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ABSTRACT Presented is an algorithm for the approximate calculation of the membrane stress distribution and the
internal pressure of a steadily tank-treading red cell. The algorithm is based on an idealized ellipsoidal model of the
tank-treading cell (Keller, S. R., and R. Skalak, 1982, J. Fluid Mech., 120:27-47) joined with experimental
observations of projected length, width, and tank-treading frequency. The results are inexact because the membrane
shape and velocity are assumed a priori, rather than being determined via appropriate material constitutive relations for
the membrane; these results are, nevertheless, believed to be approximately correct, and show that internal pressure
builds up slowly as cell elongation increases, rising more rapidly as the deformed cell approaches the limiting geometry
of a prolate ellipsoid. The maximum shear stress resultant in the membrane was found to be below but approaching the
yield point range at the highest shear rate applied.

INTRODUCTION

Microscopic observations of normal mammalian erythro-
cytes have clearly demonstrated the interesting state of
motion known as "tank-treading" (Fischer and Schmid-
Schonbein, 1977) in which individual cells, suspended in a
shear flow, assume a stationary orientation and, driven by
the surrounding flow, the membrane steadily rotates about
the cytoplasmic fluid. As shown in Fig. 1, erythrocytes
tank-treading steadily in a uniform shear flow present the
aspect of a flattened ellipsoidal shape. This picture was
taken in a device known as the rheoscope, a counter-
rotating, cone-plate shear chamber which is mounted
directly on the stage of an inverted microscope. (For more
details, see the reference by Fischer and Schmid-
Sch6nbein, 1977.) In addition to the cell's approximately
elliptical periphery projected on the plane of shear, the
translational speed of the membrane, made visible by
marker beads, and thus its "tank-treading frequency"
(TTF), is directly measurable.
We have been concerned with the general problem of

interpreting the limited observable aspects of tank-tread-
ing motion in terms of the mechanical properties of the
erythrocyte membrane. The solution to this problem rests
on the availability of suitable mathematical models of the
tank-treading erythrocyte. Several of the earliest attempts
in this direction relied upon either the rigid ellipsoid or the
liquid droplet as a model of the red cell. Later, thin shell or
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membrane theory was applied to liquid-filled capsule
models with elastic or viscoelastic membranes. The most
recent in this category by Barthes-Biesel and Sgaier (1985)
is representative; the capsule is initially spherical and is
limited to small deviations from its initial shape. An
examination of the exact tank-treading problem as it is
formulated, for example, in this paper reveals its complex-
ity and intractability. Given (a) an undeformed membrane
shape, (b) the viscosity of the internal and external fluids,
(c) viscoelastic constitutive relations of the membrane
material, and (d) the shear rate of the external fluid far
from the membrane, it is required to determine simulta-
neously (i) the three internal and external fluid velocity
components, (ii) the pressure, and (iii) the a priori
unknown membrane shape (when the deformations are
large), so as to satisfy (a) the linear equations of Stokes
flow inside and outside the membrane, (b) the conditions of
constant pressure and simple shear flow in the external
fluid at infinity, (c) continuity of velocity across the
membrane, (d) nonlinear relations between displacement,
velocity, strain, and strain rate on the (a priori unknown)
deformed membrane, and (e) nonlinear membrane consti-
tutive relations between membrane stresses, strains, and
strain rates. No exact solutions of this full problem, either
analytical or numerical, have yet been attempted.
One way in which some progress has been made is via a

semi-inverse approach wherein reasonable a priori approxi-
mations are made for the membrane shape and velocity
field, and the remaining variables are solved for with much
simpler linear problems. To date the most comprehensive
model of the tank-treading erythrocyte is that conceived by
Keller and Skalak (1982). They represent the cell by an
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FIGURE 1 Photomicrograph of hu-
man red cells tank-treading in the
rheoscope. Cells suspended in buff-
ered saline with dextran added; vis-
cosity = 30 cP. Applied shear rate =
200 s-'. Polystyrene beads are
attached to membranes of two of the
cells.

ellipsoidal energy-dissipating membrane of zero thickness
encapsulating an incompressible Newtonian liquid and
immersed in a simple shear flow of a second incompressible
Newtonian liquid. The membrane motion is prescribed in
the form of a surface-velocity distribution, which is kine-
matically similar to that observed experimentally. Building
on this model we have been able to calculate the complete
external velocity field (Sutera and Tran-Son-Tay, 1983)
and also develop an algorithm for determination of mem-
brane viscosity from rheoscopic measurements of TTF and
aspect ratio of the deformed cell (Tran-Son-Tay et al.,
1984). In the present paper we seek the stress distribution
in the membrane of the tank-treading cell; in the process it
will be necessary to determine the cytoplasmic pressure.
Once again we base our analysis on the Keller-Skalak
(K-S) model.

MEMBRANE LOADING

Fig. 2 shows diagrammatically the model ellipsoid and
defines the coordinate systems and principal flow parame-
ters. The XYZ axes are centered in the ellipsoid and
oriented such that the undisturbed shear flow has compo-
nents [j' Y, 0, 01, where j is the shear rate. The xyz axes are
the principal axes of the ellipsoid whose surface is defined
by

x21a2 + y2lb2 + Z2/C2 = 1.

the same period T = 2ir/f. Membrane markers attached to
tank-treading cells are in fact observed to move along paths
whose projections on the XZ plane (the plane of observa-
tion) are virtually straight lines (Fischer and Schmid-
Sch6nbein, 1977).
The membrane velocity field described by Eq. 2 does not

satisfy the condition of local area conservation and, hence,
does not reflect the true mechanical behavior of the red cell
membrane. However, we will compute the membrane
stresses from a specified distribution of surface tractions,
rather than the membrane deformation. This approach will
allow explicit computation of the membrane stress compo-

(1)
In the K-S model the prescribed membrane-velocity field
is

Um = f[(a/b)y, - (b/a)x, 01,
x

(2)
wherefis the TTF, defined here as a positive constant with
dimension rad/s. The corresponding particle paths are
closed ellipses lying in planes z-const., as indicated in Fig.
2 B, and all membrane elements orbit synchronously with

FIGURE 2 Diagram of the tank-treading ellipsoidal particle showing the
notation and coordinate systems used.
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nents in terms of known or observable parameters and the
unknown internal pressure. To determine the latter it will
be necessary to introduce the constitutive relations of the
membrane material. It is also important to point out here
that the use of an area-conserving velocity field will not, of
itself, improve the results. Secomb and Skalak (1982) have
derived two area-conserving fields on an ellipsoid. The
first, with planar streamlines like those of the K-S field,
predicts a longitudinal stretch ratio (XA), which is constant
at every point on the central streamline (z = 0). The
second had nonplanar streamlines curving away from the
plane of symmetry and entailed a lower energy-dissipation
rate than the first. For this reason it is probably closer to
the true membrane-velocity field. It so happens that this
field and the K-S field give qualitatively similar variations
of Xs along the central streamline, i.e., high at the flattest
part of streamline (x = 0, y = b) and decreasing toward
the points of maximum curvature (x = ±a, y = 0). Thus,
even though it fails to conserve the membrane area, the
K-S field provides a description of the membrane deforma-
tion that is approximately correct.
The cartesian components of the stress exerted by the

external fluid on the (outer) membrane surface z are
expressed as

j -p i + 77,(Ui,j + Ui,i)IT

where

/X y2 Z2 -1/2
° ta4 b4 c4 ' (6)

and the remaining coefficients, A, B, C, H, ao, fO, and 'yo
are expressible in terms of elliptic integrals. The constant
p0 is the remote pressure far from the ellipsoid. These
coefficients were all derived in the paper by Sutera and
Tran-Son-Tay (1983); for the reader's convenience they
are repeated in the Appendix.
The internal fluid is driven in a closed circulatory

pattern by the tank-treading membrane. The correspond-
ing velocity field is given by the surface velocity, Eq. 2,
extended into the interior of the ellipsoid (Keller and
Skalak, 1982), i.e.,

u' = f[(a/b)y, - (b/a)x, 0]. (7)

Associated with this velocity field is a uniform internal
pressure pi. The stress exerted over the internal surface of
the membrane by the internal fluid has components

Trj= -pjbij + m(u!,j + u i) 2, (8)

where qj is the viscosity of the internal fluid. The compo-
nents of the corresponding stress vector T' are

(3)

relative to the xyz axes, where p is the external pressure, q,,
is the external fluid viscosity, the u° are the components of
the external velocity field, and 6ii is the Kronecker delta.
The traction vector at any point on the outer surface of the
membrane, To, has components defined by

T? -r?j nj, (4)

where the nj are the components of the outward unit
normal vector, again with respect to xyz. According to
Jeffery (1922), for the general triaxial ellipsoidal particle,
the components of T° reduce to

TX~~~~~~2Po 2+ qoo +2o4(a
alb °[abc ( 2b2

4x
-2(aoA + #OB + oC), (5a)a

Ty Po |-b2 +n[abc b22(a°A + flB + yoC)]}. (5b)

T0~, POZ[8(jCz)
-4 (aDA + fl0B + yoC)]J (5c)

T. = Po (
x

- 7if(b -
b

Ty= P°|b2 - rif( a) a

Popi z

c

(9a)

(9b)

(9c)

Now the resultant stress vector at any point on the
moving membrane is the vector sum T = T° + T' whose
components reduce to

+8An0o x

8Hflo
abc a' abc bj

/8n,0H 8Bn0\Ty = Po |( -E)+ (D + ) b2
abc a abc+ bj

abc)C2
I

(1 Oa)

(lOb)

(1 Oc)

where

D-p -po-4?o(aoA + /oB y.C), (1 1)

and

E = 1qf(a/b - b/a). (12)

MEMBRANE STRESS DISTRIBUTION

In this model we assume that the mass of the thin
ellipsoidal membrane is negligible and ignore bending
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problem of calculating the stress resultants in the spherical
membrane solved. The latter resultants, operated on by an
appropriate linear transformation, give finally the stress
resultants in the ellipsoidal membrane.

Consider a general linear coordinate transformation of
the form:

x = clx ,y = C2Y*, Z = C3Z*, (14)

where x*y*z* are the transformed coordinates, also carte-
sian, and the coefficients cl, c2, C3 are constants. This
transformation will map the ellipsoid, Eq. 13, onto a sphere
of radius c, Fig. 4, if we take

Cl = a/c, C2 = b/c, C3 = 1-

FIGURE 3 Diagram illustrating membrane stress components in the
ellipsoidal membrane.

stresses within the membrane. Then the state of stress at
any point in the membrane is defined by two in-plane
normal stresses and an in-plane shear stress. At each
instant of time, each element of the membrane must be in a
state of equilibrium, and the internal stress distribution is
completely determined by the applied surface loading T.
The ellipsoidal surface of the membrane can be expressed
in terms of two surface coordinates, 0 and a, as

x = a sina coso,'
y = b sina sink,

z = c cosa.

(15)

The polar equations of this sphere, analogous to Eqs. 13,
are

x* = c sina coso,1
y * = c sina sin+, .

z* = c cosa. (16)

We need further to introduce the direction cosines, with
respect to the fixed cartesian system, of the two edges and
the outward normal of the surface element ds* ds *

sketched in Fig. 4. These will be denoted 1,, 12, 13 for ds*,
mI, M2, m3 for ds* and nl, n2, n3 for the normal. In terms of
the polar angles a and 0 they are

(11, 12, /3) = (cosa cos4, cosa sino, -sina),

(m,, M2, M3) = (-sino, coso, 0),

(n,, n2, n3) = (sina coso, sina sino, cosa). (17)

(13)

Note that this is not an orthogonal surface-coordinate
system.
The sketch in Fig. 3 shows a curvilinear surface element

with edges of length dsa and ds,, parallel to the k- and
a-coordinate curves, respectively, whereon the surface
stress resultants' (force per unit length) are denoted by Ta,
T1,, and S. Note that Ta and Tp represent forces acting,
respectively, along the local directions of the 0- and
a-coordinate curves. Direct solution for these components
from the fundamental equations of membrane equilibrium
is complicated by the ellipsoidal geometry. We circumvent
this difficulty by resorting to a transformation method
(Novozhilov, 1964). By linear coordinate transformation
the ellipsoidal membrane of interest can be mapped onto a
sphere. A surface loading related to that which acts over
the ellipsoid is then specified for the sphere and the easier

'In the ensuing text the abbreviated terminology "stress" is occasionally
used to stand for "stress resultant."

I*
S

FIGURE 4 Spherical transform of the ellipsoidal membrane of Fig. 3.
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According to Novozhilov the surface loading on the
transformed membrane, i.e., the sphere, denoted T*, must
be related to the surface loading T on the original ellipsoi-
dal membrane as follows:

(TX,TY, T~) (c,T*, c2Ty*, c3T*)
cJ2c2n2 + C2Cl2n2 + C2C2cn2

(18)

Insertion of the definitions for cl, C2, C3 (Eq. 15) and for nl,
n2, n3 (Eq. 17) into this relationship leads to considerable
simplification and yields

T*, T*
b

T* =
a
T.,

a

Ty,
ab

T" (19)

where the components T,, Ty, and T, are as previously
defined (Eqs. lOa-c).
The next step is to solve for the resultants T*, T,*,, and S*

in the spherical membrane corresponding to the loading
specified by Eq. 19. The three components are governed by
the classical differential equations of equilibrium for a
membrane in the shape of a surface of revolution:

a+(T* -T**) cota + + cq=
aa silna 8a

±+ 2S* cota + si O + cq 0,o9a sina clo
T* + T* = cq *, (20)

where qa*, q,, and qn* are the spherical components of the
surface load vector T*. These components are related to
the cartesian components T*, T*, Tz* through the direc-
tion cosines of the surface element edges and normal:

q* = 1,T* + 12T* + 13 T*,
-= m,T* + m2T* + m3T*,
= n,TT* + n2Ty* + n3TZ*. (21)

For the sake of conciseness here, the complete expressions
for qa*, q*, and q* have been placed in the Appendix.
Examination of these expressions verifies that they are
periodic functions of 0 with period ir, and each component
is expressible as a three-term finite Fourier series of the
form

q= q,,o + qa,2 cos2k + q'2 sin2¢, (22)

and similarly for q,* and q*. The corresponding set of nine
coefficients is also listed in the Appendix.

It follows from the periodicity of the surface loading that
the stress resultants in the spherical membrane, T,*, T,,,
and S*, must be similarly periodic. Hence, we introduce
into the partial differential Eqs. 20 expansions of the form

T* = Ta,o + Ta,2 cos2k + Ta,,2 sin2k, (23)

where the coefficients are functions of a alone. Substitu-
tion of Eq. 23 and similar expansions for T,* and S* into

Eqs. 20 reduces these to a set of ordinary differential
equations in the coefficients as functions of a. Tran-
Son-Tay (1983) has solved these equations, subject to
appropriate boundary conditions, and obtained

T* = (D + 8i1o C/abc)ab/2c + cG cos2o + cL sin2o, (24a)

T-= cF sin2 a + (D + 8n0C/abc)ab/2c
-cG cos2a cos2 -cL cos2a sin2o, (24b)

S * = cL cosa cos2o - cG cosa sin2o, (24c)

wherein all the coefficients are defined in the Appendix.
According to Novozhilov (1964), the stress resultants in

the ellipsoidal membrane are related to those in the
spherical membrane as follows:

{ c212 + C2i2 + C32i2 '1/2
2 2 2 2 2 a

JCl mI + c2m2 + c32 M32l
c2m2 + c2m2 +4C2M 1/2

S212+ C212 + C2125

S = S*,

(25a)

(25b)

(25c)

where the ci, li, and mi are defined in Eqs. 15 and 17.
Inserting these definitions, we find for Ta and T,

[a2 cos2a cos2p + b2 cos2a sin20 + c2 sin2al'X1/2Ta = l a2 sin 2 + b2cos2j T., (26a)

T ~~~a2 sin24+b2Cos2o 11/2T* 2b

T= a2 2a COS2 + b2 COS2a sin20 + C2 sin24 TX (26b)

These equations, coupled with the solutions, Eqs. 24a-c,
thus determine the stress everywhere in the membrane of
the arbitrary ellipsoid symmetrically oriented and tank-
treading in a simple shear flow. Note that once the shape of
the membrane is assumed as known and the surface
loading is given, the internal stress distribution in the
membrane is statically determinate and independent of
any particular assumptions about the material properties
of the membrane.

INTERNAL PRESSURE

Careful scrutiny of the expressions obtained for the mem-
brane stress resultants Ta, T,, and S shows that they
contain several parameters, all but one of which are either
known a priori, e.g., ni, 770 or observable in the tank-
treading motion, e.g., f, a cosO, c. The exception is the
internal pressure, pi. While it is generally accepted that the
red cell membrane supports no pressure difference in the
resting state (Fung, 1966), transmembrane pressure dif-
ferences must be expected in the case of the tank-treading
cell. Therefore, pi is an additional unknown that must be
found simultaneously with the stress components. To
accomplish this it is necessary to invoke the constitutive
relations of the membrane.
The maximum shear stress resultant at any point on the
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membrane, Smax' is defined as one-half the magnitude of
the difference between the principal normal stresses, T,
and T2, at that point,

Smax = 'T -T21

As a first approximation, it is common to represent
membrane material as a Kelvin-Voigt viscoelastic s
For an area-conserving material of this type, the maxir
shear stress at any point can be expressed in terms
principal extension ratio, X, at that point as (Evans
Skalak, 1980)

Smax = | M (2
2

x-2) + 2n. d (lnX) .
dt

(27)

t the
;olid.
num
of a
and

(28)

In the right member of this equation the first term is the
elastic contribution with gum, the membrane shear modulus
of elasticity, whereas the second term is the viscous contri-
bution with 1m, the membrane coefficient of shear viscosi-
ty. The operator d/dt signifies the material time deriva-
tive.
Assume that the unstressed configuration of the mate-

rial strip C is the meridian strip C0, as sketched in Fig. 5 b,
and let a and s denote arc lengths measured along C. and
C, respectively. There must be a one-to-one time-depen-
dent mapping between the moving points on C and their
original coordinates on CO. This mapping is expressed by

s = s(a, t) or ai = r(s, t). (29)

The speed of points on the moving membrane strip can be
expressed as

(30)

Combination of Eqs. 30 and 31 leads to a Maxwell-type
relation:

(ax/at)o= (OVm/190)t. (32)

Next we note that

d I( (aS, \, (aVm\
dt XsIat as) au I as

(33)

From the symmetry of the assumed K-S surface velocity
field it is clear that (d9vr/ds), vanishes, and so, therefore,
does the viscous contribution to the maximum shear stress,
at four particular points, viz. x = ±a, y = z = 0 and
y = ±b, x = z = 0 (Fig. 2) or, equivalently, a = w12,
X = 0, 7r/2, ir and 3ir/2 (Fig. 3). Thus, at these locations
the maximum shear resultant reduces to

Smax ="A/2 IX! - XS-2. (34)

We proceed next to evaluate the stress resultants T0 and
T1, at the two points a = ir/2, 0 = 0 and a = ir/2, 0 = 7r/2
by insertion of these coordinates into Eqs. 24a, 24b, 26a,
and 26b. At these points T0 and T,p are also principal
stresses so that

Smax = '/2IlTa-TOI (35)

Denoting the extension ratio XS at the same points as XI and
XI,, respectively, we arrive at

I(a/2 - ab2/2c2)(D + 8770C/abc) + c2G/b - bF|

Iu|AX-Ax 21 (36)

I(b/2 - a2b/2c2)(D + 870C/abc) - c2G/a - aFI

- jIjXj - X2I. (37)
and the longitudinal extension ratio of material elements
comprising C as

A = (sI/dcr),. (31)

Recall that the pressure pi is embedded in the coefficient D,
Eq. 11. Eqs. 36 and 37 thus contain three unknowns: pi, XI,
and XI,. Another condition is therefore necessary to render
the problem determinate. This is provided by a kinematic
condition on the material strip comprising the contour C.

For the steady-state motion being considered here, the
configuration of strip C does not change with time so that

(aXS/at)s = 0, (38)

whence

(Oak/at)a = (Alk/as),(aslat), = (Oa/Os)t Vr, (39)

b

FIGURE 5 Sketches illustrating midplane contour C on tank-treading
ellipsoidal membrane (a) and assumed unstressed configuration of same
contour (b).

and

(avm/Oj), = (Ovm /OS)'(OS/OU), = (OVm/OS)tXs. (40)

As a consequence of the relation, Eq. 32, we equate the
right members of Eqs. 39 and 40 to get

vm(Oax/Os), = XS(aVm/OS)t, (41)
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a differential equation that can be integrated at any instant
of time. Separating variables and integrating, we obtain

I dXs I dvm

Xs ds vm ds

ln Xs = ln vm + const.,

where Co/4 denotes a length equal to one-quarter of the
unstressed contour CO. It follows that

K = 27r/fC,. (47)

Note that combination of Eqs. 42, 43, and 47 yields an
expression of the extension ratio at any point of the contour
C. At the particular points x = a, y = 0 and x = 0, y = b,

Xs= Kvm, (42)

where K is a constant of integration. Note that this simple
equation is completely general and holds for any mathe-
matical model of a steadily tank-treading membrane.
The constant K can be determined from Eq. 42 and the

assumed Keller-Skalak surface-velocity field. First we
note that the membrane speed vm at any point on the
contour C is given by (Eq. 2)

Vm =f V (a2y2/b2) + (b2x2/a2). (43)

Thus,

xs = (a ) = Kf V (a2y2/b2) + (b2x2/a2),

whence

du= ds (44)
Kf V (a2y 2/b2) + (b2X2/a2)

Now, on the elliptical contour C,

ds = < dx = [( b2+a2)|b2J dx,

which, when substituted into Eq. 44, gives

bdx dx
Kfay Kf a2- (45)

Integrating this from x = 0 to x = a, i.e., over a quarter of
the contour C, we find

Co/4 = r/2Kf, (46)

XI = X(a,0) = 2irb/C0, (48)

X, = X(O,b) = 27ra/C0. (49)

For a typical human erythrocyte tank-treading at a moder-
ate shear rate we typically observe a = 6 and b = 1.5 ,im. If
we assume CO = 18 ,im, approximately, we calculate

XI = 0.52 and XI, = 2. 1,

numbers that appear reasonable. It is interesting to note
that the material element located at the "nose" of the
ellipsoidal cell (point I) is shortened rather than stretched
(XI < 1) in the direction of motion. At this point, then, the
extension ratio in the transverse direction must be
1/0.52 = 1.92, indicating stretching in the transverse
direction.
To recapitulate, Eqs. 48 and 49, coupled with experi-

mental data for a and b along with a reasonable average
value for C0, give us the elongation ratios, XI and XI,. The
values so calculated can then be taken to either of Eqs. 36
and 37, respectively, each of which is thus reduced to an
equation in one remaining unknown, pi. To solve for pi, of
course, the membrane elastic modulus Am must also be
provided.

EXPERIMENTAL DATA

In a study of the effect of aging on the deformability of
human erythrocytes (Sutera et al., 1985), we subjected the
top (- young) and bottom (- old) 10% fractions of
density-separated cells from 10 normal donors to graded
levels of shear rate in a rheoscope. At each shear rate the
projected length (2a.cosO) and width (2c) were measured
on 30-40 cells from each donor; these measurements were

TABLE I
EXPERIMENTAL DATA: NORMAL HUMAN RBC

Top 10% Bottom 10%

(a cosO)* c* Nt (a cosO)* c* Nt

s Jim gm JAm Jim
28.6 5.42 ± 0.54 3.42 ± 0.27 392 4.80 ± 0.44 3.52 ± 0.24 341

114.3 6.81 + 0.64 2.71 + 0.24 321 5.78 + 0.73 2.84 ± 0.27 434
171.4 7.15 ± 0.64 2.55 ± 0.21 314 6.14 + 0.81 2.66 ± 0.25 332
228.6 7.35 + 0.69 2.45 ± 0.22 314 6.41 ± 0.79 2.56 + 0.27 401
285.7 7.62 ± 0.56 2.38 ± 0.22 284 6.44 ± 0.82 2.51 ± 0.26 339
457.2 7.80 + 0.72 2.00 ± 0.21 24 7.48 + 0.54 2.21 ± 0.17 33

*Uncorrected lengths. Mean ± SD.
tNumber of cells, pooled from 8 to 10 donors.
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then pooled and averaged (see Table I). The indicated
shear rates correspond to nominal gap shear stresses of 10,
40, 60, 80, 100, and 160 dyn/cm2 at a suspending viscosity
of 35 cP.
The averages presented in Table I were first used as

inputs for computations of corrected ellipsoid dimensions
(semi-axes a, b, c) and the angle of inclination, 0, as
described previously (Tran-Son-Tay et al., 1984) (see
Table II). For this purpose the membrane area S and the
cell volume V were assigned the average values indicated.
These values are based on the surface measurements of
Linderkamp and Meiselman (1982) and the volume mea-
surements of Nash and Meiselman (1983). The tank-
treading frequency,f, also required for these computations,
was not measured independently here. Recall that f is
proportional to the applied shear rate, i. Hence, we
calculatedf for each i using the slope functions generated
in our earlier study of TTF in fractionated populations of
normal red cells tank-treading in the same suspending
medium, viz., f/if = 0.21 1 (young cells) and 0.181 (old
cells) (Sutera et al., 1983). The corrected geometrical
quantities in Table II were finally used to compute the
longitudinal extension ratio, XA, and the membrane stress
resultants, Ta and TZ,, along the central streamline (a =
p/2) of the tank-treading membrane. For this purpose we
set u,m = 6 x 10-3 dyn/cm. The internal pressure was also
computed at the points of maximum (I) and minimum (II)
curvature on the same streamline.

COMPUTED RESULTS

Fig. 6, corresponding to average parameters of the young
and old cells, displays the computed values of T0, Tp, and Xs
as functions of the polar angle w = tan-' (btan4/a) (see
Fig. 3) on the central streamline, a = 7r/2, for one shear
rate, 286 s-'. As indicated in Fig. 3, Ta is the stress
resultant transverse to the streamline and T, is the compo-
nent parallel to it. For all six shear rates the internal
pressure, pi, was computed at point I from Eq. 36 and at
point II from Eq. 37. The differences between pi and the
remote external pressure, po, termed the cytoplasmic over-

TABLE II
COMPUTED GEOMETRICAL PARAMETERS*

Top 10% Bottom 10%

S = 148 1Am2, V = 96 urn3, S = 117.5 jm2, V = 82,im3,
(f/i') = 0.211 (f/y)= 0.181

-j' a b c 0 a b c 0

28.6 5.79 1.11 3.58 12.0 4.65 1.26 3.35 10.5
114.3 7.16 1.15 2.78 12.4 5.57 1.31 2.69 10.3
171.4 7.51 1.17 2.61 12.3 5.86 1.34 2.50 10.2
228.6 7.72 1.18 2.52 12.3 6.05 1.36 2.38 10.0
285.7 7.93 1.19 2.42 12.1 6.11 1.37 2.35 10.1
457.2 8.57 1.25 2.15 12.5 6.70 1.50 1.95 9.2

*a, b, c in microns; 0 in degrees.
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FIGURE 6 Distributions of principal membrane stress resultants and
longitudinal elongation ratio along central streamline (a = w/2) of
tank-treading membrane. From computations based on measured defor-
mations of normal cells tank-treading at shear rate of 286 s-'. The cell
dimensions used in this calculation were averages of the old-cell and
young-cell dimensions listed in Table II, and f is 56 rad/s-'. The mean
cytoplasmic overpressure Ap, and the membrane shear modulus, jim, were
taken as 86 dyn/cm2 and 6 x 10-3 dyn/cm, respectively. Points I and II
seen in Figs. 3 and 5 correspond to X = 0 and 900, respectively.

pressure, are presented in Table III, along with the average
of the two differences. These averaged estimates for the
cytoplasmic overpressure are also displayed as points for
the young and old cell geometries, respectively, in Fig. 7,
together with a curve indicating the mean variation of this
parameter with shear rate.

DISCUSSION

The results given in Table III and Fig. 7 show that Eqs. 36
and 37 yield different values of pi, in apparent conflict with
the underlying K-S model, which calls for uniform pres-
sure in the interior (cytoplasmic) flow. This finding points
out a fundamental inconsistency in the present analysis,
viz., that the membrane shape and velocity field, rather
than being treated as unknown, to be determined by the
viscous flow equations, the equations of membrane equilib-
rium, and the membrane constitutive relations, have been
specified a priori. Forcing this approximate geometry and

TABLE III
COMPUTED RESULTS: CYTOPLASMIC OVERPRESSURE*

Top 10% Bottom 10%

'1 AP, APIlj1 p- Ap, ApJJ Apt

28.6 7 -25 - 18 14 -41 - 13.5
114.3 52 - 1 25.5 60 - 13 23.5
171.4 73 13 43 85 0 42.5
228.6 94 28 61 109 14 61.5
285.7 115 43 79 133 28 80.5
457.2 209 108 158.5 304 120 212

*Ap, internal pressure -remote external pressure, dyn/cm2; subscripts I
and II signify correspondence to points I and II, Fig. 5.
$Arithmetic average of Ap, and Ap1l.
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FIGURE 7 Increase of mean internal pressure with shear rate, calcu-
lated from measured dimensions for young cells and old cells.

velocity field on the membrane equations must be expected
to entail errors in the resulting distributions of membrane
stress as well as the internal pressure. While the ellipsoidal
shape together with the K-S surface-velocity distribution
demand a constant internal pressure, there is no reason to
suppose that this is strictly true in a real tank-treading cell.
(It should be understood that a nonuniform pressure within
the cell will result in a nonlinear cytoplasmic velocity field.
However, an approximate, worst case analysis indicates
that the assumption of a linear velocity profile would result
in an error of not more than 30% in the calculated local
membrane traction on the inner membrane surface.) In
view of the uncertainties inherent in the averaged experi-
mental data, which are the basis for these results, and also
the idealized nature of the K-S model, the discrepancies do
not seem great. That the calculated overpressure is always
smaller at the minimum curvature point (II) could perhaps
be expected. The negative values obtained at the two lowest
shear rates are considered as insignificant, suggesting
simply that the overpressure is negligible until the overall
elongation of the cell is sufficiently great. What is more
interesting is the rate at which the average overpressure
builds up as the shear rate and cell elongation increase.
Noting that the limiting elongation is constrained by the
transition from a triaxial to a biaxial (prolate) ellipsoid,
i.e., b -- c, we see that the cells are approaching this limit
at the highest shear rate of 457 s-1 (see Table II). The
corresponding mean overpressure is 185 dyn/cm2. This is
still well below the 1,252 dyn/cm2 given by Skalak (1973)
for an osmotically sphered red cell.
The stress resultants plotted in Fig. 6 are seen to be of

order 10-2 dyn/cm. On the central streamline Ta and T.
are principal stresses so that the maximum shear stress
resultant, Eq. 35, is readily estimated. We see from the
curves of Fig. 6 that S,, reaches a maximum of - 2 x
10-2 dyn/cm in the vicinity of the high curvature points,
0 = 0, 180, which is at the lower end of the accepted yield
point range, 2-8 x 10-2 dyn/cm (Evans and Hochmuth,
1978). Another interesting aspect of the plots of Fig. 6 is
the difference in the variation of Ta and T,. The latter

exhibits symmetry about the point of 0 = 90°, reflecting
the variation of the longitudinal elongation, A, while Ta
exhibits an unsymmetrical variation with local maxima
near the leading and trailing tips, opposite to T,, which has
minima at these points.

CONCLUSION

In summary, we have estimated the membrane stresses and
the internal pressure generated in a red blood cell that is
freely suspended in shear flow. The estimations are based
on rheoscopic observations of the deformation of individual
cells in steady-state tank-treading. We have shown that the
internal pressure at first builds up slowly as the cell
elongation increases, but then rises rapidly as the deformed
cell approaches the limiting geometry of a prolate ellipsoid.
The maximum shear stress resultant in the membrane was
found to be below but approaching the yield point range for
the shear rates applied here.

APPENDIX

Coefficients Appearing in Eqs. 5a-c

A "(a + i3'/2)j sin 20/6(aC"'fl + oftUy0it + 'y ia), (Al)

B =-(Wr' + all/2)i sin 20/6(Ca'W' + fl'T0y + y "'a"'), (A2)

C -(a"'- fl) sin 20/12(a"O'fO' + f3"y', + -y'a0'), (A3)

ao [1/27 cos2O - f(a2- b2)/2ab]
- b2y[ -'/2 +f(a2 + b2)/2ab]H= 0

2(a2a0 + b 0

The following integral identities are valid for the case a > c > b:

ds 2[F(v, q) - E(v, q)]
ao J(a2 +S)A(S) (a2 _ c2) a2 b2

f% ds 2E(v, q)
0 JO (b2 + S)A(S) (c2 - b2) /a2- b2

2 ( + c2)
c2 - b2 (A + b2)(X + a2)

ds 2E(v, q) Va2 - b2
J°o (C2 + s)A(s) [(C2 - b2)(a2 - c2)]

2F(v, q)
(a2 _ C2) V/a2 _ 2

2 | A+ b2
c2 - b2 (+ c2)( + a2)

where s is a running variable and

i(S) = {(a2 + s)(b2 + S)(C2 + S)1112
dO

F(v, q) Jo 1 _ q2sin2O

E(v, q) f 1 - q2 sin2O dO,

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)
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v e arc sin V(a2- b2)/(a2 + X), (A1)

q 3 (a2 -c2)/(a2 - b2). (A12)

The primed and double-primed quantities appearing in the foregoing
equations are defined as linear combinations of a., fls and 'y0:

O 3 (f - a.)/(a2 -b2), (A13)

at b20 -C270o c2py, a-a2a0 b22_ c2 a2

aoa2- b2 (A14)

Spherical Components of Surface Load
Vector T*

qa 1/2{(D + 8770A/abc)b/a + (D + 8?70B/abc)a/b
- 2(D + 8n10C/abc)ab/c21 cosa sina

+ '/2 {(D + 870A/abc)b/a
- (D + 8n70B/abc)a/bl sina cosa cos2o
+ (8710H/abc - E) sina cosa sin2o, (A 15)

q= 1/2 {-(D + 8,q4A/abc)b/a
+ (D + 8n0B/abc)a/bI sina sin24k

+ (87XH/abc - E) sina cos2o, (A 16)

=q* (D + 8tio C/abc)ab/c2
+ 1/2 {(D + 870A/abc)b/a
+ (D + 8n0B/abc)a/b
-2(D + 8i70C/abc)ab/c21 sin2a

+ 1/2 {(D + 870A/abc)b/a
- (D + 8n,B/abc)a/b} sin2a cos2I

+ (8nXH/abc - E) sin2a sin2k. (A 17)

Fourier Coefficients of q*, q*, q*

qa,O= F sina cosa, q0,2 = G sina cosa,

qa = L sina cosa,

qt.o = 0, q,2 =- Gsina, q';2 = L sina,

qn.0 = F sin2a + (D + 8770C/abc)ab/c2,

qn,2 = G sin2a, q'02 = L sin2a, (A18)

where

F=-/21(D + 8%0A/abc)b/a + (D + 8.0B/abc)a/b
- 2(D + 810C/abc)ab/c2},

G=-/2±(D+ 8r70A/abc)b/a - (D + 870B/abc)a/b},
L = 877.H/abc - E. J (A19)
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