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ABSTRACT Various differential polarization images or Mueller images of model objects are generated using the
equations derived in the previous paper (paper I of this series). These calculated images include models of the
higher-order organization of metaphase chromosomes, and show the applicability of the differential polarization
imaging method to the elucidation of complex molecular organizations. Then, the symmetry behavior of the Mueller
matrix elements upon infinitesimal rotations of the optical components about the optical axis of the imaging system is
presented. It is shown that the rotational properties of the Mueller images can be used to eliminate the linear
polarization contributions to the M14 and M4 images, which appear when these images are generated with imperfect
circular polarizations. The relationships between the 16 bright-field Mueller images for four different media, i.e.,
linearly and circularly isotropic, circularly anisotropic, linearly anisotropic, and linearly and circularly anisotropic, are
also derived. For the first three cases simple relationships between the Mueller images are found and phenomenological
equations in terms of the optical coefficients are derived. In the last case there are no specific relationships between the
Mueller images and instead we briefly present Schellman and Jensen's method for treating this type of medium. The
criterion of spatial resolution between adjacent domains of different optical anisotropy is then derived. It is found that in
transitions between domains of opposite anisotropy the classical Rayleigh limit must be replaced by a magnitude
criterion which depends on the limits of the sensitivity of the detection. Finally, the feasibility of optical sectioning in
differential polarization imaging is demonstrated.

I. INTRODUCTION

In the first paper of this series (hereafter referred to as
paper I), we have presented the derivation of a theory
describing how to obtain the differential polarization
images of an object that interacts preferentially with one
polarization of light over another. To this end, it was first
necessary to choose a suitable formalism to describe the
state of polarization of the light and its modification upon
interaction with the object. We chose the Mueller for-
malism because it provides the most complete description
of the interaction of an object with light of an arbitrary
polarization. It was shown that 16 polarization-dependent
images, containing useful and complementary structural
information about the object, can be obtained. Further-
more, since the ability to discriminate between different
states of polarization of light is related to the optical
anisotropy of the object imaged, it was shown that these
images represent maps of the optical anisotropy of the
object. The 16 images, that we have called the Mueller
images of the object, are obtained by subtracting the
intensities of the light scattered or transmitted by the
object when it is illuminated by orthogonal polarization
states of light. The theory was derived for an object of
arbitrary shape and structure, using the paraxial and thin
lens approximations. The equations obtained for each of

the 16 Mueller images depend on the incident polarization
of the light, the polarization component being analyzed,
the internal structure of the object, and the imaging
geometry.
The first prototypes of differential polarization micro-

scopes have recently been built (1, 2), and the first differ-
ential polarization images have been reported (1-3). Thus,
it is of interest to use the theory derived in paper I to
investigate the various symmetry properties of the Mueller
images, the relationships between them, the relations
describing the spatial resolution, and depth of field in these
images. These studies will provide a better understanding
of the structural information and specificity provided by
each of the Mueller images and will guide the experimen-
talist in generating the Mueller images most appropriate
for studying the structure of a given specimen.

This paper is organized as follows: Section II will discuss
the programming strategies used in the computations, and
the nature and range of validity of the approximations used
in the theory. Also the Mueller images of two model
objects will be presented and discussed. In section III, the
symmetry properties of the Mueller matrix entries and
their behavior under rotations about the axis of the imag-
ing system are presented. When the polarization of the
incident light is not perfectly circular, but elliptical, these
rotational properties make it possible to deconvolute the
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contributions of circular dichroism from those due to linear
dichroism. Also the symmetry relationships between the 16
Mueller elements in the bright-field will be presented.
These are obtained for the four different media: (a)
linearly and circularly isotropic, (b) circularly anisotropic,
(c) linearly anisotropic, and (d) linearly and circularly
anisotropic. In section IV, expressions for the Mueller
matrix elements for the first three media are listed in terms
of phenomenological optical coefficients. In section V,
limitations on the resolution of the differential imaging
process are discussed. The concept of depth of field is
formulated and the possibility of carrying out optical
sectioning in differential polarization imaging is discussed.
Section VI gives a brief summary of the main conclusions
of this paper.

II. COMPUTATIONS

A. Programming Strategies and Method
Fig. 1 shows the optical arrangements corresponding to the
two ways in which Mueller images of an object can be
generated. These are: (a) bright-field or transmission
imaging (B) and (b) dark-field or scattering imaging (D).
As discussed in paper I of this series, in the bright-field
imaging experiment (B), the lens (L) and detector screen
(S) are placed directly behind the object (0), along the
same direction as the incident light (labeled z-axis in Fig.
1). In this geometry, the light absorbed by the object and
the light scattered away from the forward direction are the
two main contributions to the Mueller images. In
describing the polarization of the incident light, the x-axis
is chosen as the horizontal direction and the y-axis as the
vertical direction (Fig. 1).

In the dark-field imaging experiment (D), the incident
light propagates along any arbitrary direction other than
along the z-axis, and the positions of the object and the rest
of the imaging train are identical to the bright-field
geometry (Fig. 1). The direction of incidence is indicated
by the unit vector ko. The state of polarization of the
incident fields can be described by arbitrary bases vectors
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FIGURE 1. Some variables for the calculations of the differential
images. The vectors fi0 show the direction of the incident light for
bright-field (B) and dark-field (D) imaging.

of a right-handed coordinate system such that

H= v X ko,

where "H and ev are the unit polarization vectors along the
horizontal and vertical directions.

Fig. 1 also shows the optical parameters required to
perform the numerical computations. These are: the object
distance (ro), the image distance (d), the radius of the lens
(a), the focal length (f), the dimension of an object (h),
and the wavelength of light (X). The variables ro, d, andf
are related by the Gaussian lens formula:

1 1 1
ro d f

In addition, the paraxial approximation used in the
derivation of the theory (see paper I) imposes the condi-
tion

a + h <<ro, i.e., a <<roand h <<<r0,

while the thin lens approximation implies that

a << d.

These two restrictions, the paraxial approximation and the
thin lens approximation, are included in the theory to
ensure minimal alteration of the state of polarization of the
light by the lens. Their effect can be seen in the limitations
that these approximations impose on the resolution attain-
able with such an imaging system. The resolution of the
optical system was found in paper I to be

0.61 Xo
n sin 0

As shown there, for a fixed wavelength of light the optimal
resolution is attained by letting a - 00, then opt = 0.61 -

X0/n. The resolution for finite apertures is obtained replac-
ing sin 0 in the above equation by

a
sin 0 = (r2 + a2)1/2

to give

0.61X (r2 1/2
n a

The above expression shows that, for a fixed wavelength of
light, an optical system working under paraxial approxi-
mations, (a << ro) has a spatial resolution substantially less
than the optimal resolution. Thus, the best way to improve
the resolution of our imaging system in these calculations is
by choosing an appropriately small incident wavelength
rather than decreasing the ratio ro/a. Nonetheless, as
mentioned in paper I, in the calculations to be presented
here, we have somewhat relaxed this restriction because
experimental evidence indicates that the polarization of
light is not substantially altered even when using high
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numerical aperture objectives. Throughout the computa-
tions in this paper, we have used the variables n, ro, and a in
such a way that the optical system has a resolution length
between 0.9 Xo and 2.515 Xo.
The object is built up of a collection of point polarizable

groups located at position r1. They interact with the
incident light by means of a uni-axial polarizability tensor
ai. The coordinates of the point polarizable groups in the
object and the directions of the polarizable axes are
generated by the computer. This information is then fed
into a separate program, which computes the 16 Mueller
images. In calculating the Mueller images, the computer
first calculates the electric fields or the amplitudes at any
position (x, y) on the image plane, using Eqs. 16 and 17 of
paper I for the dark-field images and Eq. 29 for the
bright-field images. The appropriate unit vectors are sub-
stituted into these equations for 't and '°. The choice of unit
vectors depends on which Mueller image is to be generated.
The first-order Bessel function appearing in the expression
for the tensor, F, in these equations, is calculated using the

a b
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FIGURE 2 MI, and M44 dark-field images of left- and right-handed
helices. (a) Normal image (MlI) of left-handed helix. (b) Normal image
(Ml,) of right-handed helix. (c) M44 image of left-handed helix. (d) M44
image of right-handed helix. The maximum intensity of M," (c and d) is
-0.29 times as large as the total image intensity (Ml,). Solid contours
indicate positive intensities, whereas dashed contours indicate negative
intensities.

subroutine MMBSJ1 in the IMSL library. The electric
fields or amplitudes so obtained are squared to yield the
intensity at the point (x, y) on the image plane. The
intensities are then added or subtracted point by point
according to the formulas given in Table I of paper I. The
calculated images are displayed using a DISSPLA contour
plotting routine which connects points of equal intensity.
Two different contour line types are used: solid lines
indicate positive values, whereas dashed lines indicate
negative values.

Helices

As an example of the imaging of a chiral structure, we have
calculated the dark-field Mueller images of right- and
left-handed helices with a radius of 5 Xo and a pitch of 10.
X0. Each helix has three complete turns and there are 10
polarizable groups per turn. The polarizability tensor of
these groups is assumed to be uniaxial and this axis is
oriented tangentially to the line of the helix. The axes of the
helices coincide with the y-axis of the laboratory frame (see
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FIGURE 3 M14 and M41 dark-field images of left- and right-handed
helices. (a) M14 image of left-handed helix. (b) M14 image of right-handed
helix. (c) M41 image of left-handed helix. (d) M41 image of right-handed
helix. The positive maximum intensities of M14 (a and b) and M41 (c and
d) and -0.3 and 0.38 times as large as the total image intensity (Ml,),
respectively.
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Fig. 1) and the incident light propagates along this direc-
tion from the negative to the positive y-axis. The lens is
placed at a distance d = 667 X0 from the object. The plane
of the lens is perpendicular to the z-axis of the laboratory
frame so that the main contribution to the images is
provided by light scattered at 900. The z- and x-axes are
chosen as the incident horizontal and vertical directions,
respectively. The resolution length A is chosen to be 2.74 -

Xo. Fig. 2 shows the unnormalized MI, (top row) and M44
(bottom row) images of the right-handed (right column)
and left-handed (left column) helices. The MI, images,
obtained using unpolarized light, display only positive
values (continuous lines), whereas the M44 images show
alternating lobes of positive and negative regions.
Although the M,, and M44 images of the opposite-handed
objects appear as mirror images of each other in space, the
sign of each domain in the image remains unchanged with

reversal of the handedness. Thus, these Mueller images are
not sensitive to the chiral nature of the object. Fig. 3
depicts the M14 (top row) and M41 (bottom row) images of
these same right-handed (right column) and left-handed
(left column) helices. In this case the images are sensitive
to the chirality of the objects, for the images of opposite-
handed helices are mirror images of each other both in
shape and sign. In general the rest of the dark-field
Mueller images depend on the imaging geometry (or the
scattering direction) and are not shown here.

Differential Polarization Imaging
of Metaphase Chromosomes
Organization. During the last ten years the

basic structure of chromatin has been unraveled. Chroma-
tin appears to be organized in hierarchical structures in

l 2 nm I

0 l
o

t1nm -o S = 300

1D9- -- - - - I30 nm

P - 300

_. I300nm

4 .
i

.. ..n
W~~~~~~~~~~~. A, 700 nm

*~~~~~~~~~~~~L %. i.

. = 1400 nm

z
Cba

Y --\

FIGURE 4 Schematic illustration of the different orders of chromatin packing postulated to give rise to the highly condensed metaphase
chromosome (a; reproduced from Molecular Biology of the Cell, 1983, Garland Publishing Inc., New York, 399), the orientation of the
transition dipole moments for the hierarchichal orders of organization (b), and the dimensions of the model chromosome (left-handed helix
superimposed with a sinewave) (c). The helix axis is along the y-axis, the incident light propagates along +x-axis, and the screen is on the
+ z-axis.
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which the lower level organization is maintained through
the higher-order coiling. Fig. 4 a shows the successive
orders of organization starting with the isolated DNA
molecule. Next is the nucleosome structure which is now
well-established (4-7), as well as the 10-nm "beads-
on-a-string" fiber (9-12). The next level of the chromatin
structure corresponds to a coiling of the 10-nm fiber into a
shallow solenoid 30 nm in diameter with six nucleosomes
per turn (13-15). The detailed path of the linker DNA in
between nucleosomes and the precise location of histone
H1 are still a matter of controversy (16-19), but most
models agree in their main features. The next level of
organization, both in interphase nuclei and in metaphase
chromosomes, appears to be a folding of the 30-nm fiber
into loops (20) or domains anchored to a scaffold by
specific non-histone proteins (21, 22). These loops are
35-100 kilobase pairs long. Their organization into higher
order structures is a subject of active research (23, 24). A
radial organization of the loops around a metallo-protein
scaffold has been proposed (25); additional levels of spiral-
ization (26) and a side by side association of the loops have
also been suggested (24, 27).

The Model. To model this complex structure we
must necessarily simplify many of the details described
above. Nonetheless, the resulting model must preserve the
essential features of the structure, in particular with regard
to the orientation of its transition dipole moments. Our
choice can be seen in Fig. 4 b, where the direction of the
dipoles is indicated through the different hierarchical
orders of organization. DNA is a highly dichroic molecule
and its transition moments in the UV are all in the base
planes and perpendicular to the helix axis. As shown in Fig.
4 b, this orientation is inverted at the level of the 30-nm
diam solenoid. This solenoidal structure is then arranged in
loops on which the transition dipoles are tangentially
oriented. This looped structure is then coiled into a 700-nm
diam helix. In the model, the point polarizable groups are
arranged to form the looped structure. The polarizability
tensor at each group is assumed to be uni-axial and
tangential at every point in the loop. The loop itself is
modeled as a sinusoidal curve with a peak-to-peak ampli-
tude of 300 nm. This sinusoidal curve coils into a 700-nm
diam helix so that the loops are arranged radially on the
helix. There are twelve loops per turn of the helix. Since
each loop is built with eight polarizable groups, each group
represents a large number ofDNA base pairs. The dimen-
sions used in the model (expressed in nanometers) are
shown in Fig. 4 c.

Dark-field Imaging of the Chromosome Mod-
el. Fig. 5 shows the dark-field images obtained for the
chromosome model described above. The wavelength of
the incident light (X0) is 200 nm and the aperture of the
lens is 100 X0. The refractive index n is 1.5 and the
resolution length A is 0.9Q0. The incident light propagates

a

FIGURE 5 M,, (a and a), M13 (b and b') and M14 (c and c') images for
left- (left column) and right-handed (right column) helices. The model of
the left-handed helix is drawn in Fig. 4 c.

along the x-axis and the optical axis of the lens is aligned
along the z-axis of the laboratory frame. In the left-hand
column, a, b, and c represent the unnormalized Ml,, M13,
and M14 images of a four-turn segment of the 700-nm diam
left-handed helix. The right column depicts these same
Mueller images for a right-handed helix. As in the case of
the helix models shown in Fig. 2, the Ml I images (Fig. 5, a
and a') appear as mirror images of each other only in
shape, while the M13 and M14 images (Fig. 5, b', c, and c')
are mirror images both in shape and sign. With this
specific model, the M13 images (Fig. 5, b and b') for left-
and right-handed helices have their signs interchanged.
However, this does not happen in all cases, but depends on
the direction of vibration of the incident light and the
details of the structure of the helix (especially on how the
sinusoidal curve coils into a 700-nm diam helix). The M*4
image in this model displays only negative values for the
left-handed helix (Fig. 5 c) and positive for the right-
handed helix (Fig. 5 c'). The detailed features of the M14
images again depend on the details of the 700-nm diam
helix. However, because M14 images are sensitive to the
chirality of the object, M14 images for helices with opposite
handedness always show opposite signs regardless of the
detailed structure of the helices. Fig. 5 indicates that
differential polarization imaging of metaphase chromo-
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somes might provide sufficient structural details to test
alternative models for the long-range organization. We
have found that the details of the calculated images are
highly sensitive to the model chosen for the coiling of the
looped structures along the 700-nm diam helix (results not
shown here). This appears as a clear indication of the
possibility of applying this technique to elucidate these
complex molecular organizations.

III. SYMMETRY PROPERTIES
OF THE MUELLER IMAGES

A. Infinitesimal Rotations

In this section, we will investigate the symmetry properties
of the Mueller matrix elements and the relationships
among them. Here we make use of the fact that the form of
the expressions derived and presented in paper I of this
series should remain unchanged after an infinitesimal
rotation of the laboratory frame about the axes defined by
the direction of incidence of the light and the direction
perpendicular to the imaging plane. This property, a
consequence of the isotropy of space (28), assures that the
relations to be obtained will be of a general nature and
independent of the details of the object. Furthermore, this
treatment is valid for both bright- and dark-field imaging
geometries, and both will be carried out simultaneously.

In regular polarization spectroscopy, a rotation of the
laboratory frame can be carried out in either of two ways:
(a) by rotating the object while the analyzer and polarizer
axes are held fixed, or (b) keeping the object fixed while
rotating the analyzer and polarizer directions. However,
these two schemes are not equivalent in an experiment in
which the signals are to be space-resolved (imaged) in the
detector plane. In this case, it is desirable to keep the
orientation of the object unaltered. Thus we will use
procedure (b), keeping in mind that the results of this
treatment will be valid in those cases in which the spectro-
scopic signals are not spatially resolved.

Fig. 6 shows two right-handed coordinate systems
labeled cH, 'v and ko for the incident light, and labeled cH
c , and £ for the transmitted light. The operation to be
performed is the simultaneous rotation of two coordinate
systems about the ko and z directions. After a positive
rotation by an angle dO (counterclockwise when seen by the
observers in Fig. 6), the frame will be in the primed
position depicted by the dotted lines. The relationships
between the primed and unprimed axes are (29)

CH = EH + (fco x EH)dO = AH + A dO

eV = Ev + (ko x tv)dO = (- HdO

; = a- (1)

To investigate the behavior of the Mueller matrix elements
under this transformation, we simply substitute these
relationships into the expressions for the Mueller entries in

LIGHT
SOURCE

A

/I
AV

^Hi
, d A

L'l

OBJECT

OBSERVER

SCREEN

FIGURE 6 An infinitesimal rotation about ko and the z-axis. dO is
positive when the rotation is performed counterclockwise.

Table I. The behavior of the matrix elements upon this
transformation can be separated into three distinct classes
as shown below.

Class I: M11, M14, M41, M44. Careful inspect-ion
of these entries shows that they are all invariant to an
infinitesimal rotation about the incident (ko) and transmit-
ted (2) directions. For these elements, these axes behave as
C. symmetry axes. Thus, these terms can be grouped into a
class of terms consisting of all the Mueller matrix elements
that are invariant under rotations.

TABLE I

MI= A r.,(1 -
M,2 = A rFO(^Ha.iH - EVEVp)
M= A ra@('H VP + VA H)
M2= A(i2. 2)2[Qt . (i5HfH - .vv Q](-40
= A(Ci)2[Qt f + (v(H) * -
= A( 2)2[Qt _ (eHeH - VV) -Qlvfl

M23 = A(f - i)2[Qt * -_ * + t

M32 = A(t . 2 *H + (v(H)* QIap(22QHHAV - A
M22 = A(.*2)[Qt * +c fH) * QIaO(fHaHv6 + CVafp)

=l=-i Aa^La7R X EL) - - i AapL,.7kIp
A( )2AQ (AHAH _vvkVo A +AM23 = - i(t. - Hja

M= - i(t.* )2Apt(!aH^V + -,Vf-H)

M43 = -Ai(t- i)2Aap(1 - e

M42 = - i(P-*Qt. (HAV -VaH)
M33= - i(Q *2)AAH( HaV7 + EVaHVa)2

with
r -Qt *L-.Q

and

Also
f- A(Q X ayfEM

where A is a real constant, and Q = F for dark-field and Q = G for
bright-field, in the notation of the paper I of this series.
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Class II: M12, M13, M21, M31, M42, M43, M24,
M34. Analysis of this class will be carried out only for the
elements M12 and M13, and we will give the results for the
other elements in this class.
Upon an infinitesimal rotation, M12 transforms accord-

ing to

Mt2 = A{Qt A[(r *)2 1 - (A . )(it + AA) + if] Ql.
(^? (H - V'afViq) (2)

Substituting Eqs. 1 into 2 we have

M,2 = M13 (0 + dO) = M12(0) + 2M13(0) dO, (3)

where the definitions of Ml12 and Ml13 in Table I have been
used. In the limit when dO - 0:

dM(0) = 2M13(0). (4)
dO

Thus we have arrived at a differential relationship between
two elements of the Mueller matrix. Next, we investigate
the effect of the transformation on Ml13. After an infinitesi-
mal rotation, Ml13 becomes

M~3=AIQt.[(^. i)2 -A(. A)(2t+ pi) + ^pJ *QL,M'13 = A{Qt * [r z2 1-r z zA(r + 2 rP]*Qa

*(EHaE'V# + Va,E,(i)H

Again, using Eqs. 1 we obtain

M13 = MI3(O + dO) = M13(0) - 2M12(0) dO

and in the limit dO o- 0:

dM13(0) =-2M12(0). (5)dO

Similarly, from Eq. 5 and the above relation, we have

MI3(O) = M3(0) - 2 f [M,2(0) cos 20

+ MI3(0) sin 20] dO

MI3(O) = M13(0) cos 20 - M12(0) sin 20.

Eqs. 7 and 8 are the two final expressions. It can be seen
that they can be combined to give a single expression
relating Ml2(0) and Ml3(0). More importantly, they deter-
mine the symmetry behavior of these elements upon rota-
tion about the ko direction. Further discussion of this point
will be deferred until later.
The derivation of the relationships for all other terms in

this class is identical and need not be repeated here.

Class IIIAM22, M33, M23, and M32. After infin-
itesimal rotation of the polarizer and analyzer axes, M22
becomes

M' A (r . )2 [Qt _ (1,H-,H 11,V( ) . Q]aO

*('EHaZHO - VaEV1) -

Substituting Eqs. 1 into this expression, we obtain

M22 -M22 = 2 (M32 + M23)

and in the limit as dO , 0:

dM22 = 2 (M32 + M23).
dO

Similarly we can obtain

dM32 = 2 (M33 - M22)
dO

(9)

(10)

Eqs. 4 and 5 can be combined into one second-order
differential equation:

d2M12(0) = -4M12(O).
dO2

The most general solution to this differential equation is

M12(0) = Ae2 + Be"2.

and

dM33 = _ 2 (M32 + M23)
dO(6)

and

dM23 = 2 (M33 -M22)-dO

The coefficients A and B can be obtained from the
appropriate initial conditions:

MIAO == 0) = M12(0) = A + B

and

dMO2 = 2Ml3(O) = 2i(A - B)
dO 9-0-

to yield the desired relation

M12(0) = M12(0) cos 20 + M13(0) sin 20.

These four first-order differential equations can be com-
bined to yield two second-order equations:

d022 = _8 (M22 - M33)

d0M33 = 8 (M22 -M33)dO

An alternative choice of variables yields

(7) d02 = -8 (M32 + M23)
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and

=-_8 (M32 + M23).
dO2

(14)

Subtracting the pair of Eqs. 13 and adding the pair of Eqs.
14, we obtain

d- l33) =_ 16 (M22- M33)
dO2

-16 (AM23 + AM32).-
dO2

These two equations can be integrated using appropriate
boundary conditions giving

M22(0) - M33(0) = [M22(0) - M33(0)] cos 40

+ [M32(0) + M23(0)] sin 40

and

M23(0) + M32(0) = [M23(0) + M32(0)] cos 40

+ [M33(0) - M22(0)] sin 40.

The solutions for M22(0) and M33(0) can be separated by
using the fact that (see Eqs. 9-12):

M22(0) + M33(0) = constant = M22(0) + M33(0)

and

M23(0) - M32(0) = constant = M23(0) - M32(0).

Using these expressions we finally obtain

M22(0) = -'k [M33(0) - M22(0)] cos 40

+ '/2 [M32(0) + M23(0)] sin 40

+ '/2 [M22(0) + M33(0)]

M33(0) = l/2 [M33(0) - M22(0)] cos 40

- %/2 [M32(0) + M23(0)] sin 40

+ '/2 [M22(0) + M33(0)]

M23(0) = '/2 [M23(0) + M32(0)] cos 40

'/2 [M33(O) - M22(0)] sin 40

+ '/2 [M23(0) - M32(0)]

M32(0) = '/2 [M23(0) + M32(0)] cos 40

+ '/2 [M33(0) - M22(0)] sin 40

- '/2 [M23(O) -M32(0)1-
The derivation of these relationships among the elements
of the. Miie.ller mqtriy lienti ton niumhe.r of inte.re.ztina

dM

de

FIGURE 7 The first derivatives of the Mueller matrix elements.

in the four corners vanish, corresponding to the class of
invariant elements in the Mueller matrix. Furthermore,
this derivative matrix is symmetric in the sense that the
relationships below the diagonal can be obtained from
those above the diagonal by simply exchanging the subin-
dices. The differential relations are connected in pairs, as

indicated in Fig. 7 by the double-headed arrows. This
pairing of the Mueller elements leads to the derivation of
second-order differential equations. Integration of the sec-
ond-order differential equations then leads to the sixteen
relationships describing the symmetry behavior of each of
the Mueller elements upon a rotation of the polarizer and
analyzer axes. These relationships are shown in Table II

TABLE II

Class I: Totally symmetric (invariant)
Mi,j() = M1j(O), (i,j = 1, 4).

Class II: Twofold symmetric

M5j(0) - M,j(O) cos20 ± Mj, I(O) sin2Ol (i= 4 and 2 3)
M,,(O) = Mji(O) cos20 ± Mj,±1(O) sin2OJ '

+ ifj is even, and - ifj is odd.

Class III: Pseudo-fourfold symmetric

M22(0) = - [M33(O) - M22(0)] cos4O
2

+ [MAO() + M23(0)] sin4O + - [M22(0) + M33(0)]

1 1

2 2

M33(0)= - [M33(0) M22(0)] cos46

2

- [M32(O) + M23(0)J sin40 + - [M22(0) + M33(0)]
2 2

M23(0)= [M23(O) + M32(0)J COS40
2

1 1

+ [M33(O) - M22(0)] sin40 + [M23() - M32(0)]
2 2VI1 L111F. 1V1UVollF.l lliaLl 1A IVaUZO LU a IIUIIIF.;l VI 111LV.;;L111r:-

conclusions regarding their symmetry properties. First it is I
seen that sixteen differential relations among the Mueller M32(0) = [M23(0) + M32(0)] cos40
elements can be obtained. This permits the definition of the 2

derivative Mueller matrix depicted in Fig. 7. Notice that I 0th- [Md33(0) M22t
the derivative matrix has a zero trace and that the elements 2

L0)] sin40 - [M23(0) -M32(0)-
2
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O 2M13 < -2M12 0

2M31 2(M23+M52) 2(MA33-M ) 2 M34

-2 M 21 2(M33-422) -2(M 23+32) -2 M24

o 2M43 - 2 M42 0
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where the Mueller elements have been classified into three
main classes according to their symmetry behavior. The
first class corresponds to the elements invariant under
rotations. Class II includes eight elements that display a
twofold symmetry under rotation. These elements change
sign upon a rotation of r/2 radians and reproduce them-
selves after a rotation of ir radians. These elements are seen
to be the sum of an element which is even (symmetric) in
the rotation angle and an element which is odd (antisym-
metric). Class III consists of four elements that contain a
fourfold symmetric contribution as well as a term invariant
upon rotation. These elements do not change sign upon a
rotation of 7r/4 radians, although they reproduce them-
selves after r/2 radians. For this reason, this class is
referred to as pseudo fourfold symmetric.

It should be emphasized that these relationships are
completely general and independent of whether an imaging
element (lens) is placed in the optical train or not. More-
over, the derivation is also independent of the description of
the light-matter interaction event and is therefore valid for
all-order Born-Approximations of the fields.

B. Application of the Rotational
Symmetry: Imaging with Imperfect
Circular Polarizations

The quality of the incident circular polarizations is an
essential consideration when obtaining M,4 (i = 1, 2, 3, 4)
Mueller images, since any imperfections in the incident
circular polarizations will give rise to spurious linear
artifacts in the Mueller images. In this section, we analyze
these artifacts and show how to eliminate them by using
the symmetry properties discussed in the previous section.
To separate the Mueller images from linear polarization
artifacts, the Mueller images must be invariant upon a
rotation of the optical components of the imaging system.
Since only M,4 and M44, among Mg4 (i = 1, 2, 3, 4), satisfy
this requirement, we present an analysis only of these two
Mueller images.
The theoretical analysis is carried out by replacing the

incident circular polarization vectors in the expressions for
M,4 and M44 of Table I, by unit vectors representing right-
(f') or left- (e_) elliptically polarized light, which are
written as

f+ = COS b+ e-i ER + sin b+ eL (15)

e = sin & e- ER + COS 6& e EL (16)

where 'R and AL represent pure right- and left-circular
polarizations. 65 gives the ellipticities of e+, and k± are the
angles of inclination of e+. After some algebra, we obtain

Ml4= /2 (cos 26+ + cos 26)M,4

+ '/2 (a+ cos 20+- a cos 20_)M,2

+ %/2 (ac sin 24+- a- sin 26-jMi3 (17)

M-= '% (cos 26, + cos 26-)M44

+ 1/2 (a+ cos 20+ - a cos 20)M42

+ %/2 (a+ sin 2+ - a sin 24_)M43, (18)

where the prime indicates that the Mueller images have
been formed using imperfect incident circular polariza-
tions, and the unprimed Mueller elements indicate those
images obtained using pure circular or pure linear polar-
izations of the incident light. a. are the fractional elliptici-
ties of e+, which are defined as

u2 _ v2
a= 2 2 = sin 263,

U± + v±

where u± and v± are the lengths of the major and the minor
axis of E±, respectively. cos 265, appearing in Eqs. 17 and
18, can be expressed in terms of the fractional ellipticities
a± (which are always small under experimental conditions)
as

cos 26± = (1 -a)

If we expand this equation to first-order in a± and substi-
tute it into Eqs. 17 and 18, we obtain

M14 =- M4 + '/2 (a+ cos 20+ -a cos 20-)M,2
+ '/2 (a+ sin 2+- a- sin 24-)MI3

M' = M44 + '/2 (a+ cos 20+ -a cos 20-)M42
+ ' (a+ sin 2+ - a sin 20)M43.

(19)

(20)

For simplicity, the above equations are not normalized.
Notice that in the case of imperfect circular polarizations,
M' (i = 1, 4) contains the true Mg4 mixed with the
contributions from M,2 and M,3. This mixing is propor-
tional to the difference in ellipticities between the two
incident polarizations (a<) and their inclination angles
(X+). As expected, when the incident polarizations are
purely circular, a, = 0 and only M,4 remains. Similarly, if
the two incident polarizations have the same ellipticity and
the same orientation the coefficients

s = '/ (a, cos 20, - a_ cos 20-)
and

T= 1/2 (a+ sin 2+ - a- sin 20-)

vanish identically and only the pure Mg4 term contributes.
The double-angle dependence appearing in these coeffi-
cients assures that if the incident polarizations have the
same ellipticity but supplementary inclinations, i.e., b- =
180 - 4, the coefficient of Mi2 vanishes but not that of
M,3. This is due to the oriented nature of the anisotropic
object. Eqs. 19 and 20 also show that the mixing of Mueller
element contributions to the image is linear.

Notice that the M, and M,3 elements are twofold
symmetric with respect to rotations about the optical axis,
while the elements Mg (i = 1, 4) are invariant under this
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operation, as was shown in the previous section. Further-
more, the M,2 and Mi3 (i = 1, 4) contributions change sign
upon a 7r/2 rotation about the optical axis. Therefore,
rotating the optical components (polarizers, retarders, and
analyzers) by an angle of ir/2 radians about this axis,
permits us to cancel out the contributions from the MA2 and
M,3 images:

t4 + 2+ 4(O)

2 = Mm4(O) = Mi4

This simple result allows us to de-convolute the linear
contributions from the circular polarization preference
exhibited by a chiral sample.

Again, since this method uses the results from the
previous section on the rotational symmetry properties, it is
valid for all Born-Approximations and does not depend on
the optical thickness of the sample. As discussed in paper I,
the M14 image for an optically thin sample in the first
Born-Approximation is a map of the circular dichroism (in
bright-field) or Circular Intensity Differential Scattering
(in dark-field) exhibited by a chiral region inside an object.
However, in optically thick (dense) samples, not only these
effects, but also the product of linear and circular effects,
will contribute to the M14 and M44 images. The use of
imperfect circular polarizations will add additional terms
to those already contributing to the true or pure images.
These additional terms can be eliminated from the Mi4 (i =
1, 4) images by averaging these entries over an angle of
ir/2 about the optical axis.

C. Other Symmetry Considerations
in Bright-field Imaging

Any matrix can be expressed as the sum of symmetric and
antisymmetric parts. A decomposition of this type for the
Q-tensor in the expressions in Table I, leads to a number of
relationships between the Mueller images. In the bright-
field, the tensor Q G (see Table I) and can be written
as

SI Sl 0 AXY
G = S + A = x y + 0o Ay

Lsyx S,J LAyx J

where S and A stand for symmetric and antisymmetric,
respectively. Here we take +z-axis as the direction of
propagation of the transmitted light, so that Giz and G,1
(i, j = x, y, z) need not be considered. It should be noted
that SXY =SYX and Axy A=Axy since S (G + GT)/2 and
A (G- GT)/2. Rewriting the equations of Table I in
terms of the elements of S and A leads to relationships
between the Mueller elements depending on the type of
medium considered. We carried out these computations for

four different media: (a) linearly and circularly isotropic;
(b) circularly anisotropic; (c) linearly anisotropic; and (d)
linearly and circularly anisotropic.

For an isotropic medium (case a), G can be written as a
constant times a unit tensor. As discussed in paper I, the
antisymmetric part of the tensor G comes from the chiral
nature of a medium. Therefore, the Mueller elements of a
medium with only linear anisotropy (case c) are expressed
in terms of the four components of S and their complex
conjugates. For a chiral medium (case b), both S and A are
needed. However, in this case S is a diagonal matrix with
Sx, = Syy and S,Y = Sy, = 0. In the case of a linearly and
circularly anisotropic medium, no such simplifications
exist, and the Mueller elements are expressed in terms of
the six tensor components and their complex conjugates.
Applying these considerations to the Mueller elements in
Table I we have obtained the relationships shown below in
matrix form for the different media. Here, the Mueller
elements are normalized in the same way as in Table I of
paper I and we use Perrin's notation (30) to label the
elements of the Mueller matrix. Using this notation, we
present only the relationships among the 16 Mueller
elements for four different media and do not show the
explicit equations obtained in terms of the components ofS
and A. In the next section (section IV), we show how each
element is related to specific physical effects.
Linearly and circularly isotropic:

I
0

0

0

0 0 0

1 0 0

0 1 0

O 0 1

Circularly anisotropic:

a, 0 0 b5
0 a2 b4 01
0 -b4 a2 01
b5 0 0 a,

Linearly anisotropic:

a,

b1

b3
O

b, b3 0

a2 b4 b6

b4 a3 b2

-b6 -b2 a4

Linearly and circularly anisotropic: In this case, all 16
images, corresponding to the elements of the Mueller
matrix for an oriented object, are different.
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IV. EXPRESSIONS OF THE BRIGHT-FIELD
MUELLER ELEMENTS IN TERMS OF
PHENOMENOLOGICAL COEFFICIENTS

It is possible to describe the response of a medium to light
by means of phenomenological optical coefficients express-
ing the absorptive and diffractive properties of the
medium. These coefficients are: linear dichroism, linear
birefringence, circular dichroism, circular birefringence,
mean refraction, and mean extinction.
The form of the Mueller elements in terms of these

optical coefficients is particularly simple and allows us to
establish relationships among the different entries. Fur-
thermore, they explicitly relate the magnitude and sign of
the matrix elements to the macroscopic properties of total
absorption, refraction, dichroism, and birefringence.

In this section, the media discussed in section III (part
C) are again considered. All but the last of these cases can
easily be treated by this macroscopic description. For
simplicity we will present the results for the first three
cases and will briefly discuss the last case following the
method reviewed by Schellman and Jensen (31). In the
third case (linearly anisotropic medium), it is assumed that
the light propagates along the optical axis of the medium.
This assumption greatly simplifies the results obtained.
Strictly speaking the results of this section are valid only
for samples that are homogeneous along the direction of
propagation of the light or for very thin optical paths.
Again generalization to optically thick or inhomogeneous
media requires more elaborate treatments (31).
To describe the linear anisotropy of a medium, we must

define the extinction coefficients ell and E, and the real
refractive indices n,, and n,. These coefficients are along
parallel and perpendicular directions relative to an arbi-
trary fixed laboratory frame. The extinction coefficients
Ell,]measured in a bright-field experiment have two contri-
butions:

Ell,-= a,,+Sll,+ L

where a is the usual absorption coefficient of the medium
and s° is the scattering coefficient. The latter describes the
energy removed from the main beam due to scattering
away from the forward direction and not captured by the
lens' aperture. This contribution is labeled with the super-
script 0 since it depends on the acceptance angle (0) of the
lens. The scattering coefficient s5 can be related to the
molecular scattering cross-section o(0, ') by (32)

-ll Nj,30 f o(0, k) sin0doM.

In practice, the relative importance of this scattering
contribution to bright-field images can be made smaller or
larger by choosing the appropriate numerical aperture for
the objective lens, i.e., by varying 0.

Similarly, the chiral nature (circular anisotropy) of the
medium is described by the extinction coefficients (ER and
EL) and the refractive indices (nR and nL) for right- and
left-circularly polarized light.

A. Linearly and Circularly
Isotropic Medium

This case is almost trivial since it shows no preferential
response to any polarization of the incident light. In this
case all off-diagonal elements of the Mueller matrix are
zero. Only two phenomenological optical constants are
required in this case: the total extinction and the mean
refraction.

B. Circularly Anisotropic Medium
(a) The elements of the twofold symmetric class all vanish
as shown in section III, i.e.,

{M12, M13, M21, M31, M42, M43, M24, M34} = 0.

This result is to be expected since an isotropic medium is
invariant to rotations about the direction of incidence of
the light and the elements in this class change sign under a
ir/2 rotation.

(b) The following expressions hold for the rest of the
normalized Mueller elements:

Mll = M44= 1

M14 = M41 = tanh CD

M22 = M33 = cos 2CB sech CD
(21)

M23 =-M32 =-sin 2CB sech CD,

with CD ln 10 (EL - ER) cd/2, where c is the concentra-
tion of the chiral molecules and d is the thickness of the
sample. In this case the transmitted light is elliptically
polarized due to the optical activity of the chiral medium.
If EL > ER, the transmitted light is right-elliptically polar-
ized (i.e., the polarization vector rotates in the clockwise
sense as viewed by an observer facing the light source). If
'ER> EL, then the transmitted light is left-elliptically polar-
ized. CB-- 2x(nR- nL)d/Xo, where Ao is the wavelength
of light in vacuum. Thus, CB is the inclination angle (in
radians) of the ellipse with respect to the horizontal axis in
the case of M22 and M32, and with respect to the -450 axis
in the case of M23 and M33. For CB > 0, the inclination
angle is positive, i.e., it represents a counter-clockwise
rotation of the incident linear polarization. Notice that M23
and M32 are proportional to sin 2CB, and thus they are
sensitive to the optical rotatory power of the medium. Also
notice that M14 = M41 = tanh CD, which means that these
two elements contain the contribution from the circular
dichroism of the medium. According to the definitions of
the extinction coefficients given above, the circular dichro-
ism (CD) includes contributions from the preferential
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absorption and scattering of opposite circular polarizations
away from the main beam. M1, = M44 = 1 because the
Mueller elements are normalized by Ml,. If unnormalized,
MI, and M44 are related to the mean extinction and mean
refraction of the medium.

C. Linearly Anisotropic Medium
The following relationships are obtained in the first Born-
Approximation:

Ml, = I

M12 = M21 = cos 2a tanh (LD),,

M =3= M31 =-sin 2a tanh (LD),,

M14 = M41 = 0

M22 = cos2 2a + sin2 2a cos (LB),,,, sech (LD),,

M23 = M32 = (1/2) sin 4a

* [cos (LB),1,, sech (LD)1,, - 1]

M24 = -M42= sin 2a sin (LB),,,1 sech (LD),,

M33= sin2 2a + COS2 2a cos (LB),,,, sech (LD)U,,

M34 = -M43= cos 2a sin (LB),,,1 sech (LD),,,±

M44= cos (LB),,,, sech (LD),,, (22)

where a is the angle between the parallel (11) axis of the
medium and the vertical (V) axis of a laboratory frame
(see Fig. 8), and (LD),, lIn 10 (el, -,e,) cd/2. (LB)1,,,,
27r(n, - n,,)d/X0 is the phase difference induced by the
medium between the perpendicular and parallel compo-
nents of the light. Again MI, = 1 because it is divided by
itself. Notice that M*2, MD3, M21, and M31 are proportional
to tanh (LD)11,,, which means that these elements are
sensitive to the linear dichroism of the sample. Also, it
should be noticed that M24, M42, M34, and M43 are propor-
tional to sin(LB)jj,,, which implies that these elements are
sensitive to the linear birefringence of the medium.

D. Linearly and Circularly
Anisotropic Medium

In this case, the derivation of the Mueller elements is not as
simple as in the previous cases. Therefore, we will briefly
discuss the method recently reviewed by Schellman and
Jensen (31). These authors define six physical effects:
linear dichroism (LD) and linear birefringence (LB) along
the horizontal and vertical direction with respect to an
arbitrary laboratory frame, linear dichroism (LD') and
linear birefringence (LB') along the +450- and -450-
directions with respect to the horizontal direction, and
circular dichroism (CD) and circular birefringence (CB).
The additional linear effects (LD' and LB') are necessary
because they define the optical coefficients with respect to
a fixed laboratory coordinate system, whereas in the
previous section the optical coefficients (,l, and Ec) were

v

,C11

H

FIGURE 8 An anisotropic object whose parallel (11) axis is tilted by an
angle a with respect to the vertical (V) incident polarization of light.

defined with respect to the molecular frame. Schellman
and Jensen also define a general complex retardation for
each dichroism-birefringence pair and a total absorption-
mean refraction (x) such that

x = x'- iE/2
L = LB - iLD

L' = LB' - iLD'

C = CB - iCD, (23)
where X' is the change in phase relative to the case where
there is no sample and E = 2.303 Ecd describes the mean
extinction of the sample. Thus, the Jones matrix of an
isotropic medium is e1x (G ). The definitions of CD and CB
are as before, and those of LB, LD, LB', and LD' are

LB = 27r(n. - ny)d/Xo
LD = In 10(E -Ey)cd2
LB' = 2wr(n+450- -450)d/XO
LD' = In l0(e+45 -- 450)cd/2.

Again here it should be noted that LD and LD' contain
contributions from both preferential absorption and scat-
tering of linear polarizations. One can define four 2 x 2
Jones matrices (31) corresponding to each of the above
general retardations (Eq. 23). In the last three general
retardations, the matrices corresponding to dichroism and
birefringence on each line commute with one another.
However, the matrices corresponding to different general
retardations (on different lines) do not commute. This
means that, for example, LD and LB measurements do not
interfere with each other, i.e., the presence of one does not
affect the measurement of the other. On the other hand,
LB' or CD affect LD measurements, leading to experimen-
tal artifacts. Thus, for optically thick and inhomogeneous
samples, the optical effects cannot in general be separated,
and they combine their contributions to the measurement
of the individual effects. However, for an infinitesimally
thin layer of a sample, the three matrices corresponding to
the last three general retardations commute with one
another to first order. In this case, an infinitesimally thin

BIOPHYSICAL JOURNAL VOLUME 52 1987940



sample, with all four optical properties (X, L, L', C) can be
represented as the product of the four infinitesimal Jones
matrices. Thus, in the limit of infinitesimally thin samples,
the Jones matrix is (to a first-order approximation)

iL iL' C-iX-2 - 2 +)
iL'C
2 22

Taking the limit such that the number of layers goes to
infinity and transforming it into a 4 x 4 Mueller matrix,
we can obtain the general Mueller matrix for a sample
containing the mixing of all eight optical effects. The 16
elements of this general Mueller matrix for a sample with a
finite thickness display then the mixing of the physical
effects (31). However, when a sample is infinitesimally
thin, each Mueller image can (to a first-order approxima-
tion) be related to only one pure optical effect according
to

/1-E -LD -LD' CD

-LD 1-E CB LB'

-LD' -CB 1-E -LB (24)

CD -LB' LB -E

This matrix can be derived by transforming the 2 x 2
Jones matrix for an infinitesimal layer of a sample with all
four optical properties in Eqs. 23, into a 4 x 4 Mueller
matrix and keeping only the first order terms.
The above infinitesimal Mueller matrix valid in the

bright-field geometry is particularly useful for differential
polarization microscopy because, for optically thin sam-
ples, it relates each Mueller image to a single optical
property.

V. OPTICAL RESOLUTION IN
DIFFERENTIAL POLARIZATION IMAGING

A. Spatial Resolution
Imaging can be thought of as a mapping process in which
to every domain in the object space, SO, is associated a
domain in the image space, Si. Such mapping can be
expressed in its most general form as

I: SO * Si.
The object and image spaces are defined as collections of
distinguishable domains. In practice the imaging process
differs from mathematical mapping in that not every
geometric element of the object space (point) is associated
with a point in the image space. Instead several adjacent
elements of the object space are associated with the same
elements of the image space. The smallest domain into
which the object can be subdivided, so that each domain in
the object space corresponds to a distinct domain in the
image space, is called the spatial resolution of the imaging

system. The size of these domains is controlled and defined
by the wavelength of light and the imaging mechanism.

In differential polarization imaging, the mechanism that
allows us to distinguish adjacent domains in the object as
distinct domains in the image is the ability of these
domains to interact differently with light of orthogonal
polarizations. The question of interest is then, what is the
optical resolution of a differential polarization imaging
instrument? In this section, we shall answer this question
and establish the limitations on the resolution imposed by
the nature of the differential imaging process.

In what follows we will concentrate on the case of
linearly anisotropic domains, because their treatment is
somewhat simpler. Nonetheless our conclusion can be
easily extended to domains possessing both linear and
circular anisotropy.

Let two distinct adjacent domains in an object be
arranged so that their geometric centers of mass are
separated by a distance Y. The origin of the coordinate
system for the object is centered on the first group and the
second group is on the positive x-axis. For simplicity, we
will choose these two domains such that their polarizable
axes are along orthogonal directions (the first axis is
horizontal and the other is vertical). This choice is made to
maximize their differential interaction with the incident
orthogonal polarizations of the light. In practice this
analysis requires only that the two domains have opposite
anisotropies. This restriction amounts to optimizing the
estimates on resolution attainable in differential polariza-
tion imaging, but the conclusions and trends to be estab-
lished here will be generally valid for less restricted cases.

Let horizontally polarized light be incident on the
sample. Then the intensity distribution in the image plane
in dark-field imaging can be written (see paper I):

IH = A-H

EH.vLe p

Li
For vertically polarized light,

Iv [E

eV.

KIM ET AL. Symmetry Properties ofDifferential Polarization Imaging 941



Notice that

and

I
J, (X) 2

IcJI (X - b)]2
x-l

(25)

(26)

where X = kap1/r and X - b = kap2/r. b is related to the
intergroup distance Y, by Y = Xob/(2irn sin 0). (Refer to
paper I for the notation.) The maxima of IH and Iv appear
at the points X = 0 andX = b, respectively. In general, the
values of IH and Iv need not be equal. Taking them such
that Iv = h IH, where h is a positive constant, the
unnormalized M12 element for this object can be written
as

-2.0 0.0 2.0 4.0

FIGURE 9 A plot of [J,(X)/X]2 (----), - [J,(X -b)/X - b12
(----), and the sum of the previous two terms ( ). In this figure,
Io = t = h = 1 and b = 0.5.

jH- (X)V- [Ji(X b)]2}

M12=" 2IH =IV ~ (27)

where t is the proportionality constant, which depends on
the magnitude of a and on the imaging geometry. The
numerator of this expression determines the spatial resolu-
tion of the imaging system. Fig. 9 shows a plot of this term
(solid line) for a value of b smaller than 3.833 where the
first minima of [JI(X)/X]f appears. Also appearing in this
figure are the individual terms that make up this difference
as given by Eqs. 25 and 26. The calculation corresponds to
the choice of h = 1 and t = 1. Notice that the intensity
distribution of M12 (solid line in Fig. 9) shows a maximum
and a minimum whose positions do not coincide with the
center of mass of the two distinct domains present in the
object. The position of these extrema can be obtained from
the condition that the first derivative of the numerator in
Eq. 27 vanishes, i.e.,

d M12 t [J1(X)][J2(X)
dX Io l Jx x

- h [J1(x -b)][J2(X b)]10 (28)[ (X - b)
J L

(X-b)
J

It is seen that since a differential polarization image is
always a difference of two or more images, the presence of
two adjacent domains in the object possessing opposite
anisotropies will give rise to the bimodal behavior depicted
in Fig. 9. However, as the centers of mass of the domains
are brought closer together the intesity of M12 and the
distance between the extrema both decrease. The decrease
of the intensity is shown in Fig. 10 (solid line) as a function
of the intergroup distance b. The intensity of the extrema
can be divided into three different regions. In the first
region, for distances between the centers of mass of the
domains larger than the Rayleigh criterion, i.e., X . 3.833
radians, the magnitudes of the extrema are invariant to the

distance between the domains, as expected from the
absence of interference effects. (This region is not shown in
Fig. 10.) As the distance between the domains becomes
smaller than the Rayleigh limit, the magnitudes of the
extrema decrease at a slower rate. For distances much
smaller than the wavelength of light, the decrease becomes
nearly linear. The dashed line in Fig. 10 shows the behavior
of the distance between the extrema, predicted using Eq.
28, as b decreases. Again here three different regions
should be distinguished. For distances larger than the
Rayleigh criterion, the distance between the extrema
decreases linearly as b gets smaller. (This region is not
shown in Fig. 10.) For distances smaller than the Rayleigh
limit, the rate of approach of the extrema decreases at a
slower rate, and finally for distances much closer than the
wavelength of light the distance between the extrema
asymptotically attains a limit that can be calculated from
the solution of Eq. 28.

Thus, in differential polarization imaging when adjacent

0. 20F

0. 151

I 0. 101

3.90

3.70

3.50

I
3.30

3.10

2.90
0.0 1.0 2.0 3.0

b

FIGURE 10 The positive maximum value of M12 vs. b ( ) and the
distance between two extrema (positive and the negative extrema) of M12
vs. b(----). The scale for the solid line is on the left-hand side and that of
dashed line is on the right-hand side.
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domains in the object possess opposite anisotropies, the
Rayleigh criterion of resolution (as the minimum distance
between adjacent domains that can be resolved as distinct
in the image) must be replaced by a magnitude criterion.
This new criterion establishes that the minimum distance
at which two domains can be resolved depends on the limits
of sensitivity of the detection. Clearly this bimodal behav-
ior is not present if the adjacent domains possess anisotro-
pies of the same sign. In this case the usual Rayleigh
criterion must be used. The above magnitude criterion
might allow an improved resolution over the diffraction
limitations imposed in regular microscopy if appropriate
ultrasensitive detection methods are used. This extended
resolution exists only on transitions between regions of
opposite anisotropy in the object. It should be pointed out
that the above analysis is valid independent of the optical
effects responsible for the anisotropy. Thus the conclusions
are also valid for any of the six main optical effects already
described (LB, LD, LB', LD', CB, CD).
To demonstrate what has been said above, we have

generated the Mueller images of an object which consists
of two uniaxial polarizable groups situated on the x-axis.
The polarizable group on the negative x-axis is vertical,
and the one on the positive x-axis is horizontal.
The polarizabilities of the groups are chosen to be

complex so that both absorption and scattering take place.
Fig. 11 shows the MI, and M12 bright-field images of these
two points, separated by a distance of 4.29 Xo (a and b) and
0.57 Xo (c and d), respectively. In Fig. 11 a (MlI), we see

a b

c d
FIGURE 11 Bright-field images of two dipoles separated by a distance
greater (a and b) and shorter (c and d) than the resolution length of the
imaging system. (a) MI, image. (b) M12 image. (c) Ml, image. (d) M12
image.

that the two points are well resolved since they are
separated by a distance greater than the resolution length
(2.515 kO). In Fig. 11 b (M12), there is one positive lobe
(solid line) and one negative lobe (dashed line). Since the
vertically polarizable group absorbs vertically polarized
light and does not absorb horizontally polarized light, the
differential intensity surrounding this dipole in the M12
image should be positive. Likewise, the horizontally polar-
izable group absorbs horizontally polarized light and does
not absorb vertically polarized light, thus the region sur-
rounding this dipole in the M12 image should be negative.
These two points are also well resolved in the differential
image. In Fig. 11 c, these groups are now too close together
to be resolved by the regular unpolarized image. However,
the two dipoles are still well resolved in the M12 image (Fig.
11 d) because their different orientations manifest them-
selves as the different intensities and signs in the M12
image.

B. Depth of Field
The theory presented in the previous sections and in the
preceding paper are only formally valid for two-dimen-
sional objects, i.e., objects that extend in the x-and
y-directions but are infinitely thin along the z-direction.
This approximation is introduced by the use of the lens
formula in Gaussian form (see Eq. 14 in paper I):

1 1 1f =0.
rO d f

This formula relates the distance (ro) between a flat
two-dimensional object and the imaging lens (with focal
length f), to the distance (d) between the lens and the
image plane at which a sharp image of the object is
obtained. This approximation greatly simplifies the dif-
fraction integral in Eq. 14 of paper I. It is a result of
geometrical optics and does not take into account the
diffraction limitations of the imaging process.

In practice the object is not two-dimensional, and for
any real lens, there is a finite range of distances along the
optical axis within which all parts of the object contained in
this thickness are sharply focused in the image plane. This
thickness is known as the depth of field of the lens.

Several criteria have been used in the literature to
describe the depth of field (33-35). Here, we will use the
concept of setting accuracy introduced by Fracon (36):

S= °x
4n sin2 (-)

\2

where n is the refractive index of the immersion medium,
Xo is the wavelength of the light in vacuum, and 0 is the
half-cone angle subtended by the objective lens. Since the
numerical aperture of the lens is

NA = nsin0.
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It is seen that in general the depth of field of the lens
decreases with its numerical aperture.

C. Optical Sectioning
Is the concept of depth of field valid in differential
polarization imaging? If so, is optical sectioning of the
sample possible in differential polarization imaging?
The answer to the first question is affirmative since the

basis of image formation is not altered in differential
polarization imaging as was seen in paper I. To answer the
second question we must consider two opposite cases: (a)
when the sample is optically dense and thick, and (b) when
the sample is optically thin and the light does not experi-
ence multiple interactions within the sample.

In the first case, the polarization of the light is modified
as the light travels through the medium. In this way,

successive layers in the sample experience different polar-
izations that are not under the direct control of the
experimenter. The light preserves a memory so-to-speak of
the preceding layers and mixes the effect of these previous
interactions with the effect of the successive layers. In this
case the problem of extracting structural information from
each layer can be very complicated, and the differential
slicing methods developed in the theory of Mueller calculus
(31) must be used to de-convolute the information of a

given layer immersed or sandwiched between the other
layers. This program is currently under way in our labora-
tory, so here we will concentrate only on the second case

(when the sample is optically thin).
In the case of optically thin samples, we can readily

modify the theory developed in paper I. The expression for
the diffraction integral (Eq. 14 in paper I) is

exp ik [(92 ±-+ f-( + r) r'] da'.
ajrture

ex [i 2 (ro r \r0

If the Gaussian lens formula is not used, this equation
cannot in general be integrated analytically because the
integrand no longer has a simple gaussian form. Nonethe-
less, the integration can be performed numerically.
To understand the concept of optical slicing and depth of

field in differential polarization imaging, we have gener-
ated the bright-field M12 images of a three-dimensional
object. The geometry of the model is shown in Fig. 12 a,
and consists of two thin planes separated by a distance D
along the optical axis. The distance D between the planes
must be larger than the setting accuracy of the lens in order
to resolve the two planes. For apertures that are not too
large, the setting accuracy can be approximated by

nX0

(NA)2'

Taking n = I and choosing a numerical aperture of 0.5
means that the minimum distance between the two object
planes must be at least four times the wavelength of the
light for the lens to resolve them along the optical axis.

a
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FIGURE 12 Geometry of the model for the differential images shown in
Fig. 13. 0 is the point on the optical axis which is in focus. (a) The position
of radial and circular planes. (b) The position and orientation of the
uniaxial polarizable groups in the circular plane. (c) The position and
orientation of the uniaxial polarizable groups in the radial plane. In both
planes, the number of groups and their positions are identical. There are

75 groups in each plane.

The plane closest to the lens contains a radial distribu-
tion of transition dipole moments as shown in Fig. 12 c, and
the plane furthest from the lens contains transition dipole
moments oriented circularly as shown in Fig. 12 b. The
distance between the individual groups in each plane is
smaller than the wavelength of light. It is possible to focus
on either of the two planes by moving both of them
together along the optical axis. The M12 images of this
object are shown in Fig. 13 with D = 6.5 Xo and NA = 0.37.
Fig. 13 c shows the image obtained when the circular plane
is in focus, and Fig. 13 d is obtained when the radial plane
is in focus. For comparison purposes, the M12 image of a

single circular layer in focus is shown in Fig. 13 a and that
of a single radial layer in focus is shown in Fig. 13 b. Thus,
it can be seen that the images obtained by focusing on the
radial or circular plane of the layered object have the same
spatial distribution of sign as the images of a single radial
or circular layer. However, because at every point in the
object the dipoles of the radial and circular layers are

orthogonal, if D is less than the setting accuracy of the
imaging system, the contributions of the two planes to the
M12 images cancel each other out and the individual
contributions cannot be separated in the M12 image.
The above result shows that it is possible to do optical

sectioning in differential polarization imaging provided
that the sample is not too optically dense. In this case the
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a b
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c d

FIGURE 13 M*2 images of radial and circular plane models. (a) M12
image of only the circular plane (as drawn in Fig. 12 b) placed at the point
O (see Fig. 12 a). (b) M,2 image of only the radial plane (as drawn in Fig.
12 c) placed at the point 0. (c) M12 image of both circular and radial
planes. Two planes are simultaneously shifted toward the lens compared
with Fig. 12 a so as to have the circular plane in focus. D = 6.5 Xo. (d) M12
images of both circular and radial planes. Two planes are simultaneously
shifted to left compared with Fig. 12 a so as to have the radial plane in
focus. D = 6.5 X0. For these computations, ro, a, and n are chosen so that
the resolution length of the imaging system is 1.64 Xo.

optical depth resolution is controlled by the setting accu-
racy on the lens.

VI. CONCLUSIONS

The main properties of the Mueller images discussed in
this paper are summarized as follows: (a) The 16 Mueller
images were divided into three classes according to their
symmetry behavior upon a rotation of the optical compo-
nents about the optical axis of the imaging system. The
elements in the first class, which are invariant to rotation,
are Ml I, M14, M41, and M44. The elements in class II (M12,
M13, M21, M31, M42, M43, M24, and M34) change sign upon a

rotation of ir/2 radians and reproduce themselves after a
rotation of ir radians. The rest of the elements, M22, M23,
M32, and M33, belong to the thrid class and these elements
reproduce themselves after ir/2 radians. However, they do
not change sign upon a rotation of 7r/4 radians.

(b) Using the fact that the M14 and M44 images are
invariant upon rotation, it is possible to eliminate the
artifacts in these images due to imperfections in the
incident circular polarizations.

(c) Phenomenological equations for the bright-field
Mueller elements were derived for four different media:

(a) linearly and circularly isotropic, (b) circularly aniso-
tropic, (c) linearly anisotropic, and (d) linearly and
circularly anisotropic. The relationships among the 16
bright-field Mueller elements, obtained by comparing the
phenomenological equations, are the same as those
obtained by decomposing the G-tensor into symmetric (S)
and antisymmetric (A) parts and expressing the 16 Mueller
elements in terms of the components of the S- and
A-tensors.

It was shown that, when a sample has a chiral structure,
M*4 and M41 are sensitive to the circular dichroism, and
M23 and M32 are sensitive to the optical rotatory power.
When a sample is linearly anisotropic, M12, M13, M2,, and
M31 are sensitive to linear dichroism, and M24, M34, M42,
and M43 are sensitive to linear birefringence. For an
optically thin sample with mixed anisotropies, the off-
diagonal elements of the Mueller matrix are sensitive to
the same optical effects as the Mueller matrix elements of
a medium with only one kind of anisotropy, and the
diagonal elements are identical to Ml,.

(d) If two adjacent domains have different preferences
to the incident polarization, the limit of resolution in
differential polarization imaging is not restricted by the
Rayleigh criterion but instead depends on the detection
sensitivity.

(e) It was shown that three-dimensional sectioning is
possible in differential polarization imaging. This was
illustrated by the M12 images of an object composed of two
different planes separated by 6.5 XA along the optical axis.
When the distance between two planes along the optical
axis is larger than the setting accuracy of the imaging
system, the M12 images of two planes were resolved.
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