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ABSTRACT The use of high order autocorrelation in fluorescence correlation spectroscopy for investigating aggregation
in a sample that contains fluorescent molecules is described. Theoretical expressions for the fluorescence fluctuation
autocorrelation functions defined by Gm,n(r) = [ (6Fm(t + T )6FM(t)) - ( Fm(t) ) (6Fn(t) )]/ ( F)m,+,n where 6F(t) is
the fluorescence fluctuation at time t, (F) is the average fluorescence, and m and n are integers less than or equal to 3,
are derived. Methods for determining the number densities and relative fluorescence yields of aggregates of different
sizes from a series of Gmn,(O) values are outlined. The method is applied to 1 ,1'-dioctadecyl-3,3,3',3'-tetramethylindocar-
bocyanine perchlorate suspended in solutions of water and ethyl alcohol. The technique presented may prove useful in
detecting and characterizing aggregates of fluorescent-labeled biological molecules such as cell surface receptors.

INTRODUCTION

Aggregation of biological macromolecules occurs in a
number of processes such as the interaction of hormones
(Cuatrecasas, 1983; Pastan and Willingham, 1981), neu-
rotransmitters (Axelrod et al., 1976a), growth factors
(Schlessinger et al., 1978) and antibodies (Metzger, 1978)
with cell surface receptors, and assembly of the cytoplas-
mic matrix (Frieden, 1985). Electron microscopy (Uzgiris
and Kornberg, 1983; Roos et al., 1983; Shotton et al.,
1978), fluorescence energy transfer (Uster and Pagano,
1986; Watts et al., 1986; Schreiber et al., 1980), fluores-
cence photobleaching recovery (Lanni et al., 1981; Salmon
et al., 1984), digital video optical microscopy (Gross and
Webb, 1986), and co-precipitation by monoclonal anti-
bodies (Due et al., 1986) have provided information about
molecular association in biological systems; however, new
experimental techniques may provide additional insights
into the mechanism and function of association.

In fluorescence correlation spectroscopy (FCS; Magde
et al., 1974; Elson and Magde, 1974) the temporal autocor-
relation of fluctuations in fluorescence emitted from a
small illuminated volume in a sample containing mobile
fluorescent molecules provides information about rates of
transport through the illuminated volume and rates of
chemical reactions occurring in the sample. FCS has been
applied to the kinetics of binding of the dye ethidium
bromide to DNA (Magde et al., 1972; Magde et al., 1974;
Sorscher et al., 1980; Icenogle and Elson, 1983a,b), to the
motion of myosin fragments during actin-activated
ATPase (Borejdo, 1979), to the assumption of different

orientations by myosin subfragment 1 in contracting mus-
cle fibers (Borejdo et al., 1979), to immunoglobulin sur-
face-binding kinetics (Thompson and Axelrod, 1983), to
fluorescence immunoassays (Briggs et al., 1981; Nicoli et
al., 1980), to the detection and classification of viruses
(Hirschfeld and Block, 1977; Hirschfeld et al., 1977), to
measurement of lateral diffusion coefficients of fluorescent
dyes in model biological membranes (Fahey et al., 1977;
Fahey and Webb, 1978), and to measurement of the sizes
of focused laser beams (Sorscher and Klein, 1980).

In a recent application of FCS, called Scanning-FCS
(Petersen, 1984, 1986; Petersen, et al., 1986), a sample
containing immobile aggregates of fluorescent molecules is
translated through the illuminated volume. Under certain
conditions, the extrapolated time-zero value of the autocor-
relation of fluorescence fluctuations, given by

(F(t + r)F(t)) - (F(t))2 (iF(t + r)5F(t))
g(r) = (F(t)2 (F(t))2 (1

where F(t) is the fluorescence at time t, (F(t)) is the
average fluorescence, and 6F(t) = F(t) - (F(t)) is the
fluctuation of the fluorescence at time t from its average
value, provides an estimate of the mean number of aggre-
gates per area and the mean number of monomers per
aggregate. Scanning-FCS has been used to examine virus
glycoprotein aggregation on cell surfaces (Petersen et al.,
1986).
As shown in this paper, the time-zero values of a series of

high order fluorescence fluctuation autocorrelation func-
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tions Gm,n(T), defined as'
(3FN(t + T)6FM(t)) - (Fm(t)) (FN(t))

Gm.n() (F(t) )m+n (2)

can provide additional information about the average
number densities and relative fluorescence yields of the
fluorescent species in the observed volume.2 After the
following theoretical discussion of high order fluorescence
fluctuation autocorrelation functions in FCS, the use of
these functions to investigate the aggregation of the fluo-
rescent lipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocar-
bocyanine perchlorate (diI) suspended in different mix-
tures of water and ethyl alcohol is described.

High order autocorrelation functions similar to those
defined in Eq. 2 have found use in photoelectron statistics
(Saleh, 1978), light scattering (Pusey, 1977; Oliver, 1981),
analysis of electrical noise associated with membrane
channels (Leibovitch and Fischbarg, 1985, 1986; Leibo-
vitch et al., 1985), and statistical mechanics of condensed
phases (Ackerson et al., 1985). High order autocorrelation
functions with m unequal to n have also been proposed as a
technique for investigating the time-reversal properties of a
fluctuating system (Pomeau, 1982; Steinberg, 1986). The
proceedings of a workshop on high order correlation func-
tions have recently been published (Suck et al., 1985).

THEORETICAL BASIS

In the following sections, expressions for the functions
Gm,n(r) defined in Eq. 2 are derived. The dependence of the
values of Gmn (0) on the distribution of particles with
different measured values of fluorescence is examined, and
methods of determining this distribution from experimen-
tally obtained quantities Gm",n(O) are outlined.

General Expression for High Order
Fluorescence Fluctuation
Autocorrelation Functions

In the experimental arrangement considered, a small area
of a two-dimensional sample that contains a number of

'In generalizing Eq. 1, a number of possible offset values (i.e., the second
term of the numerator in Eq. 2) and normalizations (i.e., the denominator
in Eq. 2) might be chosen. The mth, nth-order autocorrelation function of
fluorescence fluctuations Gm,,(T) has been defined according to Eq. 2
because the choice of offset value ensures that Gm,(T) tends towards zero
as T approaches infinity. The choice of normalization in Eq. 2 allows
simpler algebraic expressions in the denominators of the Gm,(O) that are
later calculated (Eq. 18).

21f the fluctuations about the average value of a stationary signal have a
Gaussian distribution, then high order autocorrelation functions of fluc-
tuations in the signal, such as those defined in Eq. 2, are determined by
Gj,j(T), and the high order autocorrelation functions provide no new
information (Saleh, 1978; Oliver, 1981). The distribution of fluctuations
in fluorescence emitted from a small illuminated volume depends in a
complex manner on the fluorescence yields and number densities of the
fluorescent species in the sample. A sufficient condition for the distribu-
tion to be non-Gaussian is that the number densities of all of the
fluorescent species be small enough that number fluctuations in the
illuminated volume are characterized by Poisson statistics.

fluorescent chemical species with different effective fluo-
rescence yields is illuminated. Molecules of the ith species
are transported through the illuminated (and observed)
area by diffusion in the x, y-plane with coefficient Di and
uniform translation along the y-axis with speed V. The
solution is assumed to be ideal and to be in equilibrium.
Chemical reactions between species, e.g., aggregation
kinetics, are not treated.
The fluorescence F(t), the average fluorescence (F),

and the fluorescence fluctuation 5F(t) are given by
R

F(t) a L Q5 f1I(r) Ci(r, t) d2r

R

(F) cx Z Qi (Ci) JfI(r) d2r

R

6F(t) . E QifI(r) bCi(r, t) d2r,
,_I

(3a)

(3b)

(3c)

where the "fluorescence yields" Qi are the products of the
absorptivities, quantum efficiencies, and experimental flu-
orescence collection efficiencies of molecules of the ith
species, I(r) is proportional to the intensity profile of the
exciting light and the transmission function of observation,
Ci(r, t) is the concentration of the ith chemical species at
position r and time t, R is the number of fluorescent
species, and integration over all two-dimensional space is
denoted by f d2r. Also in Eqs. 3,

bCi(r, t) = CQ(r, t) - ( Ci) (4)

is the spatial and temporal fluctuation of the concentration
Ci(r,t) from its average value ( Ci ).

Using Eqs. 3b and 3c in Eq. 2, and noting that the
average properties of a stationary signal are independent of
the origin of time,

R -(m+n)
Gmn(t) Qi(Ci) I(r) d2r

R R R

ITY I I I* Qi. Qi2 Qim+
il-I i2_1 im+.-l

* ff. '..fI(r,)I(r2) .. rm+n)

* gmi,n01 . -i -) .. im+,; ri, r2, . . . , rm+,; t)

* d2r,d2r2 . . . d(2rm+5
where
gm*(i,, i2. nim+; r,, r2, . . ., rm+n; t)

- (6Cj,(r, t)bC,2(r2, t). . .5Ci,(rm., t)
(3C,+-(rm+,,O)6Ci,,+2(rm+2, 0). . .* Ci, (rm+n, 0) (

-(6Ci,(rj, t)bCj,(r2, t) . .*6Ci.(rM. t) )
* ( bCi.+l (r.+I,, )bCEM(rm+2, °) . . . bCi+,,.(r.+,, °) )*(6)

For systems in equilibrium, the autocorrelation functions
are even in time (Steinberg, 1986); therefore Gnm(t) equals
Gm,n(t) and only autocorrelation functions for which m < n
are considered. As shown in Appendix A, the functions gm,n
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can be written as sums of products of Kronecker deltas of
species indices and the single species correlation functions

fmn(i, rl r2,... rm+n; t)
= gm,n(it ..* i; ri, r2. rm+n; t). (7)

Defining Fm,n(i, t) as the autocorrelation function Gm,n(t)
when only the ith species is present,

Fm,n(i, t) = (( Ci I(r) d2r)
* ffJr . f I(r )I(r2) I(rm+n)
* fm,n(i; rit r2.. . rm+n; t) d2r, d2r2 . . . d2rm+n, (8)

and using Eqs. A3 in Eq. 5, results in the following
expressions for the multiple species high order fluorescence
fluctuation autocorrelation functions Gm,n (t) in terms of
the single species high order fluorescence fluctuation auto-
correlation functions Fm,n (i, t):

R

K(m+n)Gmn()= Z Xm,n (it t),
i-I

for (m,n)= (1,1) and (1,2);
R

K4G2 2(t) = E [X2,2(i, t) -2A'2(i, t)]
i-I

+ 2[ X, (i, t)

R

K4G1,3(t) = E [X1,3(i, t) - 3X, ,(i, t)X, ,(i, 0)]
i-1

R R

+ 3Y X I,, (itt)X, I(j, 0);
i-I j-1

R

K5G2,3(t) = j [X2,3(i, t) - 6X,(i, t)X1,2(i, t)
i-i

- 3XI,I(i,O)X,2(0, t)]
R R

+ F_ T_ [6X (i, t)X1,2(j, t)
i-i j-1

+ 3X1 I(i, 0)X2,1(j t)];
R

K6G3 3(t) = M[X3,3(i, t) - 6XIJ,(i, O)X1,3(i, t)
i-i

-9XI, (i, t)X22(i, t) -19X,2(i, t)

+ 9Xl,I(i, t)Xl2,1(i, 0)

± 12X{3,1(itt)]
R R

+T ? [6XJ,(i, O)X1,3(j, t)
i-i j-1

+ 9XJ U(i, t)X2,2(j, t)

+ 9X1,2(i, t)X1,2(j, t)
- 18X?, (i, t)Xl, .( i t)

where

- 1 8X,,I(i, O)X,,I(i, t)X,,I(j, O)]
R R R

+ Z,ZTXI,I(i,t)
i-I j-1 k-i

* [9XI,I(j, O)XI,I(k, 0)
+ 6XI,I(j, t)XI,I(k, t)];

R

K= E Qi (Ni),
i-I

(9)

(10)

Xm"(i, t) = Qim+n(Ni)M+nFm (i, t), (11)

(Ni) = 2 (C,) f [I(r)/IO] d2r, (12)
Io is the maximum intensity, and (Ni) is the average
number of particles of the ith species in the observation
area, defined to be consistent with Elson and Magde
(1974).
The Fm,,(i, t) are determined from Eq. 8 and the

fm,n(i; r1, r2,..* rm+n; t), which are derived in Appendix B.
Using Eqs. B 11 in Eq. 8, and assuming a Gaussian shape
for the spatial illumination profile, i.e.,

I(r) = IO exp (-2 r2/s2), ( 13)

where s is a constant, gives the following results for the
single species fluorescence fluctuation autocorrelation
functions:
Fmn(i, t) =Lmn(i, t) for (m, n) = (1, 1) and (1, 2)

F22(i, t) = L2,2(i, t) + 2LI.,(i, t)

F1,3(i, t) = L1,3(i, t) + 3L1,(i, t)/(Ni)
F2,3(i, t) = L2,3(i, t) + 3L1,2(i, t)/ (Ni ) + 6L1,,(i, t)L1,2(i, t)

F3,3(i, t) = L3,3(i, t) + 6L1,3(i, t)/(Ni ) + 9L11(i, t)L2,2(i, t)

+ 9LI.2(i, t) + 9L,,,(i, t)/(N,)2 + 6L,3(i, t),
(14)

where
Lm,(n, t)

2 1 exp [- 2mn (t/rf)2/(m + n+ 2mnt/rD,)] (15)

(Ni)m+n-I (m+n+2mnt/TD,)
and TDi = s2/4Di

T = S/V. (16)

The complete expressions for Gn,,,m(t) can be obtained by
substituting Eqs. 11, 14, and 15 into Eqs. 9.

Time-Zero Values of High Order
Fluorescence Fluctuation
Autocorrelation Functions

Evaluating Eqs. 9, 11, 14, and 15 at time zero gives

G1,1(0) = B2

G1,2(0) = 4B3/3

G2,2(0) = 2B4 + 2B2

GC,3(0) = 2B4 + 3B2
G2,3(0) = 16B5/5 + 12B2B3

G3,3(0) = 16B6/3 + 30B2B4 + 15B2 + 16B , (17)
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where
R

E ak(N,)
i-1

Bk-R (18)
[. ai(N4]
U-l

are constants, and

a, = Qd/Q1 (19)

is the relative fluorescence yield of the ith species.
Fig. 1 a shows the theoretical values of Gm,n(0) calcu-

lated from Eqs. 17 and 18 for one species. As shown, for
(NI) »> 1, GI,1(O) decreases as (N1)-'; G,2(0), G2,2(0),
and G,3(0) decrease as (N)-2; and G2,3(0) and G3,3(0)
decrease as (N) -3. Assuming an experimental detection
limit of Gm,,(0) > 0.0001 (Thompson and Axelrod, 1983),
GI,j (0) can be measured for (N1) < 1 04, the second set of
Gm,n(0) values can be measured for (NI) < 100, and the
third set of Gm,n(0) values can be measured for (N,) <
50.

If the average total number of molecules (N) in the
observed area is known, and if oligomers of p molecules
have relative fluorescence yields of ap = p, then, referring
to Eqs. 17 and 18, GI,l(0) > (N) -1. If the inequality is
found to hold, some aggregation has occurred. Alterna-
tively, if the average total number of molecules in the
observed area is not known, then a set of measured values
Gm,n(0) that is not consistent with a set of numbers shown
in Fig. 1 a, for some value of (N1), implies a heteroge-
neous sample.
The time-zero values of autocorrelation functions can be

sensitive to changes in molecular aggregation. Computer
simulations (Petersen, 1986) have indicated that G11 (0)

E

E

0.01 L
t \ ~~~~~~~~~~~G,,,(o)= <N,>;-

\\\G,., (o) 1- 3 < N,

\\\G2,2(0) ft 2 <N>-2

0.001 _ \\ &12° 3 >-

G2.3(o),Z _ 15 < N,,-3
2 <N0.>

0f001O II

10 50 100
average number of particles <N1>

can be significantly affected by a change in mean aggre-
gate size from one to five to ten monomers. As an
additional example, consider the value of GI, (0) when a
total of 1,000 molecules are present in two species and
when the relative effective fluorescence yields of oligomers
of p molecules are ap = p (e.g., when the molecules are
present as monomers and as hexamers with a2 = 6), such
that 1,000 = (N1 ) + a2 (N2). Fig. 1 b shows the theoreti-
cal values of GI,, (0) calculated from Eqs. 17 and 18 as a
function of (N2) and a2. If all molecules are present as
monomers, GI, (0) = 0.001. Assuming a 5-10% accuracy
in the determination of GI,1(O), then (as shown) a single
aggregate of 10 molecules (a2 = 10, (N2) = 1), 10
aggregates of trimers (a2 = 3, (N2) = 10), or 25 aggre-
gates of dimers (a2 = 2, (N2) = 25) can theoretically be
detected in the GI,1(O) value. More extensive aggregation
results in increases by factors as large as 100 in the
measured valued of GI,, (0).

Although calculating the time dependence of the Gm,,,(t)
for illumination profiles I(r) not given by Eq. 13 is rather
complex (Axelrod et al., 1976b), expressions for the
Gm,n(0) for other illumination profiles I(r) can be readily
obtained. Using Eqs. B 1, evaluated at time zero according
to Eq. BlO, in Eqs. 8, 9, and 11, results in the following
expressions for Gm,n(O):

G,,1(O) = 2h2B2

G1,2(0) = 4h3B3

G2,2(0) = 8h4B4 + 8h2B2

G,,3(0) = 8h4B4 + 12h2B2
G2,3(0)= 16h5B5 + 72h2h3B2B3

G3,3(0) = 32h6B6 + 240h2h4B2B4 + 120h3B3 + 144h B2, (20)

150 10 100 ,000
relative fluorescence yield of second species a2

FIGURE 1 Theoretical time-zero values of high order fluorescence fluctuation autocorrelation functions. (a) Shown are the values of G,,,(O)
for a monodisperse sample, as a function of the average number of particles in the observation area (N, ). For (N, ) ,, 1, the values of G,,,,(O)
decay as (NI )-mfor m = n = 1, 2, or 3; and as (N1 ) -(m+) for m : n. (b) Shown are constant-value lines of GI,1(O), for a sample containing an
average of 1,000 molecules in the observation area, with an average of (N,) monomers with relative fluorescence yield al = 1 and (N2)
oligomers of p molecules with relative fluorescence yield a2 = p. As few as 25 dimers, eight trimers, or two hexamers change the value of
G,,j(O) by 5%. More extensive clustering can increase the value of GI, (O) by a factor greater than 100.
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where

h(r) = I(r)/IO (21)

is the intensity profile normalized by its maximum value Io,
and constants hn are defined as

hn= f hn(r) d2r/f h(r) d2r. (22)
Table I shows the values of hn for several common illumi-
nation and detection profiles I(r). Using the values of hn
from Table I in Eqs. 20 shows that the values of Gm,n(0) are
higher for illumination profiles with sharp edges (i.e., not
Gaussian-shaped). Although higher values of Gmn(0) are
usually more readily measured against background noise,
these illumination profiles may in practice be more diffi-
cult to use because the values of Gm,n(O) can only be
measured by extrapolating from non-zero times, since the
experimental value of Gm,(O) contains a large component
of shot noise, and the initial slope of Gm,n(t) can be expected
to be high for illumination profiles with sharp edges
(Axelrod et al., 1976b).

Time-Dependence of High Order
Fluorescence Fluctuation
Autocorrelation Functions

The time dependence of the Gm,(t) has been calculated
primarily to determine appropriate theoretical functional
forms for fitting to experimentally obtained autocorrela-
tion functions and to ensure that data have been obtained
at times early enough to accurately extrapolate values of
Gm,(0). As expected for a system in equilibrium, the time
course of the autocorrelation functions given by Eq. 15 is
symmetric upon an interchange of m and n. The time
constant for the decay of Lm,(i, t) decreases as 2mn/
(m+n), which means that higher order correlations have
components that decay faster than lower order ones.
Although in theory an infinite number of Gm,n(t) can be
calculated from experimental data, in practice only
Gm,n(t)'S that decay slowly enough to be reliably extrapo-
lated to time zero are useful. This limit depends on the
relative sizes of the experimental counting interval and the
time constants for the transport processes given in Eqs.
16.

TABLE I
VALUES OF CONSTANTS h. FOR COMMON

INTENSITY PROFILES I(r)

I(r) hn Comments

1I exp( -2r2/s2) 1/n Focused TEMOO laser beam
IO exp(- 2(x2 + y2y2)/s2) 1/n Totally internally reflected

TEMOO laser beam
Io lxi < s/2 1 Rectangular image plane

IYI < Zs/2 aperture
Io r < s 1 Circular image plane

aperture

For a single species (R = 1), the relative contributions of
the different terms to the Fm,n(t) shown in Eqs. 14 and 15
depend on the value of (NI). For (N1) << 1, the leading
terms Lmt(i,t) dominate the remaining terms, and, in the
absence of flow or sample translation (V = 0), each Fmn (t)
is proportional to (NI )-(m+n- 1) and is a single Lorentzian
with a half-time of [(m + n)/(2mn)]TD,. For (N1) >> 1,
the Poisson distribution of number fluctuations becomes
approximately Gaussian, the leading terms Lm,n(i, t) are
dominated by the remaining terms, and the Fm,n(t)'s are
approximate functions of F1 l(t) and F1,2(t). Fig. 2 shows
Fm, (t), normalized to a time-zero value of one, for ( N1)
50 and V= 0.

Obtaining the Distribution of Particles with
Different Relative Fluorescence Yields

As shown by Eqs. 17 and 18, for each value of m + n, one
new quantity Bm+n can be determined from the measured
value of Gm,n(0); information on the average number of
particles of different species in the illuminated area is
obtained from the Bk's. The system of equations for the Bk'S
is made more tractable by the substitution

R

z = a((N1)
i-i

into Eq. 18 to give
R

zkBk aZ+ Za(a '1 - 1) (Ni).
i-2

C C

L. LL

0

(23)

(24)

5
t /rd

FIGURE 2 Theoretical time dependence of high order fluorescence
fluctuation autocorrelation functions for a monodisperse sample with
(N, ) = 50 and no sample translation (V = 0). The Fm.,(t) decay as sums
of Lorentzians and products of Lorentzians as given by Eqs. 14 and 15
with V = 0. The relative contribution of different terms depends on the
value of (N, ).

PALMER AND THOMPSON Molecular Aggregation

I

261



If the relative quantum efficiencies ai are unknown, then
the first species contributes one unknown ((N1 )) and each
new species after the first contributes two unknowns ((N,)
and a,, for the ith species). Thus, for a single species only B2
must be calculated, and

(N1) = 1/B2 (R= 1). (25)
When two species are present, z, (N1), (N2), and a2

may be determined from B2, B3, and B4 by solving Eq. 24
with k = 2, 3, and 4, for z, (N2), and a2 and then using Eq.
23 to find (N). The results are

z= {(B4 - B2B3) ± [(B2B3 - B4)2

- 4(B2 - B3)(B2- B2B4)] '21/
2(B -B2B4) (26a)

a2 = (z2B3 - zB2)/(zB2 -1) (26b)

(N2) = z(zB2 - 1)/[a2(a2 -1)] (26c)

(N1)=z- a2(N2) (R= 2). (26d)
Choosing the positive or negative square root for z in Eq.
26a interchanges the results for (N1) and (N2 ) .
When three species are present, (N,) for i = 1 to 3 and

ai for i = 2 and 3, may be determined from the Bk's for k =
2 to 6 by solving Eqs. 23 and 24 with k = 2 to 6. The results
are that z is given by the roots of the cubic equation

(B3 + B2B2 + B2B6 - B2B4B6 - 2B3B4B5) Z3

+ (B4B6- B2B3B6 - B3B2 + B2B5 + B2B4B5 - B2) Z2

+ (B2B6 - B3B6 + B2B4 -B2B + B4B5 - B2B3B5) z

+ (2B2B3B4 + B3B5 - B2B5- B3-B) = 0, (27)

and that the following equations sequentially provide val-
ues for a2, a3, (N2), (N3), and (N1):

C, = [(zB4 - B3)2 -(zB3 - B2)(zB5 -B4

[(1 - zB2)(zB4 -B3) + (zB3 - B2)2]
C2 = [(1 - zB2)(zB5 -B4)

+ (zB3 - B2 )(zB4 -B)

[(1 - zB2)(zB4 - B3) + (zB3 - B2)2]
C3= [C2± (C2-4C, )1/2]/2

a2 = ZCI1/C3
a3 = ZC3

(N2 ) = [za3(zB2 - 1) -Z2(zB3 - B2)1/
[a2(a2 - 1)(a3 - a2)]

(N3 ) = [za2(zB2 - 1) -Z2(zB3 - B2)1/

[a3(a3 - 1)(a2 - a3)]

(NI)=z-a2(N2)-a3(N3) (R= 3).

The three roots of the cubic equation for z and the two
roots of the quadratic equation for C3 result in six solutions
to the set of equations that correspond to the six permuta-
tions of the three species between (N1), (N2), and (N3) .

In some experiments, the relative quantum efficiencies
ai may be known. In this case, each new species requires
only one and not two new values of Bk. The variables in Eq.
24 are z and the (Ni)'s and because the equations are
linear in the (Ni) 's, straightforward elimination ofR - 1
(N,)'s from Eqs. 24 with k = 2 to R + 1 yields a
polynomial of order R in z with coefficients that are
functions of the Bk's and ai's. Depending on the value of R,
the polynomial may be solved analytically or numerically
for z and then the (Ni) 's may be determined by sequential
substitution and use of Eq. 23.

EXPERIMENTAL METHODS

Optics and Electronics

The optical apparatus was similar to that used previously in microscope-
based FCS (Magde et al., 1974; Thompson and Axelrod, 1983). The
514.5-nm line of an argon ion laser (Innova 90-3; Coherent Inc., Palo
Alto, CA) was passed through auxiliary lenses into the epi-illumination
port of an inverted optical microscope (Zeiss IM-35; Eastern Microscope
Co., Raleigh, NC), reflected by a dichroic mirror (Omega Optical, Inc.,
Brattleboro, VT), and focused to a small spot on the sample through a
60x, 1.4 numerical aperture objective (Nikon Inc., Garden City, NY).
The l/e2 radius of the focused spot was visually judged to be < 1 ,um,
which was consistent with an estimate of >0.2 um calculated from the
geometry of the optical system and characteristics of the input beam
(Wahl, 1985). Fluorescence originating from the sample was passed
through a filter block and detected by a single-photon counting, thermoel-
ectrically cooled photomultiplier (model 31034A; RCA, Lancaster, PA)
coupled to the video port of the microscope. Fluorescence originating from
outside of the sample volume was partially blocked by a 200-,m pinhole
mounted in an intermediate focal plane of the microscope and positioned
by an externally controlled x-y translation stage. The photomultiplier
signal was passed through an amplifier/discriminator and then to a PC
AT microcomputer (IBM Instruments, Inc., Danbury, CT), equipped
with a pulse-counting interface board (Tecmar Labmaster Board; Arrow
Electronics, Raleigh, NC). ASYST software (Macmillan Software Co.,
Macmillan Publishing Co., New York, NY) was used to count the
number of photoelectron pulses pj occurring between consecutive sample
times jAT to (j + I)AT. The laser, microscope, and supporting optics
were mounted on a vibration-isolated air table (Newport RS-46-8;
Newport Corp., Fountain Valley, CA).

Sample Preparation and Data Collection

Freshly prepared solutions of 1o-0 M diI in H20/ethyl alcohol (EtOH) at
(4:1, vol/vol) or (1:1, vol/vol) were mounted on the microscope stage in
50-um path-length glass microcapillary tubes (Vitro Dynamics Inc.,
Rockaway, NJ). Fluorescence was measured as the number of photoelec-
tron pulses p, occurring in ten records of 16,384 consecutive counting
intervals with AT = 2 ms, and stored on the IBM PC AT hard disk as
single byte integers for off-line processing. Background intensity was
measured from blank solutions of H20/EtOH. The laser power was 10
,uW, samples were not translated through the beam, and all experiments
were done at room temperature. The average fluorescence intensity of

(28) each sample was constant for the duration of the experiment.
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Autocorrelation Software, Background
Corrections, and Data Analysis

Each fluorescence record was processed off-line to give H,,(iA T)
according to the following algorithm:

Hm,i(AT) = (p)-(m+n)( 15,104 M)-'
M 16,384

E Z [(Pq,j-i - (p))n(Pqj - (p))m
q- j-1,281

(Pqj-k - (P;)9)(Pq,j - (P)r,] (29)

where pqj was the number of photoelectron pulses in thejth interval of the
qth record, k was cyclically varied between 1,280 and 1,153 to eliminate
long-time correlations between pq,u* and pqj, M = 10 was the number of
data records, i was an integer between 0 and 128, and

M 16,384

(p) = (16,384 M)-1E E Pq,j (30)
q-1 j- 1

The algorithm uses the relation that Gm.,(t) = G,m(-t) for an arbitrary
signal (Steinberg, 1986). Typical times for calculating Hm,,(iAT) for one
set of m,n values on an IBM PC AT equipped with a math coprocessor
were 4 h with ASYST and I h with IBM Pro Fortran.

For low fluorescent photon count rates, the background intensity was a
non-negligible fraction of the measured fluorescence. The calculated
Hm.,(I&T) were corrected for background fluorescence using a general-
ization of previous methods (Thompson and Axelrod, 1983; Icenogle and
Elson, 1983a). If the number of photoelectron pulses per sample time
arising from fluorophores is pf(t) and arising from the background is
pb(t), then the autocorrelation function H,,,,,(iAT) calculated from data
is

Hm,n(iAT) = {([bpf(t + iAT)

+ Spb(t + iAT)]"[6p.(t) + bPb(t)]

- ( [pW(t) + pb(t)])M( IWpf(t) + Spb(t)n )I/
(pf(t) + pb(t)) m+0

= EE( i (J)(Pbp ) (Pbp ) (Pf )m+--

- Gmjin j(iAT)/[(pf) + (Pb)]m+n,
(31)

where

(32)bPf,b(t) = Pf,b (t) - (Pf,b),

and (i') are binomial coefficients. The assumptions have been made that
fluctuations in fluorophore fluorescence are not correlated with fluctua-
tions in background intensity and that fluctuations in background inten-
sity are correlated only at times much shorter than AT. Thus,

Gm,,(iAT) = Kmt+ Hm,n(iAT)
for (n, m) = (1, 1), (1, 2), (2, 1), (2, 2) (33a)

GmA3(iAT) = Km+3 H.,3(iAT)
- 3Gml(iAT)(Pb)/(pf)2 for m = 1, 2 (33b)

G3,,,(iAT) = Kn+3 H3,,(iAT)
- 3Gi,,(iAT)(Pb)/ (pf)2 for n = 1, 2 (33c)

G3,3(iAT) = K6H3,3(iAT)

- 3(Pb)/(Pf )2[G1.3(iAT) + G3,,(iAT)]
- [3(pb)/(pf)2]2Gl,l(iAT),

where

K = ((pf) + (Pb))/(Pf),

(33d)

(34)

(6PO) = P = 0, and (6p'b) are assumed to be the ith moments about
the mean of a Poisson distribution given in Eqs. B12.

Nine autocorrelation functions, corresponding to the possible combina-
tions of 1 s m,n s 3 and m not necessarily less than n, were calculated
from each set of ten fluorescence records. The G,,,,,(0) calculated by Eqs.
31 and 33 contains a large component of shot noise; therefore, the
time-zero values are determined by extrapolation from the autocorrela-
tion functions at longer times. The background-corrected autocorrelation
functions were fit to theoretical forms using the iterative Gauss-Newton
nonlinear curve-fitting routine in ASYST. Theoretical functional forms
were either the single species functions given by Eqs. 14 and 15 with
V= 0 and modified by addition of a constant term, or single Lorentzians
modified by addition of a constant term. All functional forms had three
free parameters and fits were considered optimized when the free
parameters were stable to three significant figures. The values of the Bk's
were determined from the extrapolated time-zero quantities Gm,,(O)
according to the following adaption of Eqs. 17:

B2 = G,,,(O)
B3 = (3/8) [G1,2(0) + G2,1(0)]

B4 = (1/6) [G2.2(0) + G) + G + G31(O)- 8B2]

B5 = (5/32) [G2,3(0) + G3,2(0) - 24B2B3]
B6 = (3/16) [G3,3(0) - 30B2B4 - 15B 3- 16B ]. (35)

cO

E

N..
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50_b

nA
0 to0

time (ms)
FIGURE 3 Sections of the experimentally measured fluorescence for
10-7 M dil in H20/EtOH at (a) (1:1) and (b) (4:1). Both samples display
occasional large fluctuations in measured and visually observed fluores-
cence.
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EXPERIMENTAL RESULTS

The background-corrected average measured fluorescence
values for diI in H2O/EtOH (4:1) and (1:1) were 720 +
125 counts/s and 3,800 ± 600 counts/s, respectively; the
average background intensity was 250 ± 25 counts/s. One
second segments of typical fluorescence records for diI in
the two solutions are shown in Fig. 3. The occasional large
fluorescence fluctuations present in the recorded fluores-
cence from the samples were also visible through the
microscope.

Examples of background-corrected high order autocor-
relation functions calculated from experimental data are
shown in Figs. 4 and 5. Autocorrelation functions calcu-
lated for the blank samples did not show correlations for
times greater than the sample time AT = 2 ms.

Also shown in Figs. 4 and 5 are examples of best fits of
experimental autocorrelation functions to the single species
functions given by Eqs. 14 and 15 with V = 0, and modified
by addition of a constant term, for the two H20/EtOH
solutions. The average extrapolated time-zero values
Gm"(0) are given in Table II. The average values of TD
obtained from the best fits were 9.2 ± 1.0 ms (4:1) and
9.6 ± 1.6 ms (1:1).
The extrapolated time-zero values Gm.n(O) of autocorre-

lation functions for different samples with the same water
content were variable, but sets of Gm,n(O)'s appeared to
systematically vary from one sample to another. Accord-
ingly, the values of the Bk's and subsequently the (Ne)'s
and ai's were calculated separately from the set of Gm,n(O)
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FIGURE 4 Experimental high order fluorescence fluctuation autocorre-
lation functions and theoretical best fits for 10-' M dil in H20/EtOH
(4:1). The experimental functions (a) Gl,l(t), (b) G1,2(t), (c) G2 (t), (d)
G1,3(t), (e) GZ3(t), and (f) G3,3(t) calculated from a single fluorescence
record of 163,840 points and their best fits to the monodisperse functions
Fm,,(t) given by Eqs. 14 are shown.
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FIGURE 5 Experimental high order fluorescence fluctuation autocorre-
lation functions and theoretical best fits for 10-' M diI in H2O/EtOH
(1:1). The experimental functions (a) G1,1(t), (b) G12(t), (c) G22(t), (d)
G1,3(t), (e) GZ3(t), and (f) G3,3(t) calculated from a single fluorescence
record of 163,840 points and their best fits to the monodisperse functions
F,,(t) given by Eqs. 14 are shown.

values from each fluorescence record rather than from the
average time-zero results shown in Table II. Each set of Bk
values was analyzed assuming that one, two, or three
species was present as described in an above theoretical
section (Eqs. 23-28). The average results for (N, ), ( N2),
(N3), a2, and a3 under the different assumed distributions
are given in Table III.
The data were also fit with single Lorentzian functions

having three parameters: intercept, time constant, and

TABLE II
EXTRAPOLATED TIME-ZERO VALUES OF HIGH ORDER
FLUORESCENCE FLUCTUATION AUTOCORRELATION

FUNCTIONS FOR dil SUSPENDED IN
WATER/ETHANOL SOLUTIONS

H2O/EtOH (4:1) H2O/EtOH (1:1)

G1,1(0) 2.3 + 0.8 (9.0 ± 1.8) x 10-3
G1,2(0) 111 ± 54 (3.3 ± 1.7) x 10-2
G2.1(0) 115 ± 56 (3.4 ± 1.8) x 10-2
G2,2(0) (1.6 ± 0.8) x 104 0.33 ± 0.18
G,3(0) (1.2 ± 0.6) x 104 0.30 ± 0.20
G3,1(0) (1.0 ± 0.5) x 104 0.32 ± 0.21
G23(0) (1.6 ± 0.6) x 106 2.9 ± 2.2
G32(0) (1.1 ± 0.8) x 10' 3.7 ± 2.3
G3,3(0) (2.4 ± 1.4) x 10' 40 ± 27

Shown are the average extrapolated values of G,,(O) and the standard
errors of the means from 13 (or 12) and 11 (or 10) samples of diI in
H2O/EtOH 4:1 and 1:1, respectively. G23(t), G32(t), and G3,3() for one
sample of each type could not be fit to theoretical functional forms and
were excluded from the averages.
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TABLE III
NUMBER DENSITIES AND RELATIVE FLUORESCENCE

YIELDS OF dil AGGREGATES IN
WATER/ETHANOL SOLUTIONS

H2O/EtOH (4:1) H2O/EtOH (1:1)

One species
(N1) 1.1 ±0.3 180±40

Two species
(NI) 3.1 ±1.0 360 ± 50
(N2) (1.1 ± 0.3) x 10-3 (6.3 ± 0.2) x 10-4
a2 110 30 (1.2 ± 0.3) x 103

Three species
(NI) 2.3 1.0 360 ± 60
(N2) (1.1 ± 0.4) x10-3 (7 ± 2) x 10-4
a2 100 30 900 ± 20
(N3) (-9 ± 9) x 10-5 (-1.6 ± 1.5) x 10-4
a3 (-1.7 ± 1.7) x 103 700 ± 1,200

Shown are the averages and standard errors of the means of the number
densities and relative fluorescence yields of dil aggregates in H20/EtOH,
4:1 and 1:1, assuming that one, two, or three aggregate species are
present. Averages for the one and two species analyses are calculated
from 13 or 11 samples of the 4:1 or 1:1 solutions, respectively. The GZ(t),
G32(t), and G33(t) functions for one of the 4:1 samples and one of the 1:1
samples could not be fit to trial functions, and three of the 4:1 samples and
one of the 1:1 samples gave negative values for (N1 ), a2, and a3. These
samples were excluded from the reported results of the three species
analyses.

additive constant (data not shown). Although the single
species functions fit the time course of the data better for
m + n > 3 and the Lorentzian functions resulted in ex-
trapolated time-zero values that were systematically lower,
the average calculated distributions from the two fitting
procedures were not significantly different.

Fig. 6 shows the close agreement between a typical high
order autocorrelation function G1,3(t) and its time-reverse
function G3,1(t), as expected for a system in equilibrium
(Steinberg, 1986).

50

0G3,,(t

0 50
time t (ms)

FIGURE 6 Comparison of the experimental values and theoretical best
fits for G1,3(t) (0) and G3,1(t) (0) for 10-7M dil in H20/EtOH (4:1). The
experimental curves are identical within experimental uncertainty.

DISCUSSION

This paper describes the theoretical dependence of ex-
trapolated time-zero values of high order fluorescence
fluctuation autocorrelation functions in FCS on the num-
ber densities and fluorescence yields of different fluores-
cent species, the theoretical time dependence of the high
order autocorrelation functions on transport coefficients,
and the first experimental application of the use of high
order autocorrelation functions in FCS to characterize
aggregation of the fluorescent lipid diI in solutions of water
and ethyl alcohol.

For diI in both 4:1 and 1:1 H20/EtOH, the sets of
time-zero values of high order fluorescence fluctuation
autocorrelation functions shown in Table II are not consis-
tent with those expected for monodisperse samples. In
addition, the two diI suspensions have different average
values of fluorescence and different autocorrelation func-
tion time-zero values, which suggest that the suspensions
have different dispersions. As shown in Table III, assum-
ing a monodisperse sample indicates that, as found earlier
(Koppel et al., 1976), the sample with more water has
fewer, and presumably larger, aggregates. However,
assuming that the samples contain two different fluores-
cent species indicates the presence of one predominant
species and a very low concentration of another species
with a large fluorescence yield relative to that of the
predominant species. If the two species analysis has cor-
rectly identified the presence of large aggregates in the
samples, then the large aggregates cause the monodisperse
analysis to underestimate the concentration of the predom-
inant species by a factor of two to three. The differences
between the average numbers of particles of the predomi-
nant species ((N1)), shown in Table II, for the monodis-
perse analyses and the two-species analyses are significant
at P = 0.01 for the 4:1 sample and P = 0.001 for the 1:1
sample using a paired t test (Devore, 1982). The values for
the average number of large aggregates ((N2)) and the
relative fluorescence yield of the large aggregates (a2) for
both samples are significantly greater than zero at P =
0.005 using a t test.
The dimensions of the open volume defined by the laser

beam in the experimental apparatus used have not been
measured so the absolute concentration of the species in
the samples is unknown. Assuming that the beam's 1/
e2-radius is no larger than 1 ,um, and that fluorescence is
collected from a maximum depth of 50 ,um (the path length
of the microslide), then the upper limit for the sample
volume is 50 ,um3. The maximum volume, the known
concentration of diI in the samples, and the results for
(N, ) from the two-species analysis imply that the predom-
inant species in the 1:1 sample is at most an octamer of diI
molecules.
As shown in Table II, the values of Gmn(O) dramatically

increase with increasing m + n, in contrast to the expected
decrease in Gm "(O) for a monodisperse sample with
(N,)> 1. This occurs because a7T1+n (N2)»> (NN) >
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a2(N2) for m + n > 2, and, referring to Eqs. 17 and 18,
Bm+n - (N2) (a2/(NI ))m"n. In the two diI solutions a2/
(N1) > 1; therefore, Gm,,(O) increases with m+n. The
marked effect of the large aggregates on the high order
autocorrelation functions was the reason that the single-
species functions were used for extrapolating the time-zero
values.
The calculated low concentration of large aggregates is

consistent with the observed frequency of the occasional
large fluorescence fluctuations shown in Fig. 3. Typically,
only a few hundred of the 163,840 counting intervals per
fluorescence record contained such large fluorescence fluc-
tuations, which suggests that uncertainty in the values of
Gm,n(0) shown in Table II is a consequence of differences in
sampling the concentration of large aggregates between
individual fluorescence records. In addition, because rela-
tively few characteristic fluctuations of the large aggre-
gates were recorded, the high order autocorrelation func-
tions dominated by the large aggregates tended to contain
more noise. As a result, a detailed analysis of the time
course of the experimental autocorrelation functions was
not undertaken.
The three-species analysis of the two samples, after

excluding a few of the fluorescence records, implies values
for (N,), (N2), and a2 that are consistent with the
two-species analysis and values for (N3) and a3 that are
not significantly different from zero, as shown in Table
III.

Since the leading term in the single species functions
given by Eqs. 14 and 15 decreases as (NI)+n- 1, other
generalized autocorrelation functions might be sought that
would be less strongly dependent on (NI ). For example,
the definition in Eq. 2 can be extended to include powers a
and b which are real but not integral. Expanding the
quantity (Fa(t + T)Fb(t)) in a binomial series gives

(Fa(t + r)Fb(t)) = ([(F(t + T))
+ 6F(t + r)]a[(F(t)) + 6F(t)]b)

j-0 k0 k
J

(t5Fj(t + r)5Fk(t)), (36)

where the fluorescence fluctuations are assumed to be
small, i.e., that 6F2 < (F)2. Since j and k are integers,
autocorrelation functions of non-integer order constructed
from functions of the form in Eq. 36 are linear combina-
tions of the values of Gmn(t) calculated in the above
sections. Similarly, autocorrelation functions defined using
any functional form that can be expanded in powers will
also be linear combinations of the Gm,n(t) defined in Eq. 2
(Steinberg, 1986).

Although the derivation of the Gmn(t) presented above
does not include chemical reaction kinetics, the results
obtained for Gm,(O) and Bk are nonetheless applicable to

systems in which reversible reactions occur because the
Gm,(O) values depend only on the Poisson nature of the
number fluctuations in the sample. The time dependence
of high order fluorescence fluctuation autocorrelation
functions will depend in a complex manner on the chemical
kinetic processes occurring in a sample and on the relative
rates of the chemical and transport processes. In an
experiment data must be collected faster than fluctuations
decay due to these processes. In principle, the time depen-
dence of the high order autocorrelation functions could be
determined by generalizing the above derivation to include
the more complex probability distribution functions that
have been derived for reacting molecules (Aragon and
Pecora, 1976).

Although the use of high order autocorrelation functions
in FCS to determine the distribution of aggregate sizes has
not yet been tested on a sample with a well-defined
aggregate distribution, the experimental results for diI
aggregation suggest that this method can provide the
concentrations and the relative fluorescent yields of at least
two fluorescent species in a sample. If the relative fluores-
cence yields of the species present in the sample can be
independently measured, e.g., if the fluorescence yields are
known to be proportional to the number of monomers per
aggregate, then determination of the concentration of
aggregates of different sizes could be expected to be even
more feasible. Finally, the technique described in this
paper should prove useful in accounting for the demon-
strated large effect of aggregates in FCS, even in experi-
ments not designed to investigate aggregation phenomena.

APPENDIX A

Derivation of the Multiple Species
Concentration Fluctuation Correlation
Functions g,,,,,, in Terms of the Single
Species Concentration Fluctuation
Correlation Functionsfm,n

Under the assumption of a nonreactive, ideal solution, concentration
fluctuations from two different chemical species are not correlated, so
that the functions gm.,(i,, i2, * * * im+n; r1, r2, . . . ,r,,,+.; t) can be written
as sums of products of Kronecker deltas and single species concentration
fluctuation correlation functions. For example,

gj,(i,j, ri, r2; t) = bjj[(bCj(r1, t)bCi(r2, 0))
- bCi(r1,, t) ) (#C2,(t)(r2,t))
+ (1- bij) [( Wi(r,, t) ) ( bCj(r2, 0))

- (6Ci(r1, t)) (6Cj(r2, t))], (Al)

where bi, is the Kronecker delta. In addition, the ensemble average of
concentration fluctuations in each ith species is zero:

(6C1(r, t) ) = 0 . (A2)

Writing expressions similar to Eq. Al for a given gina, and using Eq. A2
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gives

g1,1(i,j; rl, r2; t) = b5jf11(i, rl, r2; t);
g1,2(i,j, k; rl, r2, r3; t) = bijbikfl,2(i, r1, r2, r3; t);

92,2(0, j, k, 1; rl, r2, r3f r4; t)

- 6j5ik5il (6Ci(rl, t)6Ci(r2, t)6Ci(r3, O)6Ci(r4, 0))
+ (1 - ik)biJSkl( 6Ci(rl, t)6Ci(r2, t)) (6Ck(r3, O)6Ck(r4 0))

+ (1 - bIJ)6k6jl(bCI(rl, t)6Ci(r3, 0)) (bCj(r2, t)iCj(r4, 0))

+ (1 - bij)3iljk (bCi(rl, t)bCi(r4, 0) ) (6Cj(r2, t)6Cj(r3 0) )

- 6ij6kl (bCi(rl, t)6Ci(r2, t) ) (Ck(r3, O)SCk(r4, ) ) . (A3a)

Above, the factors like (1 - 6,ij) ensure that the case in which i, j. k, and I
are all equal is not counted more than once, and the last term arises from
the second term in Eq. 6. Thus,

g2,2(i,j, k, 1; rl, r2, r3, r4; t)
= ijbikbilf2,2(2; r1, r2, r3, r4; t)

+ (1 -bij)bikbJlfl,l(i, rl, r3; t)f1,(j, r2, r4; t)

+ (1 - bij)bilbJkful(i, rl, r4; t)fl I(j, r2, r3; t).

(A3b)

Similar reasoning yields

g1,3(i, j, k, 1; r, r2, r3,r4; t)

= bjJSikSilfl,3(i; r1, r2, r3, r4; t)

+ (1 - bik)bgjbkIfi,(i, rl, r2; t)ff1,(k, r3, r4; 0)

+ (1 -5bJ)OikbjIfl,(i, rl, r3; t)fl,1(j, r2, r4; 0)

+ (1 - 5jj)6b6jkfJ,u(i, r,, r4; t)f,,,(j, r2, r3; 0);

g2,3(i,j,. .. m; r,r2,..,r5;t)

= 6 ikkAJlLf2i3(l; r1, r2.* rs; t)

+ (1O- 6)6ij6Ik5lf,2(i, r3, r1, r2; t)f1 ,(l, r4, r5; 0)

and two similar terms

+ (1 - biu)6ikbi6Ibjfi,2(j, r1, r3, r4; t)f1,1(i, r2, r5; t)

and five similar terms;

93,30, j, - * . .n; r1, r2.. . r6; t)

= SijbikIbilimSinf3,3(i; r1, r2, . . , r6; t)

+ (1 - bij)5iI5imbin6jkfI,3(iq r1, r4, r5, r6; t)ft ,(j, r2, r3; 0)

and five similar terms

+ (1 - 6ik)bijj5ilbi',mbknfJ2,2(, r1, r2, r4, r5; t)f1,1(k, r3, r6; t)

and eight similar terms

+ (1 -bik)6iI6Ibkbkfk,.2(i, r4, r,, r2; t)fl2(k, r3, r5, r6; t);

and eight similar terms

+ (1 - bik)(' - bkm)bijbklmnf,,(i, rl, r2; 0)

* f,,,(k, r3, r4; t)f1,,(m, r5, r6; 0)

and eight similar terms

+ ( I1- ijI -i jk)'5i-jAmI knkfI,l(i, r1, r4; t)

* fl,(j, r2, r5; t)fl,(k, r3, r6; t)
and five similar terms. (A3c)

The notation "similar term" refers to a different combination of species
and their corresponding positions that gives rise to an identical integrated
term in Eqs. 4 and 8. For example, in the second line of the above
expression for g2,3, the two "similar" terms are (1 - bik)bijiAmkl
f/,2 (i, r5, rl, r2; t)f,, (k, r3, r4; 0) and (1 - bik)61bJi6kmfl.2 (i, r4, r1, r2; t)
f1,1 (k, r3, r5; 0). Also, in deriving Eqs. A3, since only systems which are
stationary in time are considered, (6C,(r1, O)5Ci(r2, 0) ...*C1(r., 0)) -

(bCg(rl, t) bC1(r2, t) ... 6C(r., t))

APPENDIX B

Derivation of the Single Species
Concentration Fluctuation Correlation
Functionsfm,n

The (m, n) th-order correlation function of the concentration CQ(r, t) of a
given chemical species at positions r,, r2, . . ., rm at time t with the
concentration at positions rm+l, rm+2, . . , rn at time zero, is denoted by

Sm,n(i, rl, r2.* - *, rm+n; t) = (Ci(r1, t)Ci(r2, t) . . .

Ci(rm, t)Ci(rm+i, O)Ci(rm+2, 0) * Ci(rm+n, O)). (Bi)

The concentration correlation functions can be determined by generaliz-
ing a derivation of G,,1(t) in terms of molecular correlation functions
(Arag6n and Pecora, 1976). Each molecule is a point source of concentra-
tion, so that

CQ(r, t) = Z 6 [r-rij, (t)],
i'-

(B2)

where b[J is the Dirac delta function, rip(t) is the position of the i'th
molecule of the ith-type species at time t, I is the number of molecules of
the ith type in the sample, and the average number density of the ith
species in the sample of closed area A is

(B3)(Ci) = (1/A) f Ci(r, t) d2r = I/A.

Using Eq. B2 in Eq. B1 gives

Sm,n(ij, rl, 2. rm+n; t) = Z Z Z
i,-I i2-l iM+R-I

(6[r1 - r55(t)] . . 6[rm- r55.(t)]

- ri,,,,(O)J ... 6[rm+n - r,1,,,(O)]). (B4)

The position r4 of a given molecule is not correlated with the position rij
of a different molecule. This means that the functions Sm.,(i, rF,
r2,. . . r,+,; t) can be written as sums of products of ensemble averages of
sums of Dirac delta functions for the positions of single molecules. For
example,

Sl,1(i, r,, r2; t) = > (i[r - rij(t)]6 [r2 -rij(0)]
ji-
I I

+ F E ( 6 [r - rj(t)] )(6 [r2 - rik(0)]). (B5)
j-l k-I
j*k
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Assuming that the total number of molecules I of each ith species in the
sample (not the average number of molecules in a small observed area) is
large, then, referring to Eq. B2,

I I I

(n tw indice (6q[ru-ar,(t)))(6r2-r2(I)..
il -I i2-1 im+n- I

(no two indices equal)

(6 rm-ra^(O I ) ( 6[rm+I-rii,,, (0) I )
* ('3[rm+2-rUi',2(O)]) (t6[rm+n -

(c,i)m+ .

Using Eq. B6, along with the identities

I

T (6[r, - rj(t)]b[r2 -rij(t)] ..* *arm- ri(t)]I
j-1

= (6[r,- rj(O)]6[r2 - rj(O)] . ..6[rm - rj(O)]I
j-1

= (r - r2)6(r - r3).* * (r - rm) (6 [r, - rj(O)]
j-1

(Ci)b6(r - r2)6(r - r3) ... 6 (r - rm) ,

and

I

Y (6[r, - rj>(t)]b[r2 - rij(t)] ..6[r. - rj>(t)]
i-1

1[rm+1 -rij(O)16[rm+2 i',r(O)] ..6[im+n-rij(O)])

=6(ri-r2) ...* 6(r -rm)6(rm+l -rm+2) ...b(rm+l -rm+.)
I

* E (6[r, - rj>(t)]b[r.+l-rjy(°)])
ji-

and the definition

P(i, rl, r2, t) = ,([r, - rj(t)] 6[r2 -rij(0)]
j_I

(B6)

(B7)

(B8)

(B9)

in expressions like Eq. B5 for the Sm.,, gives expressions for the S,, in
terms of (C,), P(i, rp r', at) and Dirac delta functions of differences of the
rp's,forp, q = I to m+n.
The function P(i, r,, r2, t) is determined using the distribution function

for the probability that a molecule of the ith species will be found at
position r, at time t, given that it was at position r2 at time zero (Arag6n
and Pecora, 1976). For molecules undergoing diffusion with coefficient Di
in the x,y-plane and/or translation along the y-axis,

P(i, rl, r2, t)= ( Ci ) exp [-|r,-_r2 + jVt12/
(4D,t)]/ [4srD,t]

P(i, ri, r2,O) = ( Ci ) 6(r - r2). (BlO)

Furthermore, using Eq. 4 in Eq. Bi, the Sm. can be written as sums of
products off,w, where m'+ n' is less than m+ n, and powers of (CQ).
Using the two expressions for the S,,, yields

f1, (i, r,, r2; t) = P(i, r,, r2, t)

fA,2(i, rl, r2, r3; t) = 6(r2 - rOP(i, r,, r2, t)

f22(i, rl, r2, r3, r4; t) = 6(r, -r2)6(r3 -r4)P(i, r,, r3, t)
+ P(i, r,, r3, t)P(i, r2, r4, t) + P(i, rl, r4, t)P(i, r2, r3, t)

fl,(i, rl, r2, r3, r4; t) = 6(r2 -r3)6(r2 - r4)P(i, rl, r2, t)

+ (GC) [6(r2- r3)P(i, rl, r4, t)

+ 6(r2- r4)P(i, rl, r3, t)

+ 6(r3- r4)P(i, r,, r2, t)]

f2,3(i, r, r2, . . . , r5; t)

= 6(ri - r2)6(r3- r4)6(r3- r5)P(i, rl, r3, t)

+ 6(r3- r4)[P(i, rl, r3, t)P(i, r2, r5, t)

+ P(i, rl, r', t)P(i, r2, r3, ta)]

+ 6(r3- r5))[P(i, rl, r3, t)P(i, r2, r4, t)

+ P(i, r,, r4, t)P(i, r2, r3, ta)]

+ (r4-- r5))[P(i, r, r3, )P(i, r2, r5, t)

+ P(i, r,, r5, t)P(i, r2, r3, t)]

+ (C5) [6(r, - r2)6(r3- r4)P(i,ri, r5, t)
+ 6(r1 - r2)6(r3- r5)P(i, rl, r4, t)

+ 6(ri -r2)6(r4 - r5)P(i, rl, r3, ')]

,3(i, rl, r2,..,r6; t)
= 6(r1 -r2)6(r1 - r)6(4 - r5)6(r4 - r6)P(i, rl, r4, t)

+ 6(ri - r2)6(r5 - r6)P(i, rl, r4, t)P(i, r3, r5, t)

and eight similar terms

+ 5(r, - r2)6(r4 -r5)P(i, rl, r4, t)P(i, r3, r6, t)

and eight similar terms

+ P(i, r1, r4, t)P(i, r2, r5, t) P(i, r3, r6, t)

and five similar terms

+ (Ci)b(r, - r2)6(ri - r3)6(r5 - r6)P(i,ri, r4, t)

and five similar terms

+ (Ci)26(ri - r2)6(r5 - r6)P(i, r3,i4, t)

and eight similar terms. (BI1)

The notation "similar" term refers to a different combination of positions
that gives rise to an identical integrated term in Eq. 8. For example, in the
second line of the above expression for f3,3, another "similar" term is
6(r, - r3)a'6(r5 -r6)P(i, r1, r4, t)P(i, r2, r5, t). The above expression for fS
agrees with previously published results (Elson and Magde, 1974).

Using Eq. B1O to evaluate the values of f,, at time zero, along with
Eqs. 5 and 7, gives expressions for (6Ci(ri, 0)6C,i(r2, 0) ...**C(ra, 0) ).
Integrating these quantities over open observed area A0b retrieves the
moments about the mean of a Poisson distribution, as may be confirmed
using the moment-generating function for the Poisson distribution (Abra-
mowitz and Stegun, 1972),

f,i"= J C,(r,,, O) dr,

* bQiri2, O) d2r,2 . . . f^ bQiri, O) d2rin

(6Ni) = 0

(6Ni) = (N,)
(SNi) = (Ni)

(6N 4) = (Ni) + 3(Ni)2
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= (N,) + IO(Ni)2
(bN6) = (Ni) + 25(Ni)2 + 15(Ni)3;

(Ni) = (C,) Aobs. (B12)
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