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ABSTRAcT This paper describes a theory of the kinetic analysis of patch-clamp data. We assume that channel gating is
a Markov process that can be described by a model consisting of n kinetic states and n(n - 1) rate constants at each
voltage, and that patch-clamp data describe the occupancy of x different conductance levels over time. In general, all
the kinetic information in a set of patch-clamp data is found in either two-dimensional dwell time histograms describing
the frequency of observation of sequential dwell times of durations r1 and r2 (Fredkin, D. R., M. Montal, and J. A. Rice,
1985, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. 1, 269-289) or in
three-point joint probability functions describing the probability that a channel is in a given conductance at time t, and
at time t + xr, and at time t + r, + r2. For the special case of channels with a single open state plus multiple closed
states, one-dimensional analyses provide all of the kinetic information. Stationary patch-clamp data have information
that can be used to determineH rate constants, whereH - n(n - 1) - G and G is the number of intraconductance rate
constants. Thus, to calculate H rate constants, G rate constants must be fixed. In general there are multiple sets of G
rate constants that can be fixed to allow the calculation ofH rate constants although not every set of G rate constants
will work. Arbitrary assignment of the G intraconductance rate constants equal to zero always provides a solution and
the calculation ofH rate constants. Nonstationary patch-clamp data have information for the determination ofH rate
constants at a reference voltage plus n(n - 1) rate constants at all test voltages. Thus, nonstationary data have extra
information about the voltage dependencies of rate constants that can be used to rule out kinetic models that cannot be
disqualified on the basis of stationary data.

INTRODUCTION

Recent advances in single channel recording techniques
(Hamill et al., 1981) have made it possible to record the
gating activity of single ion channels. A major goal of such
measurements is the establishment of qualitative kinetic
schemes that are consistent with the observed patterns of
channel openings and closings and the quantitative mea-
surement of the rate constants of appropriate kinetic
models. To this end, Colquhoun and Hawkes (1977, 1981,
1982), Colquhoun and Sigworth (1983), Horn and Lange
(1983), and others have developed methods for the kinetic
analysis of patch-clamp data. These methods are based on
the statistical analysis of dwell time measurements and
offer practical methods for obtaining quantitative descrip-
tions of channel gating. They do not, however, consider the
number of independent rate constants that can be obtained
or what sorts of qualitative kinetic schemes can and cannot
be distinguished on the basis of patch-clamp data. Such
questions were addressed in the work of Jackson et al.
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(1983), Kerry et al. (1986), Yeramian et al. (1986), and
Blatz and Magleby (1986) who used covariance measure-
ments to identify qualitatively the number of pathways
between open and closed states. Similarly, Fredkin et al.
(1985) and Colquhoun and Hawkes (1987) have shown
how the correlation of dwell times can be used to distin-
guish between some types of valid and invalid kinetic
schemes.

Recently, Fredkin et al. (1985) demonstrated that the
maximum number of rate constants that can be deter-
mined from patch-clamp data showing two conductance
levels was 2NCNO, where N, is the number of closed states
and N. is the number of open states. These results have
been extended to include more than two conductance levels
(Fredkin and Rice, 1986). Here, we prefent a more
detailed derivation of similar results in termrn of the
number of rate constants that can be deLermined and we
further consider the analysis of noristationary data. In
addition, we have determined the conditions under which
this maximum number can be obtained.
We also describe an alternate approach to the analysis of

patch-clamp data, namely the consideration of point joint
probabilities instead of dwell times, and the development of
mathematical constructs that have the kinetic information
of patch-clamp data and are readily related to the eigen-
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vectors of rate constant matrices. This approach offers
several important advantages. For example, in this paper,
we demonstrate the use of this system to investigate the
ability of patch-clamp data to distinguish between dif-
ferent kinetic models and have found that such data do not
generally have information to identify pathways between
open and closed states or the thermodynamics (i.e.,
detailed balance) of channel gating. Other advantages,
including a method for the analysis of data containing
more than one channel, and a simple numerical method for
identifying kinetic schemes consistent with a set of patch-
clamp data will be described in later papers (Bauer, R. J.,
and J. L. Kenyon, manuscripts in preparation).

PART I: GENERAL PROPERTIES OF
PATCH-CLAMP DATA AND MARKOV
STOCHASTIC PROCESSES

General Properties of Patch-Clamp Data
Patch-clamp data are presumed to record the flow of
current through individual membrane channels over time,
where the current flowing through any single channel is
characteristically observed to fluctuate among x distinct
levels. Transitions between these conductance levels are
instantaneous (within the resolution of the measurement)
and the data can be described as a series of sojourns in
discrete conductance states. In addition to the distinguish-
able conductance levels, channel gating frequently shows
evidence of multiple kinetic states of the same conductance
level. Transitions among these states are not observed as
changes in the channel current, rather they are identified
by their impact on the kinetics of channel gating. In
particular, the density functions (typically dwell time
histograms) for each conductance level show an exponen-
tial relaxation for each kinetic state that contributes to that
conductance (cf. Colquhoun and Sigworth, 1983). Thus,
by inspection of patch-clamp data and appropriate density
functions, one can determine the number of conductance
levels (x) and the number of kinetic states (n) that
characterize channel gating. The goal of kinetic analysis of
patch-clamp data is to find as many of the rate constants as
possible describing the transitions between the kinetic
states that are consistent with the observed patterns of
channel gating and the dependencies of these rate con-
stants on various regulating factors. Because transitions
within a conductance are not observed directly, when such
transitions occur, there is ambiguity in patch-clamp data
which precludes the determination of all n(n - 1) rate
constants.

There are two kinds of patch-clamp data. Stationary
patch-clamp data are collected over periods when the
probabilities of occupancy of the individual kinetic states
are constant. In contrast, to obtain information concerning
the dependencies of rate constants on a regulatory factor, it
is common to impose a step change of that factor and
record channel activity over a period when the probabilities

of occupancy of the individual kinetic states are changing,
i.e., relaxing to new steady-state values determined by the
new rate constants. Such data are nonstationary. By
relating data obtained just before the jump with those
obtained after the jump, one obtains information concern-
ing the regulation of the rate constants. Below, we first
consider the kinetic analysis of stationary patch-clamp
data and then extend the analysis to nonstationary data.
Because membrane potential is the most commonly studied
regulatory factor, we have couched our discussion in terms
of the voltage dependence of the rate constants. We point
out here that our results apply to any regulatory factor that
can be changed instantaneously while patch-clamp data
are recorded.
We have kept our analysis general by limiting the

number of assumptions and, in particular, we consider that
channel gating shows n kinetic states and x conductance
levels. We assume that channel gating is a Markov process
that can be described by a model consisting of n kinetic
states and n(n - 1) rate constants describing the instanta-
neous rates of transition between pairs of those states, and
that the rate constants can be instantaneous functions ofan
experimentally manipulable parameter, such as voltage.
Further, we assume that the number of kinetic states
associated with each conductance level has been deter-
mined as described above.

Review of Markov Stochastic Processes
We review here the elements of the theory of Markov
processes and matrix algebra and their application to the
kinetic analysis of patch-clamp data. More complete dis-
cussions of the mathematics can be found in Karlin and
Taylor (1975) and the application to patch-clamp data in
Colquhoun and Hawkes (1977), Colquhoun and Sigworth
(1983), and Fredkin et al. (1985).
The instantaneous rate of transition from some kinetic

state i to a state j can be written as q(i, j) and the rate
constants of an n state kinetic scheme form an n by n
matrix Q with the diagonals of the matrix, q(i, i), given
by

(1)
n

q(i, i) - - E7 q(i, j).
j_-
jfi

Thus, there are n(n - 1) independent elements in the n by
n array. For a matrix Q, a column eigenvector matrix C, a
diagonal eigenvalue matrix A, and row eigenvector matrix
R can be found such that

Q = CAR, (2)

where

R = C-'.

Thus

RC = CR = Id,
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where Id is the identity matrix. The elements of these
matrices are designated c(i, m) for matrix C, r(m, j) for
matrix R, and X(m), for the diagonal elements of matrix A.
For R to exist, it is sufficient that there are n distinct
eigenvalues X(m). We stipulate that Q has n distinct
eigenvalues. We also define c(m) as the mth column
eigenvector to matrix C containing elements c(i, m), asso-
ciated with eigenvalue X(m), while r'(m) is the mth row
eigenvector to matrix R containing elements r(m, j), asso-
ciated with eigenvalue X(m) (cf. Colquhoun and Hawkes,
1987).

In element form we can write

n

F c(i, m)r(m, j) = B(i, j)
m-I

or

For convenience we define

G(r) - exp (Ar). (9)
Thus, G(r) is a diagonal matrix with diagonals
exp [X(m)r].
The element form of Eq. 8 is

n

p(i, j, r) = E c(i, m)r(m, j) exp [X(m)r].
m-l

(10)

The steady-state probability of being in a kinetic state i,
¢(i), is equal to the probability that the channel is in state i
at a very long timer, given the channel is in state i at time 0
(Karlin and Taylor, 1975; Colquhoun and Hawkes, 1977):

(3) M(i) = lim p(i, i, T).
'r- X

(1 1)

Then

+O(i) = c(i, n)r(n, i) - r(n, i).
(4)

n

r(p, k)c(k, m) = b(p, m),
k-I

where b(i, j) = 0 for i j, and b(i, j) = 1 for i = j. Because
of Eq. 1, Q is singular, and one of the eigenvalues is zero.

We designate

X(n) = 0. (5)

Since Q has distinct eigenvalues, there is only one zero
eigenvalue and the rank of Q is n - 1. Only the relative
values of the elements within each column vector are

important in specifying Q. Thus for each column vector,
one of the c elements can be given an arbitrary designation.
For columns m = 1 to n - 1, a convenient designation is
c(i, m) = 1 for some i. For the column n, we note that since
QC = CA by rearrangement of Eq. 2, then

Qc(n) = X(n)c(n) = 0

or

n

E q(i,j)c(j, n) 0. (6)
j- 1

By comparing Eq. 6 with Eq. 1, we see that c(j, n) =

constant is a solution and in particular we specify

c(j, n)=1 (7)

for allj= 1 to n.

These equations limit the number of independent eigen-
vector elements to specify Q to (n - 1) (n - 1). Together
with n - 1 nonzero eigenvalues, they define the Markov
system of n(n - 1) independent rate constants via Eq. 2.
The conditional probability that a channel is in state j

given that it was in state i at time r earlier, p(i, j, r), is
related to the eigenvector and eigenvalue matrices
described above by (Colquhoun and Hawkes, 1977; Karlin
and Taylor, 1975)

P - exp (QT) = Cexp (Ar)R.

PART II: KINETIC ANALYSIS OF
STATIONARY PATCH-CLAMP DATA

A. Dwell Time Analyses

All of the Kinetic Information of Stationary
Patch-Clamp Data Is Contained in Two-Dimensional
Dwell Time Histograms. The following proof extends
the work of Fredkin et al. (1985) and establishes that
two-dimensional dwell time densities of patch-clamp data
with x conductances have all of the kinetic information
present in patch-clamp data. We begin with introductory
material to establish mathematical concepts with regard to
dwell times (for background see Colquhoun and Hawkes
1977, 1981, 1982, 1987; Fredkin et al., 1985; Fredkin and
Rice, 1986).

Patch-clamp data report the current going through a

channel at a given moment. Thus, the conductances of the
different kinetic states determine the distinguishability of
kinetic states. Let B(I) be the subset of kinetic states
having a common conductance b(I), with the conductance
subset identified by the designated conductance index I.

Let N, be the number of kinetic states belonging to B(I).
For x conductances there are x conductance subsets. The
phrase "conductance I" refers to the subset B(I) of kinetic
states having conductance b(I). A set of patch-clamp data
can be described as a series of events during which a

channel is in a given conductance I [has conductance b(I)]
for a time rl, then in a conductance J for a time r2, etc. The
r terms are the dwell times of being in various conduc-
tances. To describe the probability of a sequence of such
events, the rate constant matrix Q is partitioned into
submatrices, Q,,, each of which are of size N, by N., with
elements qj,(i', j') (Colquhoun and Hawkes, 1977). Then,

for i&B(I),jEB(J),
q,(i', j') = q(i, j) i' = 1 to N,, j' = 1 to Nj

for I = 1 to x and J = 1 to x,(8)
(13)
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with i(-B(I) meaning kinetic states i belonging to the
subset of kinetic states B(I). The indices i and i' refer to
different enumerations to different matrices, but they
match up to the same kinetic state. Henceforth, upper case
index variables (I, J, etc.) refer to the conductance subsets,
and lower case index variables (i, j, etc.) refer to the kinetic
states.
Some relationships will now be established which will be

used later in the proof. First, Eq. 1 can be arranged in
matrix algebra form by

Qu =0, (14)

where u is an n by 1 column vector of ones and 0 is an n by 1
column vector of zeroes. Since Q,, are partition matrices of
Q in accordance with Eq. 13, Eq. 14 is equivalent to

x

E3Q,,u,=- forI= l tox, (15)
J-1
J*1

where u, are NI by 1 column vectors of ones and 0 is an NI
by 1 column vector of zeroes. Its transpose, u;, is a N, by 1
row vector of ones. There are n independent equations of
15, based on Eq. 1. Eq. 15 can be rearranged to

x

ZQ,,u,=-Q,,u, forI- 1 tox. (16)
J-1
Jol

In addition, we develop nomenclature for the steady-state
probabilities of being in kinetic state i' of conductance I, by
Eq. 12

for iEB(I)
4(i') =- (i) -r(n, i) i'- I to N, (17)

I- 1 tox.

by Eqs. 17, 12, and 4. In matrix form,

EZu;E,u, = 1.
l-1

(21)

In summary, Eqs. 16, 19, and 21 provide 2n independent
equations that establish relationships among two-dimen-
sional dwell time density amplitudes defined below (Eq.
25).
The Q,, matrices are square and can be diagonalized in

the same manner as the Q matrix, with eigenvector matrix
C, and diagonal matrix A,:

Q,,= C,A,R, (22)

with elements c,(i, m) for C,, r,(m, j) for R,, and X,(m) for
diagonal elements of A,. We stipulate that Q,, has N,
nonzero, distinct eigenvalues. The matrices C and R are
inverses of each other and commute:

C,R, = Id (23)

or

R,C,= Id (24)

With the nomenclature and relationships established,
we construct the two-dimensional dwell time density,
P2(r1, T2), as the probability density that the channel is in
conductance I at t = 0, stays in conductance I for a time rl,
changes to a different conductance J at some time between
t = r1 and t = Tr + dTr, stays in conductance J for a time T2,
and changes to some other conductance at some time
between t = r1 + T2 and t = rT + r2 + dT2 (Fredkin et al.,
1985; Colquhoun and Hawkes, 1987)

4P(i') and q,,(i', j') are related by
x Ni n

E EX,('),,(',j') ()(,j)
of n

= F r(n, i)c(i, p)X(p)r(p, j) = 0 (18)
i-I p-1

by Eqs. 2, 4, 5, and 12. Let 4, be an N, by N, diagonal
matrix whose diagonals are 4,(i') and let 4 be an n by n
diagonal matrix with elements +(i). Then, Eq. 18 can be
expressed in matrix form:

E, uIt,QlQ °Jsoj(19)
l-l

where u' is a 1 by n row vector of ones and 0 is a 1 by NJ
row vector of zeroes. There are n equations of 19, but only
n - 1 of these are linearly independent since Q has a rank
of n - 1. Put another way, Eq. 19 establishes only the
relative values of c,(i'). The nth equation is the normaliza-
tion of A,(i'):

x Ng n n

zE 0,(i') =-zE +(i) = Z r(n, i)c(i, n) = 1
1-1 (-1 I i-I

P2(T1 T2) = =(TI,72) uAl exp (QIITJ)QJ&1&2

ex(QJJTr2)(Z-Qj,,,K (Ul,,

. exp (A,7-1)(RiQ,,Cj)

exp (AJT2)(Z RjQJKUK)
K-1

= u>SGj(,r)XjGj(r2)TJu (25)

with the following definitions: S, is an N, by N, diagonal
matrix with diagonal elements

N,

sl(r) = Ekl (i)cl(i, r).
i-I

(26)

Thus,

u, = u4S,C,. (27)

(20) Note that since u; is not invertible, we cannot assume S, =
I',C,.
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G,(r) is an N, by N, diagonal matrix with diagonal
elements

g,(m) = exp [X,(m)r].

X,, is an N, by N, matrix with elements
N, N,

x,(ml, m2) = E E r,(ml, i)q,,(i,j)cj(j, m2).
i-1 j-1

In matrix form

X,, = R,Q,,C,.

(28)

(29)

(30)

T, is an N, by N, diagonal matrix with diagonal elements

N, x N,

t,(m) - E EZ r,(m, i)q,,(i,j) (31
iJ 1
J*1

Thus,

Further, T,u, can be simplified to

T,U, - - R,Q,,U, - - A,R,U, (36)

by Eqs. 32, 16, 22, and 24.
The amplitudes a,,(ml, m2) and the eigenvalues X,(ml )

represent the data, for ml = 1 to N,, m2 = 1 to N., for all I
and J, I = J. The term a,,(ml, m2) is not present in the
data, but we shall evaluate the corresponding x,,(rl, r2)
for future use:

X,,= R,Q,,C, = Al (37)'

by Eqs. 30, 22, and 24.
To prove that two-dimensional dwell time densities have

all of the information of stationary patch-clamp data, we
first show the relationship between A and T.

Ix

T,u, = R,I Q,,u,I.
J-1

The row vector u; multiplied by a diagonal matrix tran.
the N, diagonal elements to the N, element positions
row vector. For example, multiplying u, by SI convert,
diagonal matrix S, into a row vector without los

information. This is also true of diagonal matrices m
plied by u,.

While the S, G, X, and T matrices are derive(
mathematical constructs, understanding their roles in
probability density function can be facilitated by thin
of them in terms of their physical significance. Thus,
the steady-state probability of each "eigenvector state
is the exponential decay of each eigenvector as a func
of time, X is the probability of transition from the "ei
vector states" of I to states of J, and T is the probabili
transition out of each "eigenvector state."

Because G, S, and T are diagonal matrices, their ordi
multiplication can be rearranged. Thus the probability
25 can be rearranged to group all of the components ol
amplitudes to the exponentials (S, X, and T) into
term:

P2(71,T2) u;G,(r,)(S,X,,T,)G,(T2)U,
- U;G,(r,)Aj,Gj(T2)UJ,

x x

E-AjA,'u,j -Z SX,T,A, 'u,
(32) ,;' J-1

x

-L S,X,,A'T,u,
sfers ,+
of a x
s the - E S,R,Q,,jC,A'A,R,U,

J-I;s of ,,
tulti- x

i- S, R1Q1ju) - S,T,U,
d as 01

by Eqs. 34, 30, 36, 23, and 32. Note that the n independent
equations of 38 are established because of Eq. 36, which in
turn are true by the n independent equations of 16, which
in turn are based on the n independent equations 1. We
define the diagonal matrix

VI = S,T,.

So,

V,' = T 'S1'.

Since Eq. 38 represents the integration of Eq. 25 over all
r2, summed over all J, J = I, the elements of V, are the
amplitudes to the one-dimensional density:

(33)

where

A,,= S,XjTj (34)

so the elements of A,, are

a,,(ml, m2) = s,(ml)x,,(ml, m2)t,(m2)

IX X

P2(r1, r2) dr2 = E ul$, exp (Q11i-1)QIJ
J-l J-1

J*l J*l

{I exp [QJJ(T2)(-Qjj) drJ} U,

uV,G,(,T)u, - PI(T,).(35)

and are the amplitudes to the two-dimensional dwell time
density.

(40a)

By extension of the procedure for expressing the proba-
bility of occurrence for a sequence of two dwell times, an m
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dimensional dwell time density is

Pm [I(1), TI, I(2), T2, ..* I(m), Tm] = UI(,)SI(j)GI(j)(r,)
'-m-

* X1(p),(p+ )G(p+ )(Tp+,) TJ(m)ul (m) - UJ(J)GJ(1) (T1)
p_l

Im-2

. II [,,pX,(,.,p+l,,(p,,][T,p S,(p+1) ]G,(p+l)(.Tp+,)
p-I

* [S(m I)XI(m-I)J(m)TI(m)] GI(m)(Tm)UI(m) = UJ(,)GJ(l) (rTl)
Am-2

.IIA,,p(p+,V,+1 Gl(,+,)(,p+,)A,(PJP (+I

(41)

by Eqs. 34 and 40, where I(p) is the conductance index
corresponding to the conductance b(I) of the channel at the
pth sequential dwell time, -re. Note that S, T, G, and their
inverses are diagonal matrices, so their order of multiplica-
tion can be interchanged. Also recall that VI is a construct
that is a function of the data amplitudes and the eigen-
values of the two-dimensional dwell time densities by Eqs.
38 and 39. Thus, Eq. 41 expresses any m dimensional dwell
time density as a function of the amplitudes and eigen-
values of a two-dimensional dwell time density. If there are
m dwell times in a data set, the m dimensional dwell time
density describes the probabilistic occurrence of all of the
events in that data set exactly as they occurred and has all
of the kinetic information of the original data (cf. Horn
and Vandenberg, 1984). Thus, the two-dimensional dwell
time density has all of the kinetic information in patch-
clamp data.

The Maximum Number ofRate Constants That
Can Be Determined from Stationary Patch-Clamp
Data. To determine the number of independent rate
constants that can be calculated, we note there is at least
the following interdependence among the data ampli-
tudes:

x x

1-1

- (.i u;.1,Q1) C,T, ,-0

independent equations of 43. The equations are normalized
by the nth equation

x x x

-Eu;V,A-'u, =-E u;SA'T1u, Eu,u, = 1, (44)

obtained by combining Eqs. 39, 36, 27, 17, and 21. In
summary, Eqs. 43 and 44 together make up n independent
equations (or N, for each J), based on the n independent
equations of 19 and 21, and thus place n constraints on Eqs.
35 pertaining to the data amplitudes.

Eq. 44 represents the integration of Eqs. 40a over all rT,
and summation over all I:

x

EI|u;V,G,(-r)u, d-Tj

fu exp (QVT()(-QT)) dUd us

(44a)
X

: Eltul,u= 1.
I-1I

Thus, the two-dimensional and one-dimensional probabil-
ity densities normalize to unity.

Counting up the amplitudes, we have for ml = 1 to N,,
m2 = 1 to N,, for all l and J, except for I equal to J,

N-J1N, 2[ZN,N,l= H.
I-i

1.1-1J-+
(45)

But only H - n of these amplitudes are independent, since
Eqs. 43 and 44 place n constraints upon them. However,
there are n total X, eigenvalues, giving a maximum of H
independent parameters among the data amplitudes and
eigenvalues for the evaluation of the rate constants. Thus,
at most H independent rate constants can be calculated
from stationary patch-clamp data for channels with x
conductances. Note that for x = 2, Eq. 45 reduces to H =
2NONC where N. is the number of open states and Nc is the
number of closed states (Fredkin et al., 1985).

Calculating the Maximum Number ofRate Con-
stants from Stationary Patch-Clamp Data. We have
shown that stationary patch-clamp data have information
to determine not more than H rate constants. Accordingly,
to calculate these rate constants, at least

(42)

by Eqs. 35, 30, 27, and 19. Eq. 42 can be rearranged (by
Eqs. 42, 35, 37, and 39) to give

uA,, =-ujA,, u-SX,,T,
l-l
l*J

-u;S,A,T, = -ujS,T,A, =-u;V,A,. (43)

Eqs. 43 are true because of the n - 1 independent
equations of 19. Thus, as with Eqs. 19, there are only n - 1

x

G- n(n- 1) -H- Z N(N,- 1)
l-1

(46)

rate constants must be fixed. We now consider the condi-
tions under which the maximum number of H rate con-
stants can be calculated from patch-clamp data.
We note that if x = n, then H = n(n - 1). That is, if the

occupancy of each kinetic state can be directly observed,
patch-clamp data have information to completely describe
a kinetic model of channel gating. In addition, we point out
that there are G intraconductance rate constants [i.e., rate
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constants q(i,j) where i and j E B(I)]. That is, the
number of rate constants that must be fixed is equal to the
number of transitions that cannot be directly observed in
patch-clamp data. It has been our experience that if we
choose to fix the intraconductance rate constants, the
remaining H rate constants are specified, that is, can be
calculated with no remaining degrees of freedom. How-
ever, if G rate constants are fixed which are not all
intraconductance rate constants, then often but not always,
the remaining H rate constants are specified. Some exam-
ples are given in a subsequent section.

In this regard, we note that the intraconductance rate
constants are the nondiagonal elements to the QII matrices,
for each I. The diagonal elements q,,(i, i) may not be fixed
since they are dependent on the other rate constants by Eq.
15. However, we know the eigenvalues to the Qj matrix,
A,, as the exponential constants to dwell time densities. By
definition, eigenvalues satisfy the following equations:

so

Q,,= CIA,R, = Al (49a)

(49b)

That is, the empirically derived eigenvalues of A, are the
diagonals of Q11, and since all of the nondiagonal values of
Qn1 have the same value of zero, a unique solution always
exists. However, a solution using assignments that result in
negative values for some rate constants is not a solution to
the kinetics problem.

In summary, we postulate that for an appropriately
chosen set of G intraconductance rate constants, H rate
constants can be specified from patch-clamp data. Thus, a
countable finite number of solutions to theH rate constants
can be calculated, not an infinite number of solutions.

B. Point Joint Probability Analyses

det [Q,,- X,(m)ld] = 0 for m = 1 to N1, (47)

where det[] means determinant of the expression in brack-
ets, and Id is the identity matrix. Eqs. 47 yield N, equations
with N, unknowns qS(i, i). The solution for the diagonal
elements via Eq. 47 is nonlinear, and we are not aware of a
mathematical proof stating that from the N, equations of
47 the q11(i, i) diagonal elements are specified. However,
we have solved for the qH(i i) analytically for 2 by 2 and 3
by 3 matrices and found the postulate to be true. Accord-
ingly, we postulate that for any N1 size Qjl matrix the
diagonal elements can be specified from a set of nondi-
agonal q,,(i, j) elements and the known eigenvalues.

If the Q11 matrix is specified, then C, and its inverse can
be evaluated (Eq. 22). Then, T, can be evaluated by Eq. 36.
S, can then be evaluated by Eq. 38, using the experimental
values of A,, and A,, and the calculated T,. Then XI, can be
evaluated by Eq. 34, and the H rate constants represented
by QIJ can be calculated by

QIJ = CIXIJRJ. (48)
Note that neither uniqueness nor existence of at least

one real valued solution is guaranteed for any set of G fixed
rate constants. For example, for a 2 x 2 matrix, the
unknown qHY(i i) elements are the roots to a polynomial
equation derived from Eq. 47, but the equations do not
specify which element of q11(i, i) has a value of which root.
Thus, two answers for Qn1 are possible for one set of G
intraconductance assignments. Similarly, if at least one
pair of q,,(i, i) is complex, then no real valued solution
exists for the G assignments. If the intraconductance rate
constants within a conductance are all assigned the same
value, the solutions will be indistinguishable as kinetic
models, so that if there is a solution, there will be only one
solution.
The assignment of all intraconductance rate constants to

zero deserves attention. Then each Q,, is a diagonal matrix,

The Point Joint Probability Method of Analy-
sis. The previous section demonstrates that analysis of
dwell times is useful for the determination of the number of
rate constants that can be determined from stationary
patch-clamp data. We now consider an alternative
approach: the analysis of patch-clamp data via point joint
probabilities. The major advantage of this approach is that
in the analysis of data with more than one channel, the
exponential terms do not combine in a multinomial man-
ner, as is the case with dwell time methods of analysis
(Bauer, R.J., manuscript in preparation). In addition, for
the calculation of rate constants, only one matrix Q and
eigenvector system C must be dealt with in the numerical
analysis. This provides for the rapid calculation of rate
constants from a data set and different sets of rate constant
assignments.
The point joint probability function is based on the

conditional probability, p(i,j,Tr), and the steady-state
probability, +(i), described earlier. We define the two-
point joint probability as the unconditional probability that
a channel is in some state i at some moment, and in statej a
time r later. That is,

i(i)p(i,j, T). (50)

This is the joint probability of a channel being in kinetic
state i and j at two points in a time r apart. It differs from
the dwell time density in that it does not consider what
happened during Tr or how long a channel is in state i.
By extension, the three-point joint probability is defined

as the probability that a channel is in state i, then in statej
a time r1 later, and in state k a time r2 thereafter. That is,
by Eqs. 10 and 50,

n n

4(i)p(i, j, r,)p(j, k, r2) = E E r(n, i)c(i, ml)
mi-I m2-1

r(m I, j)c(j, m2)r(m2, k) * exp [X(ml)1rT + X(m2)Tj]. (51)
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Single channel data report the conductance level of the
channel at any moment, not its kinetic state. That is, the
data report the joint probability of a channel having
conductance b(I) at time 0, having conductance b(J) at
time r1, etc. Eq. 51 can be rewritten in terms of conduc-
tances by summing over all the kinetic states showing a
given conductance level. For, example, the three-point joint
conductance probability is

iCB(I) jCB(J) kEB(K)

*p(j, k, r2) Z Z E
iCB(I) jE B(J) kEzB(K)

n n

* E r(n, i)c(i, ml)r(ml, j)
ml-i m2-1

* c(j, m2)r(m2, k)

* exp [X(m1)Tr + X(m2)Tr2]
(52)

This in turn is equal to

n It*n

Z E E (n, Oc(i, ml)
mi-I m2-i1 iCB(I)

[, E r(ml, j)c(j, m2)]
JCB(J)

* [k E) r(m2, k)c(k, n)]
kCB(K)

* exp [X(ml)rl + X(m2)T2]. (53)

[The inclusion of term c(k, n) does not change the value of
Eq. 53, since c(k, n) = 1]. The arrangement of the terms in
brackets in Eq. 53 suggests a convenient mathematical
construct, the w, construct:

w,(m, p) -
7 r(m, i)c(i, p) (54)

iEB(I)

and the three-point joint conductance probability (Eq. 53)
can now be written as

1I n

P3(T1, 72) = E E w,(n, ml)w,(ml, m2)
ml m2

* WK(m2, n) exp [X(ml)-ri + M(m2),r2 (55)
Eq. 55 can be put into matrix notation by defining the
matrix WI which contains w,(ml, m2) and the diagonal
matrices W,,, and W1n whose diagonal elements are

Wn1(m) = w1(n, m) (57)
w,,(m) = w,(m, n). (58)

Eq. 55 can be written as

P3(TI, 72) - U'W,n.G(TI)WjG(T2)WxKU
- u'G(r1) [W,,IWJWK,,]G(T2)u
= u'G(Tr1)AJKG(TrI2)U, (59a)

where u' is a 1 by n row vector of ones and A,JK is the matrix
of three point probability amplitudes:

(59b)

Similarly, an m point joint probability is

PM('rII[T2i..(W).Grm(I) = UWm 1 (0())
m-2

. 11 G(TrP)WI(P+1) G(-rm-I)WI(m)nu, (60)
p_l

where I(p) is the conductance index pertaining to conduc-
tance b(I) of the channel at thepth point and rP is the time
between the pth and (p + 1)th points. We point out that
the W constructs were created as a mathematical conve-
nience; their physical significance, if any, is unclear.

Like the m dimensional dwell time density, the m-point
joint probability distribution is a multiple exponential
function with amplitudes determined by the elements of an
eigenvector matrix and time constants determined by the
elements of an eigenvalue matrix. Also like the m dimen-
sional dwell time density, the m-point joint probability can
describe the probabilistic occurrence of all of the events in
a digitized data record. That is, for a data set of m digital
data points describing the sequence of events, each point
representing the constant sampling interval of &, a proba-
bility equation that describes the full sequence of events in
that data set is an m-point joint probability equation for
which Tr = 2 = 3 =. = r.- = 6r. Because such an
m-point joint probability considers all of the events in a
data set exactly as they happened (i.e., there is no averag-
ing) this function contains all of the kinetic information in
the data. Eq. 60 demonstrates that this information is
found in the n - 1 nonzero eigenvalues plus the WI
constructs.
We now show that the three-point joint probability

contains all of the information of the m-point joint proba-
bility, and hence contains all of the information present in
stationary patch-clamp data. Note that some of the W
constructs are related to each other. For each column
eigenvector, one of the eigenvector elements may be set to
an arbitrary value. For the nth column, we retain the
designation from Eq. 7 of c(j,n) = 1, for j = 1 to n. For
columns m = 1 to n - 1, it is convenient to specify one of
theW constructs of a specific conductance, I = S, for each
column vector m, such that

wS(n,m) - ws(n,n) m = 1 ton - 1.

This is to say that

E r(n, i)c(i, m) = E r(n, i)c(i, n).
iCRB(S) ICB(S)

(61)

(62)

If conductance S has only one kinetic state, this reduces to
the familiar designation of c(i,m) = 1 for the single kinetic
state i of conductance S.
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Next, we note that W, can be expressed as

WI = Rr,C, (63)

where r, is a diagonal matrix with diagonal elements

r,(i,i) = (1,i), (64a)

where

b(1,I) - Ofor i ( B(I)

- IforiE B(I).

Since i can belong to one and only one conductance subset

r,r,= JrZ(i,J) (64b)

where

S(I,J)=l ifIlJ

6(I,f)-O ifIJ

and
x

Fr, - Id. (64c)

Some relationships that will be useful are

W,W, - WA(I,J) (65a)

and
x

W = Id (65b)

from Eqs. 63 and 64, showing that if theW constructs for
x - 1 of the conductances are known, theW constructs for
the xth conductance can be calculated.
With these relationships established, we turn to the

three-point joint probability. By Eq. 59b, the amplitudes of
a three-point joint probability are

aUjK(m1,m2) - w,(n,ml)wj(ml,m2)wK(m2,n). (66)

For I = S and K= J,

as,,(ml, m2) ws(n, ml)w,(ml, m2)wj(m2, n)
n X

E asjj(m2, p) E ws(n, m2)wj(m2, p)wj(p, n)
P-l p-i

ws(n, ml)w,(ml, m2)w,(m2, n) - w,(ml, m2) (67)

ws(n, m2)wjAm2, n)

by Eqs. 61 and 65. Eq. 67 shows that eachW construct can
be calculated explicitly from the amplitudes of a three-
point joint probability, i.e., the three-point joint probability
function has all of the kinetic information of patch-clamp
data.
By Eq. 67, from each S-J-J point joint probability the

constructs ofW, can be calculated. We need only the S-J-J
point joint probabilities for x - 1 of the J's, since the xth

W.can be calculated from the x - 1 other W, by Eq. 65b.
For an open-closed (x = 2 conductances) system, if the
open conductance is designated as the S conductance, then
the S-J-J point joint probability for which J = open (i.e.,
the open-open-open point joint probability) is sufficient to
obtain all of the kinetic information available from the
patch-clamp data.

It is of interest to consider another special case of a
channel showing two conductances (x = 2, open and
closed), where the open conductance has one kinetic state,
with multiple closed states. In this case N. = 1, Nc = n - 1,
where n is the total number of kinetic states. Then Eq. 45
yields

H 2(n- 1).

Thus, channels with only one open state can be readily
analyzed with one-dimensional analytical methods, such as
dwell time histograms or two-point joint probabilities
(Bauer and Kenyon, 1987), since these analyses yield
2(n - 1) independent parameters. More generally, if
x - 1 of the conductances have single kinetic states, while
one of the conductances has one or more kinetic states,
then a two-point joint probability analysis is sufficient to
obtain all of the information in patch-clamp data.

Maximum Number ofRate Constants That Can
Be Calculated as Derived from Three-Point Probabili-
ty. The result embodied in Eqs. 45 and 46 can be readily
derived when we consider the total patch-clamp data as
expressed by the three-point joint probability amplitude
component W,, and the eigenvalue matrix A. Consider that
W, is equal to

W,- Rr,C. (63)

Since Q is diagonalizable, C and R both exist, and W, is
diagonalizable with eigenvalue matrix r,. The question is,
to what degree does W, specify the matrix C or R for the
calculation of Q?
We do not know what Q is; we only know W, empirical-

ly. Thus, we want to know to what degree R can be known
from W,, as the eigenvector matrix of W,. For each W,, N,
of the diagonal elements in the eigenvalue matrix r, have a
value of 1, and thus, N, vectors r(i) have the same
eigenvalue, for i E B(I). Since W, is diagonalizable, there
must be N, linearly independent eigenvector columns for
this eigenvalue. This requires that the use of matrix W, to
evaluate r(i) results in N, degrees of freedom for each r (i),
via the equation

[W,- (,I)IdJr(i) = 01 i E B(I). (68a)

Thus for each W,, there are N,N, degrees of freedom
among the eigenvectors. For all W,, there is a total of

x

G = E N,N,
,-_

(68b)
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degrees of freedom, as calculated from all of the W,. In
addition, the elements of W, itself are dependent on the
n - 1 arbitrary designations of Eq. 61. Thus, the number
of independent parameters that can be calculated in R is

IT= n2 G'-(n - 1). (68c)

To specifiy Q, both the elements of C (or R) plus the n - 1
nonzero eigenvalues of A are used, so the maximum
number of independent parameters for calculating Q that
can be obtained from the data, in the form ofW, and A, is

x

H- fI + (n - 1) = n(n - 1)- N,(N,- 1). (69a)

C. Examples of the Kinetic Analysis of
Stationary Patch-Clamp Data

We tested the hypothesis of Eq. 46 by making up arbitrary
sets of rate constants, calculating the amplitudes and
exponential constants of the point probability functions for
the rate constant set, and using these "data" to attempt to
calculate rate constants (see below). Note that in this
approach, the "data" were calculated analytically to eight
significant digits and represent a perfect sample. This
procedure examines the ability of the method to recover
rate constants from the selected models. It represents a
best case analysis in the sense that real data will be noisy
and will provide only an approximation of the true point
probability functions.

A Ci -C2

lX'
04 5 °

B C, -C2 '0 -04

C

D

Ci , lbC2

04 W3

C,

C2-1_ b 03
FIGURE I A-C are four state, two conductance ldnetic schemes
described in the text. Each state is identified by its conductance (C for
closed, 0 for open) and an arbitrary number. The rate constants for the
transitions are listed in Table I, where q(1,2) refers to the rate of
transition from state C, to state C2, etc. In the figure, arrows are drawn
for the transitions with rate constants greater than zero. Forbidden
transitions are not shown. In C the two open states, 03* and 04, have
different conductances. Panel D is a three-state, two-conductance model
discussed in the text.

Specifically, we made up a matrix Q of rate constants
and then calculated the amplitudes AIJK and exponential
constants A to the three-point joint probability by diago-
nalizing the Q matrix using the QR factorization method
(Isaacson and Keller, 1966). This yielded the eigenvalues
(exponential constants). We calculated C and R matrices
by linear algebraic methods and used these to calculate the
amplitudes via Eq. 66. These amplitudes and exponential
constants served as the "data," i.e., the point probability
functions that would be generated by the model. As shown
earlier, these amplitude and exponential constants to the
three-point joint probabilities contain all of the kinetic
information in stationary patch-clamp data. Rate con-
stants were then calculated by fixing some number of rate
constants and using these parameters, and the amplitudes
and exponential constants of the point probability func-
tions. A Gauss-Newton iterative procedure (Isaacson and
Keller, 1966) was used to calculate the unknown eigenvec-
tor elements c(i,m) from Eq. 66. The amplitudes AIjK on
the left-hand side were the empirical amplitudes. The
equation

(69b)
n

q(i,j) = z c(i,m)X(m)r(m,j)
mr-1

was used for each q(i,j) that was fixed. Thus, Eq. 69b for
the assignments and Eq. 66 for the empirical amplitudes
were the equations for the numerical analysis for finding
the c(i,m) and r(mj) for that particular set of data and
assignments. Finally, when C and R were calculated in this
manner, the unknown rate constants were calculated by
Eq. 2. As discussed below, this procedure succeeded in
calculating the unfixed rate constants with complete speci-
ficity only when G or more of the rate constants were fixed,
as predicted by Eq. 46.

Fig. 1 A and Table I, column 1 illustrate and list the rate
constants for one kinetic scheme that we examined. This
model has two closed plus two open states and 12 nonzero

TABLE I
RATE CONSTANTS FOR THE KINETIC MODELS SHOWN

IN FIG. 1

Column 1 Column 2 Column 3
Rate constant Fig. 1, A and C Fig. 1 B Fig. 1 A

q(1,2) 1.0 1.0 1.0
q(1,3) 2.0 0.0 3.0
q(1,4) 3.0 0.0 3.0
q(2,1) 4.0 2.0 2.0
q(2,3) 5.0 3.0 4.0
q(2,4) 6.0 0.0 4.0
q(3,1) 7.0 0.0 5.0
q(3,2) 8.0 4.0 5.0
q(3,4) 9.0 5.0 1.0
q(4,1) 10.0 0.0 6.0
q(4,2) 11.0 0.0 6.0
q(4,3) 12.0 6.0 3.0

The rate constants are arbitrary units (time-').
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FIGURE 2 A-D are four-state, two-conductance kinetic models with
different thermodynamic properties and branching that produce identical
patch-clamp data with the rate constants listed in Table II. Conventions
as in Fig. 1.

rate constants. We used the rate constants listed in Table I,
column 1, to calculate the amplitudes and exponential
constants of the three-point joint probability that the
channel was open and "analyzed" these "data." After
fixing the four intraconductance rate constants by assign-
ing them their "correct" values, i.e., the values used to
generate the data, the remaining eight rate constants could
be calculated, consistent with Eq. 45 and 46 above. In
addition, we found many sets of four rate constant assign-
ments, that were not limited to the intraconductance rate
constants, that also enabled the calculation of eight rate
constants. For example, if we fixed q(1,4), q(4,1), q(1,3),
and q(3, 1) to the values of Table I, column 1, this resulted
in the specification of the remaining eight rate constants.
However, for some other rate constant assignments, the
numerical analysis did not find a solution that fit Eqs. 66
and 69b. This may have been because some rate constant
assignments yield complex valued solutions and our
numerical procedures were limited to the calculation of
real rate constants.
We also considered a system with two open states plus

two closed states where six of the rate constants are zero
(Fig. 1 B, and Table I, column 2). Again, the assignment of
the intraconductance rate constants to their correct values
enabled calculation of the remaining eight interconduc-
tance rate constants.

In these examples, the determination of H = 8 rate
constants from information available from patch-clamp
data depended upon the assignment of nonzero rate con-
stants to their correct values. We know of no case where
such information would be available. Typically, pairs of
rate constants are arbitrarily set to zero, i.e., some transi-
tions are forbidden. If we analyzed data generated by
models of the form of Fig. 1 B after assigning q(1,3),

TABLE II
RATE CONSTANTS FOR KINETIC MODELS SHOWN

IN FIG. 2

Figure

Rate constant 2 A 2 B 2 C 2 D

q(1,2) 1.0 1.0 0.0 0.010913845
q(1,3) 0.0 0.0 5.4494897 0.5
q(1,4) 0.0 0.0 0.0 0.043355212
q(2,1) 2.0 2.0 0.0 1.6859393
q(2,3) 3.0 2.4244734 0.55051027 3.4597916
q(2,4) 0.0 0.57552651 0.0 0.3
q(3,1) 0.0 0.0 2.0 1.0
q(3,2) 4.0 1.8210917 2.0 3.2333133
q(3,4) 5.0 0.0 5.0 7.3797926
q(4,1) 0.0 0.0 0.0 0.30928027
q(4,2) 0.0 13.178908 0.0 1.0
q(4,3) 6.0 0.0 6.0 2.0776136

The rate constants are arbitrary units (time-').

q(3,1), q(2,4), and q(4,2) to their zero values, the remain-
ing eight rate constants are each specifically calculated,
yielding the values used to generate the data. On the other
hand, if q(1,4), q(4,1), q(1,3), and q(3,1) are fixed at zero
values, it is not possible to calculate unique values for the
remaining eight rate constants. Instead, there are multiple
solutions for these parameters. Thus, not all sets of G rate
constant assignments specify H rate constants. Eq. 46
apparently reveals the degrees of freedom among the W
constructs only when intraconductance rate constants are
given assigned values. Fixing a different set of G rate
constants may or may not yield a specific solution for the
calculated rate constants.

Fredkin and Rice (1986) considered the rank of the
dwell time density amplitude matrices A,, and A. with
regard to the number of independent experimental param-
eters. We considered the possibility that the failure of some
sets of G assignments to specify the remaining rate con-
stants might be due to the fact that, for the data generated
by model 1 B, the ranks of A,c and A. are reduced to one,
instead of having the full rank of 2. This turns out not to be
the case since data generated by the rate constants listed in
Table I, column 3 also yielded amplitude matrices with
ranks of 1, but assignment of q(1,3), q(3,1), q(1,4), and
q(4,1) allowed the specific calculation of the remaining
eight rate constants. Thus, for the method we use to
calculate rate constants, the ranks of the dwell time density
amplitude matrices do not determine the number of rate
constants that can be calculated from the information of
patch-clamp data. We are presently investigating this
question further. In summary, we have shown that assign-
ment of the G intraconductance rate constants allows the
specification of the remaining H rate constants for any
data, regardless of the rank of the amplitude matrices.
Fixing any G rate constants specifies the H other rate
constants for many, but not all, data.
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We have also considered a three conductance model
with four kinetic states where two of the conductances have
single kinetic states, and one conductance has two kinetic
states (Fig. 1 C). Eq. 46 predicts that we must assign 2 rate
constants. We produced three point joint probability
amplitudes and eigenvalues for such a model as described
above. Making the two rate constant assignments for the
transitions between the kinetic states of the conductance
that had two kinetic states was sufficient to specify the
other 10 rate constants.
A consequence of not being able to calculate all of the

rate constants is that models can be found that differ by
their assigned rate constant values, but produce the same
data. For example, rate constant values for the models
shown in Fig. 2 can be found which produce the identical
W constructs and eigenvalues (Table II). Models that fit
the same W constructs and eigenvalues also produce
identical two-dimensional dwell time density parameters,
demonstrating that three-point joint probability parame-
ters have all of the information that is available in patch
clamp data. Note that while the models shown in Fig. 2,
A -C are in thermodynamic equilibrium and have only one
gateway between the closed and open states, the model in
Fig. 2 D is not in thermodynamic equilibrium and has a
complicated interaction among all four kinetic states. Yet
all of these models produce the same patch-clamp data.
Thus, in general, it is not possible to determine from
patch-clamp data if the mechanism underlying channel
gating is in thermodynamic equilibrium nor is it possible to
determine the pathways of channel gating (see Discus-
sion).

PART III: KINETIC ANALYSIS OF
NONSTATIONARY PATCH-CLAMP DATA

A. Dwell Time Analyses

The Maximum Number ofIndependent Parame-
ters in Nonstationary Data as Determined by Dwell Time
Probabilities. Consider an experiment examining the
kinetics of gating of a voltage-regulated channel where one
records stationary channel behavior at a conditioning
voltage, VI, and then the nonstationary gating in response
to a step to a test voltage V2, at time rl. The event of
interest here is the probability that the channel is in
conductance I from time t = 0 to time rl, stays in
conductance I for a time r2, and then changes to some other
conductance. We define this probability as PV1,V2(r1,r2),
which is given by

PVI,V2(rl,r2) U;SvlGlvl (T1 )YI.v,V2Gl.V2(r2)TI V2uI

= u;Glvl,(T,)M,vl,v2GI,v2(r2)u,I (70)

where

YSLV,V2 R- "C/V

MI,V1,V2 - SI.ViYlV1,V2TlV2

and the constructs S, T, and G are as defined earlier, with
additional subscript descriptions as to their voltage. Dwell
times before and after this event include only information
obtainable from stationary data.

For each I, there are N, by N, constructs M, which are
the amplitudes to the dwell time density of nonstationary
data. The information in nonstationary data that is not in
stationary data is in these amplitudes.
Note that the reverse protocol from V2 to VI produces

the construct

-l,V2,V1-S,V2CS YL,VVI2 (73)

and yields no additional information.
There is at least the following interdependence among

these amplitudes:

-Mi,vi,v2AL-2 U, - -Slv,Yjvl,v2Ay2 Tl,v2u,
= SlRlv,,Cl,v2A-12 AIv2RIv2u
- S,vlRs,vlul

= -A-', S,Z,(-AlvlRlvlul)
--A-,1 Sv,iTiv,ui)

-A-11 Vlvlul (74)

by Eqs. 75, 71, 36, 23, and 39. The right-hand side of Eq.
74 consists of a product of terms known from stationary
analysis. The above equation places N, constraints on the
amplitudes M, for each L That is, there is N, less "new"
information for each I.
Summing up the independent amplitudes, we have a

maximum of

x x x

ZNINI- ZN,=EN,(N,- 1)= G
,-1,-1,-,

(75)

new pieces of information (compare with Eq. 46). Thus out
of a system of 2n(n - 1) rate constants [n(n - 1) for each
voltage], we can obtain H pieces of information from
stationary data at each voltage, plus the G additional
pieces of information from nonstationary data, or a maxi-
mum of

H+H+G=H+n(n- 1) (76)

since H + G = n(n - 1). The significance of this will be
considered after considering the analysis of nonstationary
data via point joint probabilities.

B. Point Joint Probability Analyses

Analysis of Nonstationary Data by the Point
Joint Probability Method. We now consider analysis of
nonstationary data via point joint probabilities. Again, the
membrane is held at VI until time rT, when it is jumped to
V2. We consider the three-point joint probability formed
from the probability that a channel is in conductance I at
some moment t while the membrane is held at VI, that it is
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in conductance J a time 1T later just before transition to
potential V2, and then is in conductance K a time 12 after
the potential change. The exponential constants to this
probability are the eigenvalues Av4 for 1T and AV2 for 12,
where the subscripts refer to voltage. An amplitude for
such a three-point analysis is (by modification of Eq. 55):

a3(m1,m2) - w ,vi(n,ml)wn,vl,V2(ml,m2)w13v2( m2,n), (77)

where the subscripts refer to the voltage with which the
construct is associated and the construct wvl,v2 defined as

WI vI V2(ml, m2) E rv1(ml, i)cV2(i, m2) (78a)
iGB(I)

or in matrix form,

W1,V,V2 = RvrlCv2* (78b)

Thus, the WIVI,V2 are experimentally obtained from the
amplitudes of a three-point joint probability with the
middle point at the voltage transition. The Wivl,v2 con-
structs contain not just information about the voltage
transition, but also contain all of the information that
stationary data has for V1 and V2, as shall be shown.
We first define the matrix Z,V2 as

x \

ZV1,V2= W1,V1,V2 = Rv E V2 = Rv1Cv2 (79)
1- ~-1 /

by Eq. 64c. Therefore,

= 2CV= ZV,V (80)

We now find theW stationary constructs for each voltage:

ZV2,VlWI,V,V2 =W ,V2 (81)

WIV,V2ZV2,Vl = Wl V1, (82)
which are derived from the definitions of the constructs
(Eqs. 54, 76, and 79) and Eqs. 63 and 64. Since the W1,,
and W,v2 constructs contain all of the information in
stationary patch clamp data (as far as amplitudes are
concerned), we have shown that the W1,V1,V2 constructs
have all stationary data information to each voltage.

In addition, we can obtain the W1,V,zl constructs of the
reverse nonstationary protocol, from V2 to V1:

ZV2,V1WI,v, V2ZV2,V1 - WI,MVv, (83)
showing that the protocol from V2 to VI does not yield any
additional information. Thus, analysis of three-point joint
probability function from stationary and nonstationary
data obtained before and just after a voltage jump obtains
all of the kinetic information available from patch-clamp
data.
We can rearrange Eq. 79 to yield the following equa-

tion:

CVIZVI,V2 = CV2' (84)

Thus if the eigenvector elements of Vl are known from

rate constants (known or calculated) at Vl, then the
eigenvector elements of V2 can be calculated from nonsta-
tionary data between VI and V2.

Eq. 84 and the results of the previous section may be
summarized. First, for a set of n(n - 1) known rate
constants describing channel behavior at Vl, one and only
one solution for the n(n - 1) rate constants at V2 can be
obtained from nonstationary data between the two volt-
ages. Second, if G rate constant assignments at V1 are
made that result in the specification of the other H rate
constants at VI, then all n(n - 1) rate constants at V2 can
be calculated from nonstationary patch-clamp data. Thus,
a total ofH + n(n - 1) rate constants are calculated with
no remaining degrees of freedom, which is the maximum
number of rate constants determinable from a complete
stationary and nonstationary analysis between V1 and
V2.
The three-point joint probability equations suggest an

alternative approach to the analysis of nonstationary
patch-clamp data. One can perform a complete analysis of
stationary data obtained at Vl to determine the W,
constructs at VI. Then, an analysis of nonstationary data
that considers only the probability of the channel being in a
particular conductance at 1l before the voltage transition
and at T2 after the voltage transition, without regard to the
conductance at the voltage transition, is sufficient to obtain
all of the kinetic information. The amplitudes from such an
alternative analysis of nonstationary data are

a3(ml,m2) = w,,jv1(n,m1)zv1,v2(m1 ,m2)W,3,V2(m2,n). (85)

From this the Zvl,v2 constructs can be obtained, and
together with the W1,1 constructs from stationary analysis
at VI (and eigenvalues at each voltage), the information
would be complete: from W,vl and Av4 the H rate
constants to VI can be calculated, and from ZV1,V2 and Av2
the n(n - 1) rate constants for V2 can be calculated via
Eqs. 84 and 2.

C. Examples of the Kinetic Analysis of
Nonstationary Patch-Clamp Data

We generated three-point joint probability amplitudes
from two sets of rate constants belonging to the general
three-state, two conductance model (Fig. ID). The two sets
of rate constants correspond to rate constants at two
voltages. In addition, we generated three point joint proba-
bility amplitudes in accordance with Eq. 77, for a time 1l
before the voltage transition, at the transition to V2, and a
time 12 after the transition. After G assignments were
made at VI, in accordance with Eq. 46, we could calculate
specific values for the remaining H rate constants at V1,
plus all n(n - 1) rate constants at V2.

PART IV: PROCEDURES FOR THE
ANALYSIS OF PATCH-CLAMP DATA

The two-dimensional dwell time density P11(11,12) can be
obtained empirically by counting the number of times that
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the channel had conductance b(I) for a time r, and
subsequently had conductance b(J) for a time T2. This
would require x(x - 1) two-dimensional arrays Ar11(y,z),
for all I and J except J = I. The indexes to the arrays refer
to the bin number, and are related to the dwell times by
T, = hy and r2 = hz, where h is the conversion factor in
seconds per bin interval. The arrays are then least squares
fitted, or maximum likelihood fitted, to obtain the ampli-
tudes and exponential constants to the two-dimensional
dwell time density.

For dwell time analysis of nonstationary data, data are
collected counting the number of times that a channel had
conductance b(I) for a time 1rl before the voltage transi-
tion, and continued to have conductance b(I) for a time r2
after the voltage transition. The arrays Ar,(r1J,2) contain-
ing these frequencies are least squares fitted or maximum
likelihood fitted to obtain the amplitudes and exponential
constants to the two-dimensional dwell time density.
The empirical representation of the three-point joint

probability PSJJ(Tr1,2) is obtained by counting the number
of times that a channel had conductance b(S) at one
moment, conductance b(J) at some time r1 later, and
conductance b(J) at some time r2 thereafter. These fre-
quencies are accumulated in the array Ar&(y,z), for x - 1
of the J conductances. The y and z indexes are related to
the T's by r1 = hy and T2 = hz, where h is the conversion
factor in seconds per consecutive sampling point of the
digitized patch-clamp data. The arrays Arj(y,z) contain-
ing these frequencies are least squares fitted or maximum
likelihood fitted to obtain the amplitudes and exponential
constants to the three-point joint probability.

For point probability analysis of nonstationary data, the
data are collected counting up the number of times that the
channel had conductance b(S) at a time T1 before the
voltage transition, had conductance b(J) at the voltage
transition, and had conductance b(J) at a time T2 after the
voltage transition. Thus, the procedure is the same as for
the analysis of stationary data, but the middle point is
always at the voltage transition. For the alternative point
joint probability analysis of nonstationary data described
earlier, the conductance of the channel at the voltage
transition is ignored.
By a numerical analysis procedure similar to that

described in the section "Examples of the Kinetic Analysis
of Stationary Patch-Clamp Data," the rate constants can
be calculated from the amplitudes, exponential constants,
and assignments of the particular analysis.

Two-dimensional data analyses are clearly more
demanding than one-dimensional analyses. Their feasibil-
ity and implementation are currently being investigated
(Bauer, R.J., manuscript in preparation).

DISCUSSION

We have determined the amount of kinetic information
available from analysis of stationary and nonstationary
patch-clamp data, the forms of analysis that extract that

information, and the ability of that information to distin-
guish among various forms of n state kinetic schemes. This
work has been general in the context of modeling channel
gating as a Markov process. Thus, we have considered the
case of a channel that shows x different conductance levels
and n different kinetic states. A future paper will consider
the further generalization of the analysis of data with more
than one channel (Bauer, R.J., manuscript in prepara-
tion).
We have considered patch-clamp data in terms of

traditional dwell time analysis and also in terms of point
joint probability functions. The latter approach was found
to be as powerful as dwell time analysis in determining the
amount of information available in patch-clamp data.
However, the proofs using point joint probability analysis
are rather shorter than those based on dwell time consider-
ations. In addition, point joint probability functions are
better suited for the analysis of data with more than one
channel (Bauer, R.J., manuscript in preparation).

The Amount of Kinetic Information
Available from Patch-Clamp Data

A complete kinetic model for channel gating requires a
number n for the number of kinetic states, plus n(n - 1)
rate constants for the transitions between pairs of those
states. Most generally, for voltage dependent channels
there are n(n - 1) rate constants at each voltage. Because
patch-clamp data directly measure only the transitions
between states with different conductance levels there is
ambiguity in the data that prevents the determination of all
of the rate constants from these data alone. We have shown
that stationary patch-clamp data have information to
determine no more than H rate constants where (Eq. 45):

x-I x

H = 2 E7E N1N)

with N, and N, being the number of kinetic states
associated with conductance levels I and J, respectively.
Accordingly, in using stationary patch-clamp data to
obtain these rate constants, G = [n(n - 1)] - H rate
constants must be fixed on the basis of data obtained from
some other source or, more commonly, assigned arbitrary
values. Nonstationary patch-clamp data have information
about the voltage dependencies of the rate constants that is
not available from stationary data. We have shown that a
complete analysis of nonstationary data will obtain no
more than H rate constants describing channel gating at a
reference voltage after G rate constants have been fixed, as
described above, plus all n(n - 1) rate constants at all
other test voltages.

These results are simplified in the special case of chan-
nels showing two conductance levels (open and closed)
with only a single open state plus any number of closed
states. In this case, the analysis necessary to obtain all of
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the rate constants is simpler (see below) and

H=2(n- 1)
G= (n- 2)(n - 1).

It is worth noting that for many channels H is small
relative to n(n - 1). For example, Blatz and Magleby
(1986) described the gating of a chloride channel that
showed five closed states plus two open states: n(n - 1) =
42. A complete kinetic analysis of stationary patch-clamp
data from such a channel requires that 22 rate constants be
fixed for the calculation of the remaining 20. Similarly,
models of sodium channel gating often have four closed
states plus a single open state. For such models there are 20
rate constants, 12 of which must be obtained from data
from experiments other than patch-clamp (e.g., gating
current measurements). From this point of view, patch-
clamp data are not a particularly rich source of informa-
tion about the kinetics of channel gating and, ultimately,
most kinetic information must come from other forms of
measurements.

Methods of Analysis
Standard one-dimensional dwell time histograms provide a
complete kinetic analysis of patch-clamp data only for
channels showing a single open state (cf. Lecar, 1986). For
channels with more complicated behavior (e.g., sodium
channels, Sigworth, 1981; calcium channels, Hess et al.,
1984; acetylcholine receptor channels, Labarca et al.,
1984; chloride channels, Blatz and Magleby, 1986) a more
powerful analysis is needed. In general, all of the kinetic
information is contained in two-dimensional dwell time
histograms that plot the frequency of observation of
sequential dwell times of durations r1 and r2 (Fredkin et
al., 1985) or in the three-point joint probability function
that a channel is in a given conductance at time t, and at
time t + rl, and again at time t + r1 + r2.
As noted earlier, for the special case of channels with a

single open state, a one-dimensional analysis using either
standard dwell time histograms or two-point joint probabil-
ity functions will extract all of the kinetic information
available from patch-clamp data. We mention that the
two-point joint probability function is readily calculated
via standard autocorrelation functions and that our prelim-
inary experience with this method shows it to be a simple
and rapid method for the kinetic analysis of patch-clamp
data (Bauer and Kenyon, 1987).

Which Rate Constants Can Be Determined
from Patch-Clamp Data?

Having established the number of rate constants that can
be determined from patch-clamp data, there remains the
question of which of the n(n - 1) rate constants can be
calculated. Our results indicate that some transitions are
well described by patch-clamp data while others are not.
For example, patch-clamp data obtained from a channel

with a single open state plus multiple closed states provide
an excellent characterization of the rate constants into and
out of the open state while rate constants between closed
states are less well characterized. Information about those
transitions not well represented in patch-clamp data must
be obtained elsewhere. Ideally, one would have an indepen-
dent measurement of these transitions and use this infor-
mation to fix the G parameters necessary for the calcu-
lation of the remaining H rate constants. In the absence of
such information, the calculation of H rate constants
requires the arbitrary assignment of G rate constants.
Obviously, the resulting rate constants depend equally on
the assignments and the patch-clamp data. Furthermore, a
given set ofG assignments may or may not resolve all of the
ambiguity in the patch-clamp data. Assignments that do
not will not be sufficient to provide for the calculation ofH
rate constants. This can be illustrated by considering the
channel with a single open state described above. Clearly
assignments that do no more than establish the mean open
time do not provide any information about channel gating
that is not in the data. We have described how, if the
intraconductance rate constants are fixed and if there is a
solution, there will be a countable finite set of rate constant
solutions. In addition, if the intraconductance rate con-
stants are set to zero, then a single set ofH rate constants
can be calculated from any set of patch-clamp data.

In considering the kinetic information available from
patch-clamp data, it is useful to think in terms of a solution
space to a particular set of patch-clamp data, rather than
in terms of a unique and particular kinetic scheme with
which the data are consistent, but whose validity cannot be
proven. Thus, the kinetics of channel gating are described
by n(n - 1) rate constants which can be used to specify a
point in an n(n - 1) dimensional solution space. Patch-
clamp data have G degrees of freedom with regard to the
specification of points in this solution space and, in the
absence of data with which to reduce those degrees of
freedom, the analysis of patch-clamp data can specify
nothing more constrained than a G dimensional surface in
the n(n - 1) dimensioned solution space. In terms of the
mathematics of Markov processes, the points on the solu-
tion surface are indistinguishable and represent equivalent
descriptions of the patch-clamp data. In this view, the
ultimate goal of the kinetic analysis of patch-clamp data is
the definition of the solution surface that contains the
single point that is the kinetics of channel gating.

Beyond this, one may impose external constraints on the
accepted solutions such as the requirement that the rate
constants be non-negative and real. The number of possible
models may be further constrained to those whose rate
constants reveal a particular dependence on voltage, such
as an exponential dependence. Such a dependence could
serve as additional evidence needed to narrow possible
models.
The imposition of an aesthetically pleasing, mechanistic

interpretation to the solution surface imposes a restriction
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on the solution surface, which limits the information that
can be derived from patch-clamp data. Of course, while a
particular mechanism cannot be proven, a particular
mechanism is disproved if its solution surface does not
intersect with the patch-clamp data solution surface. For
example, suppose no model that is in thermodynamic
equilibrium is a solution to the data. Then one can
conclude that channel gating is not in thermodynamic
equilibrium (see below). Similarly, if no model with a
single pathway between open and closed states is a solu-
tion, then one can conclude that there are more than one
such pathway (cf. Fredkin et al., 1985). However, we have
demonstrated that if patch-clamp data can be described by
particular models that are in thermodynamic equilibrium
or show a single pathway between closed and open states,
this does not prove that the channel has these characteris-
tics, since models that do not have these properties may
also fit the data.
As noted earlier, the common way of reducing the

degrees of freedom is the arbitrary assignment of rate
constants. Another common assignment is thermodynamic
equilibrium for channel gating, i.e., 0(i)q(ij) =
0(j)q(j,i), for each state i and j. This condition is not a
Markovian constraint, and is not included in our deriva-
tions; channel gating may be a Markov stochastic process,
but may or may not be in thermodynamic equilibrium.
Because the thermodynamic equilibrium conditions are
counted among the assignments, the same philosophy
applies as with all assignments to reduce the degrees of
freedom. Namely, for a set of assignments, if the con-
straints imposed by the thermodynamic equilibrium condi-
tions are consistent with the data, then the proposed model
is valid as far as the single channel macroscopic (conduc-
tance) current data are concerned. However, this is a
special selection of the assignments and, as we have shown,
is not necessarily an inherent property of the data.
The three-point joint probability or two-dimensional

dwell time density analyses contain the information found
in the analysis of temporal asymmetry used by Cull-Candy
and Usowicz (1987) to study patch-clamp data from
channels with more than two conductances. In this analy-
sis, one counts the number of times a channel went from
conductance I to conductance J, and from J to I, over a
long time period. These values are directly proportional to
the first derivative of the three point joint probability
PIJ(r1,r2) with respect to r1, evaluated at r1 = 0 and r2 = 0.
Thus, if a statistical fit of the three-point joint probability
is made ("Procedures for Analysis of Patch-Clamp Data"
section), then a statistical mean and standard error of the
average rates of transition from conductance I to J and
from J to I can be obtained from it, by which it can be
determined if, and to what degree, these two values are
different.
The two-point joint probability is essentially a noise

analysis procedure of single channel records. This is suffi-
cient to obtain all of the information present in patch-

clamp data if x - 1 of the conductances have one kinetic
state each, and the xth conductance has one or more
kinetic states. Otherwise, a three-point joint probability
analysis is essential for obtaining all of the information in
patch-clamp data. It should be noted that a three-point
joint probability noise analysis of macroscopic current data
is theoretically possible, and we are preparing a manuscript
describing the relationship between rate constants and
multichannel three-point joint probabilities. In this way, it
may be possible to obtain as much kinetic information from
macroscopic current records as it is from single channel
records for all types of two conductance kinetic data.
The analysis of stationary data requires that the assign-

ments result in calculated rate constants that are non-
negative, real, and consistent with the data for the particu-
lar voltage. Because nonstationary data have additional
information, the assignments at one of the voltages must
result in non-negative and real rate constants at all voltages
included among the data. Thus, nonstationary analysis
imposes more rigid requirements for validity of a model.

Comparison of the Information Content of
Stationary and Nonstationary
Patch-Clamp Data

Nonstationary data contain more information than station-
ary data. Consider the information available from the
analysis of stationary data at a single voltage V1 from a
channel with two closed and one open state (Fig. 1 D). By
Eq. 46, two rate constants must be assigned to calculate the
other four. For example, q(1,3) = q(3,1) = 0 forms a
C-C-O model, while q(1,2) = q(2,1) = 0 gives a C-O-C
model. Patch-clamp data showing two conductance levels
and three kinetic states will be equally described by either
of these models and no analysis of stationary data can
determine that one form is valid while the other is invalid.
Stationary patch-clamp data cannot be used to distinguish
between C-C-O and C-O-C models (cf. Sakmann and
Trube, 1984; Keller et al., 1986).

However, a complete analysis of nonstationary data
obtained among a set of voltages using the three-point joint
probability procedure described earlier with the middle
point at the voltage change, provides additional informa-
tion about the change in rate constants with voltage for a
particular model specified by G assignments made at one
voltage. If the true values of q(1,2), q(2,1), q(2,3), and
q(3,2) change with voltage while q(1,3) and q(3,1) are
zero at all voltages considered, then a fortuitously correct
assignment of q( 1,3) = 0 and q(3, 1 ) = 0 at any one voltage
results in the calculation of the true rate constants at all
voltages, i.e., q(1,3) and q(3,1) will be calculated to be zero
at all voltages. Making a C-O-C assignment at any voltage
[q(2,1) and q(1,2) are zero] will result in all six of the
calculated rate constants changing with voltage. That is, a
C-O-C relationship among the calculated rate constants
will not be maintained at the test voltages. The converse is
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also true, if the rate constants do change with voltage in a
C-O-C manner, only a C-O-C model will fit the data at all
voltages. Finally, if all six of the true rate constants vary
with voltage, neither a C-C-O or C-O-C relationship will
be maintained for the calculated rate constants at all of the
voltages considered. Thus, nonstationary analysis can
determine whether the kinetic system is C-O-C, C-C-O, or
neither.

In summary, analysis of nonstationary data will not
allow the calculation of more rate constants at some
reference voltage, Vref, than can be obtained by analysis of
stationary data. However, no additional assignments must
be made for the analysis at other voltages. This means that
for a kinetic system analyzed at v voltage steps, there are
vn(n - 1) rate constants to be determined, but only H (at
Vref) plus (v - l)n(n - 1) (at other voltages) indepen-
dent parameters can be experimentally derived. This leaves
G degrees of freedom among the whole set of voltages.

Stationary data has information to determine H inde-
pendent parameters for each voltage, but it does not have
all the information about the changes in rate constants
between voltages that nonstationary data has. For station-
ary data, we obtain vH independent parameters or H per
voltage, leaving vG degrees of freedom in the kinetic
system. This analysis would require G assignments at each
voltage, not just at one voltage.

Throughout this paper we have referred to assignments
as the specification of a value to certain rate constants. In
general, assignments can be any set of equations specifying
relationships among rate constants, implicitly or explicitly,
which are not provided under the assumptions of a Markov
process. Furthermore, in the analysis of nonstationary
data, the G assignments may be distributed among the
voltages considered. This approach was used by Goldman
and Hahin (1979) in their analysis of macroscopic sodium
currents. They performed a complete nonstationary analy-
sis of macroscopic currents between a conditioning poten-
tial (VI) and a test potential (V2), and fit the data to a
three-state, two-conductance model. They made two
assignments that incorporated the assumption of thermo-
dynamic equilibrium at each voltage, i.e.,

q(1,2)q(2,3)q(3,1) = q(1,3)q(3,2)q(2,1)
(see Fig. 1 D), and calculated the remaining 10 rate
constants. Thus, they specified the system with no remain-
ing degrees of freedom. This is the only example in the
literature that we know of where a nonstationary protocol
was used to its maximum potential for obtaining all of the
information available from transmembrane current mea-
surements.

A Systematic Approach to the Kinetic
Analysis of Patch-Clamp Data

The results described in this paper suggest a general and
straightforward approach to the kinetic analysis of patch-

clamp data. By inspection of the data one can determine
the number of conductance levels, x, shown by the channel
or channels. Dwell time histograms for each conductance
level will show an exponential relaxation associated with
the occupancy of each kinetic state with that conductance
level giving a value for the number of kinetic states, n.
Thus, the kinetic analysis of the data can yield all of the
rate constants minus the G rate constants that must be
obtained elsewhere. The number of unknowns, G, among
theW constructs can be determined for a given set of data,
as described earlier. After these G assignments have been
made, the other rate constants can be determined by the
specific analysis of dwell time histograms (Colquhoun and
Sigworth, 1983; Fredkin et al., 1985) or point joint proba-
bility functions (Bauer and Kenyon, 1987). If the resulting
rate constants are all non-negative and real then the model
is valid. If the assignments result in a model that cannot be
fit to the data, i.e., a solution cannot be found, then one or
more of the assignments contradict the data and that
particular form can be rejected.

Reporting Kinetic Data

From the preceding discussion, it is apparent that the
values obtained for the rate constants depend on the
assignments. Accordingly, we suggest that the results of
patch-clamp experiments be reported in a form that is
independent of these assignments. Specifically, the com-
plete set of independent experimental parameters could be
published for a set of data. For example, for stationary
data, the W constructs (or the equivalent two-dimensional
dwell time density amplitudes) may be submitted along
with n - 1 point joint probability time constants. For
nonstationary data, in addition to the stationary informa-
tion at a reference voltage, the (n - 1)(n - 1) indepen-
dent ZV1,V2 constructs (or the equivalent nonstationary
dwell time density amplitudes) that relate the rate constant
changes from the reference voltage to each of the other
voltages could be reported, as well as the (n - 1) point
joint probability time constants at each voltage.

Authors might also specify any assignments used to
translate these experimental parameters into rate con-
stants. In this way readers can use the experimental
parameters and make their own assignments, or interpreta-
tions, yielding an alternate set of rate constants. In addi-
tion, other investigators may have measurements other
than patch-clamp measurements that provide information
about the correct assignments to make. They may then use
the patch-clamp results performed by someone else and
obtain rate constants that combine results from the dif-
ferent types of experiments.
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