. 6 given earlier. This equation can be
reformulated as (2)

f=4 dS J[°e dx - J a V dx(3(5)

and the term in brackets can be interpreted as an axial
dipole source density. The total dipole source, D, from a
region of extent x, < x < x2 is then simply,

D = ore[4)e(X2) - 'te(XI)I - o[J(i(x2) - A(x1)]. (36)

Limiting Cases

It is interesting to examine quantitatively the regions over
which the traditional limiting cases provide an accurate
approximation to these results.

Close Contact with an Unbounded Medium.This
limiting case is clearly a good approximation when the
extracellular potential is near zero. It is clear from Fig. 5
that the assumption of be = 0 is not well justified even for
fairly superficial sites. In fact, it is remarkable how rapidly
be grows with depth, even at depths of only 200 ,um.
What about formulations that ignore the interstitial

space altogether? Such formulations amount to dropping
the first term in Eq. 35 and replacing (Di by Vm. What is
ignored are the sources associated with the changes in (!e,
as described in Fig. 5. For the numerical values chosen,
which represent typical normal physiology, the error
amounts to neglecting changes in be that are 20% of the
changes in Vm (or 25% the change in 4)i). Since Ye/lOi t8
(5), this percentage is augmented and represents a very
substantial error in the application of Eq. 35. Conse-
quently, only tissue that is very thin (possibly < 200 ,um)
can be considered essentially free of this error.

Core Conductor Assumptions. On the other hand,
the peak values of be rapidly approach those required by
the core-conductor model at small depths. Thereby the
core-conductor model rapidly becomes a good approxima-
tion at only very small depths. However, the potential
increasingly differs from core-conductor predictions for
increasing distance ahead and behind the excitation wave-
front (increasing x). One can interpret changes in (be as a
direct measure of the net source (dipole). On this basis it
seems reasonable to use the core-conductor model to
analyze sources in the neighborhood of the rising phase of

Vm using the core-conductor assumptions. Away from this
region a correction appears necessary.
More specifically, the field from sources arising from

the phase zero region is described by Eqs. 7 and 8, but
diffused additional sources must be assigned in the lateral
space. The importance of the latter depends to some extent
on source-field distance; it will be negligible if the source-
field distance is small compared with the extent of the
lateral source region. And the extent of the lateral source
increases with increasing tissue thickness as is evident from
Fig. 5.

Tissue of Finite Thickness
One could use the results of Fig. 5 to guess at the treatment
of tissue of finite thickness. For example, in a tissue sample
1-mm thick, the behavior of 4i4 e, and Vm could be
expected to be governed by the core-conductor relations,
Eqs. 3 and 4, in the region of the rising phase but deviate
somewhat from this in the regions on either side. The
interstitial field in the latter regions should approach that
at the surface rather than hold at the core-conductor
value.
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