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ABSTRACT Lateral diffusion of mobile proteins and lipids (tracers) in a membrane is hindered by the presence of
proteins (obstacles) in the membrane. If the obstacles are immobile, their effect may be described by percolation theory,
which states that the long-range diffusion constant of the tracers goes to zero when the area fraction of obstacles is
greater than the percolation threshold. If the obstacles are themselves mobile, the diffusion constant of the tracers
depends on the area fraction of obstacles and the relative jump rate of tracers and obstacles.

This paper presents Monte Carlo calculations of diffusion constants on square and triangular lattices as a function of
the concentration of obstacles and the relative jump rate. The diffusion constant for particles of various sizes is also
obtained. Calculated values of the concentration-dependent diffusion constant are compared with observed values for
gramicidin and bacteriorhodopsin. The effect of the proteins as inert obstacles is significant, but other factors, such as
protein-protein interactions and perturbation of lipid viscosity by proteins, are of comparable importance. Potential
applications include the diffusion of proteins at high concentrations (such as rhodopsin in rod outer segments), the
modulation of diffusion by release of membrane proteins from cytoskeletal attachment, and the diffusion of mobile
redox carriers in mitochondria, chloroplasts, and endoplasmic reticulum.

INTRODUCTION

Many physiological processes involving cell membranes
are thought to involve the lateral diffusion of mobile
proteins and lipids within the membrane (Schlessinger,
1980; Axelrod, 1983; McCloskey and Poo, 1984). The
diffusion of the mobile species of interest may be hindered
by the presence of other species, and it would be useful to
be able to evaluate quantitatively the effects of these
obstacles on diffusion rates. This can be accomplished by
treating lateral diffusion as a random walk on a two-
dimensional lattice. The mobile species of interest (tracers)
and the interfering species (obstacles) occupy sites on the
lattice and undergo Brownian motion. The lipid is consid-
ered the solvent and not treated explicitly. The calculations
are thus based on a lattice gas model of diffusion; this
model takes into account only the hard-core repulsion of
the particles.

This paper' presents Monte Carlo calculations of lattice
diffusion of tracers in the presence of obstacles. In these
calculations, each lattice point is occupied by an obstacle
(at a concentration c), by a tracer (at a negligibly low
concentration), or by a vacancy. Both tracers and obstacles
are assumed to be mobile, but with different jump rates

'Preliminary results were presented at the 1986 Biophysical Society
meeting (Saxton, 1986).
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(Kutner and Kehr, 1983; Kehr and Binder, 1984). Tracers
and obstacles carry out a random walk, jumping to adja-
cent vacant sites at the prescribed rates, and the mean
square displacement of the tracers is obtained as a function
of the number of time steps.

Let y be the ratio of the jump rate of tracers to the jump
rate of obstacles. Then two limiting cases are of particular
interest.

(a) Percolation. If y - , the obstacles are immobile.
At low concentrations of obstacles, all vacancies are con-
nected by some unbroken path and thus form an infinite
cluster. A tracer can eventually diffuse to any vacant site
on the lattice, so that as t - 00, the mean-square displace-
ment (r2) m Xo for all tracers. As the concentration of
obstacles increases, isolated clusters of vacancies begin to
appear. A tracer that starts on one of these finite clusters is
trapped there, while tracers that start on the infinite cluster
of vacancies can still diffuse to infinite (r2 ). At still higher
concentrations of obstacles, only isolated clusters of vacan-
cies are present. Each tracer is trapped on some cluster,
and no long-range diffusion is possible. The percolation
threshold cp is defined as the highest concentration of
obstacles at which an infinite cluster of vacancies exists.
Long-range diffusion of tracers is allowed at area fractions
of obstacles below cp and is blocked at higher area
fractions. For the square lattice, cp, 0.41; for the triangu-
lar lattice, cp = 0.5; and for the continuum, cp 0.332
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(Stauffer, 1985; Saxton, 1982). This limit describes diffu-
sion of lipid in the presence of immobile protein.

(b) Tracer diffusion. If y = 1, obstacles and tracers
move at the same rate, giving the concentration depen-
dence of the lateral diffusion constant of a single species.
This describes the diffusion of a protein at high concentra-
tion, such as rhodopsin in rod outer segments or proteins in
mitochondria.
The distinction between these two limits is essential, and

there has been some confusion on this point in the literature
(Kell, 1984; Pink, 1985). If the obstacles are mobile, there
is no percolation threshold, and long-range diffusion can
occur at all concentrations, as shown by Pink (1985). But if
the obstacles are immobile, there is a percolation threshold,
and long-range diffusion is blocked when the area fraction
of obstacles is greater than the percolation threshold. The
key question is whether the obstacles are mobile or immo-
bile on the time scale of the diffusion measurement.

This paper also discusses the variation in the tracer
diffusion constant on a triangular lattice as the diffusing
particles are changed from points to hexagons of increasing
radius. These results show the geometrical dependence of
the diffusion constant on particle size; the hydrodynamic
dependence must be obtained from other treatments (e.g.,
Saffman and Delbriick, 1975; Galla et al., 1979).

GLOSSARY

a,
A(R)
c

CA
Cp

D
D*
ly
Q
(r2)
R

area of molecule of ith species
number of lattice points in hexagon of radius R
area fraction of obstacles (Eq. 10)
area fraction of obstacles (Eq. 1 1)
percolation threshold
diffusion constant
relative diffusion constant (Eq. 2)
ratio ofjump rate of tracers to jump rate of obstacles
lattice spacing
mean-square displacement
radius of hexagon in units of Q

METHODS

The Monte Carlo calculations (Kutner and Kehr, 1983) are carried out
for square or triangular lattices. Initially, obstacles and tracers are
distributed randomly on the lattice at the required concentrations. Then
both species are allowed to move to adjacent unoccupied sites by a random
walk at the prescribed jump rates. A move by an obstacle can be blocked
by another obstacle or by a tracer. A move by a tracer can be blocked by
an obstacle, but not by another tracer. Tracers can occupy the same
vacancy; the only interaction among tracers is through their effect on the
motion of obstacles. Except for this interaction, the tracers form an
ensemble of particles diffusing independently through the same set of
obstacles. The mean-square displacement of the tracers is obtained as a
function of time, and the diffusion constant is obtained from a least-
squares fit to the equation

(r 2(t) ) = 4Dt + A + Bln t. (1)

The terms A +B In t come from the long-time tail in the two-dimensional
velocity autocorrelation function (Van Beijeren and Kutner, 1985;
Tahir-Kheli and El-Meshad, 1985). Their effect is usually small: typi-
cally they change the diffusion constant by 1-2%. At high concentrations,
the effect is greater, and they lower the diffusion constant by up to 25%.

The initial positions of the tracers are random, so that in calculations
with immobile obstacles the tracers may be on finite or infinite clusters of
vacancies. The diffusion constant is changed if the tracers are placed only
on infinite clusters (Stauffer, 1985).
The algorithm used is as follows. At each time step, a random number

is used to decide whether to move a tracer or an obstacle. When an
obstacle is to be moved, another random number is used to choose which
obstacle is to be moved. When a tracer is to be moved, all tracers are
moved, but the move for each tracer is chosen independently. In each
move, the particle-obstacle or tracer-attempts to move to a randomly
chosen nearest-neighbor site. If the site is vacant, the particle moves to
that site; if the site is blocked, the particle remains in place. Pseudo-
random numbers are generated by a Tausworthe shift register sequence
(Kirkpatrick and Stoll, 1981; Kalle and Wansleben, 1984).

For the calculations with -y = 1, the algorithm is much simpler. All
particles move with the same jump rate; there is no need to distinguish
tracers and obstacles. All the particles carry out a random walk, and their
mean-square displacements are obtained as a function of time.

For diffusion of hexagons at low densities, the initial positions of the
particles are simply chosen at random. The highest density that can be
obtained by random filling is called the random parking limit (Onoda and
Liniger, 1986, and references cited therein). At densities above this limit,
a more complicated procedure is required to obtain the initial configura-
tion. The lattice is filled at close packing, and overlaps at the edges due to
periodic boundary conditions are eliminated by random deletion of
overlapping hexagons. Then hexagons are eliminated randomly to yield
the required concentration. A random walk is carried out for a fixed time
to randomize the starting configuration. Then the positions of the
particles are recorded, and the random walk is continued to give the
mean-square displacements as a function of time.
The lattice size was 201 x 201,256 x 256, or 256 x 512, with periodic

boundary conditions. Typically, for y # 1, 200 tracers were used, and 25
different initial distributions of particles. Increasing the number of initial
distributions and decreasing the number of tracers had little effect on the
results. For point tracers with immobile point obstacles at an area fraction
c = 0.3 on the square lattice, the relative diffusion constant (Eq. 2) is
D* = 0.2592 ± 0.0031 (mean ± SD) for four runs with values ranging
from 200 tracers with 25 different initial distributions to 25 tracers with
200 initial distributions.
The length of the runs ranged from 0.13 to 20.0 million time steps,

depending on the densities of particles and the relative jump rates. The
length of the run can be expressed in Monte Carlo steps per particle
(MCS/p): the total number of attempted moves per mobile particle. For
percolation on the square lattice, 0.13 million MCS/p were used; for the
calculations with mobile obstacles on the square lattice, 100-1,700
MCS/p; and for tracer diffusion of hexagons, 40-1,600 MCS/p, with
typical values of 200-400. The lower values were for high concentrations
of particles, when the computer time needed was large.

Tests were made varying the seed of the random number generator. For
tracer diffusion of point particles on the square lattice at c = 0.3, and 173
MCS/p, the relative diffusion constant D* was 0.5776 ± 0.0010
(mean ± SD) for four runs, and a run to 692 MCS/p (8.3 million time
steps) gave D* = 0.5780.

Extensive Monte Carlo calculations of tracer diffusion of point
particles on a square lattice were published by Tahir-Kheli and El-
Meshad (1985) and by Van Beijeren and Kutner (1985). All but one of
my diffusion constants differed from theirs by 0.4% or less, within the
published error estimates. At one concentration of obstacles, my value of
D* differed from theirs by 3.1%.

RESULTS AND DISCUSSION

Effect of Obstacles
The Monte Carlo calculations give the mean-square dis-
placement (r2) of the tracer as a function of time. The
slope of this line at large times is proportional to the
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diffusion constant (Eq. 1). Define a relative diffusion
constant

D*(c) = D(c) /D(0), (2)

where D(c) is the diffusion constant of the tracer at a
concentration c of obstacles, and D(O) is the diffusion
constant of the tracer in the absence of obstacles. In two
dimensions

D(O) = Q2 r/4, (3)

where Q is the lattice spacing and r is the jump frequency.
The concentration c is an area fraction, defined as the ratio
of the number of lattice points occupied by obstacles to the
total number of lattice points.

Suppose that the obstacles are immobile. As shown in
Fig. 1 a, when the area fraction of point obstacles is below
the percolation threshold cp, at large times (r2 ) increases
linearly with time, with a slope 4D. As the area fraction c
of obstacles increases, the diffusion constant decreases.
When the area fraction of immobile obstacles is above cp,

<r2>
20,000 a

C0.20

C0.30

C/0.40

128k
TIME

<r2 >
500

C-0.40

C - 0.50
._

128k
TIME

FIGURE 1 Mean-square displacement (r2) of point tracers as a func-
tion of time, for percolation on the square lattice with various area
fractions c of immobile point obstacles. The diffusion constants D(c) are
one-fourth of the limiting slopes of these lines as t- 00. (a) Area fractions
of obstacles below the percolation threshold cp - 0.41. (b) Area fractions
of obstacles near and above the percolation threshold. Note the change in
vertical scale. The unit of length is the lattice spacing, and the unit of time
is the reciprocal of the jump frequency. (1k = 1,024).

no long-range diffusion is possible. Tracers are isolated on
finite clusters, and as t - o, (r2 ) approaches a finite limit,
as shown in Fig. 1 b. This limit is proportional to the
average radius of gyration of the finite clusters (Straley,
1980; Mitescu and Roussenq, 1983).
Thus, if the obstacles are immobile, the long-range

diffusion constant of the mobile species goes to zero when
the area fraction of obstacles reaches the percolation
threshold, as shown in Fig. 2. The value of cp is from Gebele
(1984) and was obtained by methods distinct from those
used here.
When the obstacles are mobile, long-range diffusion can

occur at all concentrations of obstacles, but the diffusion
constant is a function of both c and the relative jump rate
'y. A theoretical expression for D * (c, y) was obtained by
Tahir-Kheli (1983) and by Van Beijeren and Kutner
(1985). Van Beijeren and Kutner considered the correla-
tions between the tracer and the special vacancy, defined
as the vacancy with which the tracer exhanges positions at
t = 0. Both the tracer and the special vacancy are assumed
to move in a continuous-time random walk, but with
different jump rates. The diffusion constant can be
expressed in terms of the correlation factorf(c, y):

D*(c, -y) = (1 - c)f(c, y). (4)

They obtain

{[(1 -y)(l - c)fo
+ c]2 + 4y(l -c)f I"'

f(c, y)=-- [(1 -.y)(l -c)fo + c]
2(l -c)f.

where

f= [1 -a]/[I + (2y- 1)a],

(5)

(6)

where c is concentration of obstacles, y is jump rate of
tracers/jump rate of obstacles, and a is a constant equal to
1 - 2/ir for the square lattice, 0.2820 for the triangular
lattice, and 0.5000 for the honeycomb lattice (Le Claire,
1970). (Here a = (1 -f)/(l +f), wheref is given in Le
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FIGURE 2 Diffusion constant D*(c) of point tracers as a function of
area fraction c of point immobile obstacles on the square lattice.
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Claire's Table I. Note that a is equivalent to - (cos 0) in
the literature of solid-state diffusion.) From Eq. 3, the ratio
of jump rates can be obtained from the observed diffusion
constants at low concentrations of obstacles:

y = Dtracer (c = 0)/Dobstacle (c = 0). (7)

In Fig. 3, values ofD* for the square lattice are shown as
a function of c for various values of y. Theory (Eqs. 4-6)
and Monte Carlo results agree well, with two exceptions.

(a) The theory does not predict the percolation limit or
the D *(c) curve for 'y -- c correctly. The theory gives a
percolation threshold 10-15% too low. This is a general
problem of mean-field theories: they do not include enough
higher correlations to predict the percolation threshold
accurately. The theoretical curve for y = 10 shows the
same problem to a lesser extent.

(b) The discrepancies at high values of c are due to the
limited length of my Monte Carlo runs.

For y = 0.1, 0.33, and 3.33, the average deviation of the
Monte Carlo values of D * from theory is 5%, and the
largest deviation is 10%. For y = 1.0, the average deviation
is 1.2%, and the largest deviation is 4.6%.

In Fig. 3, note the large increase in D* ify is changed
from Xc (immobile obstacles) to 1 (mobile obstacles) at a
fixed area fraction of obstacles. At c = 0.3, below the
percolation threshold, D* increases from 0.27 to 0.58,
while at c = 0.5, above the percolation threshold, D * is zero
for immobile obstacles, and 0.36 when y = 1. Thus, the
release of proteins from cytoskeletal attachment could
modulate the diffusion rates of all mobile species, lipid and
protein, in the membrane. This has been observed in blebs
(Webb et al., 1981; Tank et al., 1982b), bulbous lympho-
cytes (Wu et al., 1982), and spherocytes (Koppel et al.,
1981b). To describe these results in terms of the Monte
Carlo model, one would need to calculate the diffusion
constant of point tracers in the presence of mobile hex-
agonal obstacles.

D (C,Y)

0.2 0.4 0.6 0.8 1.0
AREA FRACTIONcOF MOBILE OBSTACLES

FIGURE 3 Diffusion constant D*(c, a) for point tracers on a square
lattice as a function of c, the area fraction of point obstacles, and a, the
ratio of tracer jump rate to obstacle jump rate. The lines are from theory
(Eqs. 4-6), and the points are from the Monte Carlo calculations.

).2 0.4 0.6 0.8
AREA FRACTION C OF TRACERS

FIGURE 4 Tracer diffusion constant (y = 1) as a function of area
fraction from Eqs. 4-6 for various two-dimensional lattices: square,
triangular, and honeycomb. The triangular and honeycomb lattices are
shown in the insets; the lattice spacing is 9.

A very simple case shown in Fig. 3 is the limit 'y = 0.
Then the positions of the obstacles change so quickly that
there is no correlation between successive tracer jumps. A
fraction c of the tracer jumps is blocked; the remaining
fraction 1 - c is successful. The only effect of the obstacles
is to lower the effective jump rate of the tracers by a factor
of 1 - c, so that D* = 1 - c.

According to theory (Van Beijeren and Kutner, 1985),
the tracer diffusion constant is not particularly sensitive to
the lattice structure, as shown in Fig. 4 for the triangular
lattice (coordination number z = 6), the square lattice
(z = 4), and the honeycomb lattice (z = 3).

Effect of the Radius of the Diffusing
Particle

The calculations presented so far assume point tracers and
obstacles on a lattice. If the calculations are to be applied
to protein diffusion, the effect of the size of the protein on
the diffusion constant must be considered. The hydrody-
namic dependence of the diffusion constant on protein
radius can be treated by a continuum diffusion model
(Saffman and Delbriick, 1975; Hughes et al., 1982) or by a
free volume model (Galla et al., 1979; MacCarthy and
Kozak, 1982) as appropriate (Vaz et al., 1984; Clegg and
Vaz, 1985). There is also a geometrical size dependence,
which can be examined by Monte Carlo calculations.
We assume that the observed diffusion constant at a

protein concentration c is

D0b.(c) = Db.(O)D*(c), (8)

where Dob0(O) is the observed diffusion constant at low
protein concentration. This equation follows directly from
Eq. 2 on replacing D(O) and D(c) with the experimental
values. The approximation implicit in this equation is that
the hydrodynamic size dependence is contained entirely in
Dob(0), and the geometric concentration dependence is
contained entirely in D*(c), which accounts for the hard-
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core repulsion of the proteins. In reality, D * (c) will be
perturbed by additional protein-protein interactions, and
the hydrodynamic size dependence will vary with concen-
tration. But the approximation in Eq. 8 ought to capture
the essential physics.

For hexagonal tracers, the area fraction c is defined as
the fraction of lattice points within, or on the perimeter of,
a hexagon. Define the radius R of a hexagon as the
distance (in lattice spacings) from the center to a vertex.
Then the number of lattice points in the hexagon is

A(R) = 3R2 + 3R + 1. (9)

A lipid corresponds to a single lattice point, with RL = 0,
AL = 1, and a protein corresponds to a hexagon of
appropriate radius R. In a mixture of lipids of area aL per
molecule and proteins of area ap per molecule, the value of
R can be found by setting the ratio ap/aL equal to Ap/AL,
and solving Eq. 9 for R.

If the number of hexagons is NH and the total number of
lattice points is NS, then

c = A(R)NH/Ns. (10)

This corresponds tofA of Pink (1985) andfLp of Eisinger et
al. (1986). One could also define an area fraction CA in
terms of the areas of the hexagons, giving

CA=3R2NHINS, (11)

equivalent tofof Eisinger et al. (1986). With the definition
Eq. 10, the entire space is occupied with either lipid or
protein; with the definition Eq. 11, it is not (Eisinger et al.,
1986). We therefore use Eq. 10.
No overlap of hexagons is allowed, even at edges or

vertices, as in Pink (1985). Eisinger et al (1986) allow
obstacles to overlap at edges and vertices.
The concentration dependence of the tracer diffusion

constant for various radii between 0 to 16 is shown in
Fig. 5. There is a large change in D * (c) on going from R =

AREA FRACTION c OF TRACERS

FIGURE 5 Tracer diffusion constant D*(c) as a function of the area
fraction c of tracers for points (R = 0) and hexagons of radius R - 1-16
on the triangular lattice. Dashed line, theoretical curve for R = 0 from
Eqs. 4-6. Solid line, least-squares fit for R = 1-4 from Eq. 12. Points,
values of D*(c) from Monte Carlo calculations.

0 to R = 1, but for R = 1-4, the values of D*(c) are very
weakly dependent on R. For practical purposes this
R-dependence can be ignored; a least-squares fit to the
Monte Carlo values gives

D*(c) = 1 - 2.1187c + 1.8025c2

- 1.6304c3 + 0.9466c4, (12)

good to ±5% or better for c < 0.65, R = 1-4. Here c is
defined by Eq. 10; if Eq. 11 were used, there would be a
strong dependence on R. Eisinger et al. (1986) found a
similar sensitivity to the definition of area fraction chosen.

If we identify each lattice site with one lipid molecule
and assume a lattice constant of 0.8 nm, as in Eisinger et al.
(1986), the area per lipid is 0.554 nm2. If we then assume
that the hexagons correspond to proteins of thickness
4.0 nm and density 1 g/cm3, and use Eq. 9, we find that
hexagons of radius 1-4 correspond to proteins of mass
10-80 kD. (Pink [1985] identifies each lattice site with one
hydrocarbon chain and assumes a lattice constant of
0.6 nm, so that a hexagon of radius 4 corresponds to a
protein of mass 45 kD.)

Values of D* for R = 8 and R = 16 are slightly higher
than those for R = 1-4 at the same area fraction. When the
area fraction c is constant, the total number of occupied
lattice sites is constant. As R increases, these occupied sites
are grouped into fewer, larger hexagons, which interfere
with one another less. In the limit of very large R, all the
occupied sites are included in a single large hexagon, for
which D* is one. A similar observation was made by
Eisinger et al. (1986) in their studies of the diffusion of
point tracers in the presence of immobile hexagonal obsta-
cles of radius 1-3. (For radius zero, their model is simply
percolation on a triangular lattice; results for this case were
published by Li and Strieder [1982].)

In the plots of D*(c) for R = 1, 2, 4, 8, and 16, there is
no discontinuity in slope such as Pink (1985) reported for
R = 4. Not enough values were calculated for R = 3 to
show whether there is a discontinuity. Pink's values are a
few percent lower than those obtained here.

Applications
Several measurements have been made of the lateral
diffusion constants of proteins and lipids as a function of
protein concentration (Schindler et al., 1980; Tank et al.,
1982a; Peters and Cherry, 1982; Chazotte et al., 1984;
Sowers and Hackenbrock, 1985). The concentration
dependence will be influenced by factors other than
obstruction: for example, direct or indirect protein-protein
interactions, or interactions with the cytoskeleton. The
Monte Carlo calculations will enable us to separate the
purely geometrical percolation effects-that is, the effects
of the hard-core repulsion-from the effects of other
interactions.

Evaluation of the area fraction of obstacles requires
attention to protein structure. Consider an integral protein
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with a wide hydrophilic region and a narrow hydrophobic
region. A small hydrophobic molecule like ubiquinone will
see only the hydrophobic region, while a large integral
protein will interact with both regions. The relevant radius
of the obstacle will thus be different, and the appropriate
area fraction of obstacles will be different.

Peters and Cherry (1982) have measured the diffusion
constants of bacteriorhodopsin (BR) and the lipid ana-
logue dioctadecyloxacarbocyanine (diO-C18[3]) as a func-
tion of BR concentration in multibilayers of dimyristoyl-
phosphatidylcholine (DMPC). Tank et al. (1982a) have
made similar measurements on gramicidin (GR) and the
lipid analogue N-4-nitrobenzo-2-diazole phosphatidyletha-
nolamine (NBD-PE).

Protein Diffusion. The area fraction of protein
is calculated from the relation

1
c=

1 + aLnL
ap np

o

E

Ci

(13)

where aL is the area of a lipid molecule, ap is the area of a
protein molecule, and nL/np is the molar ratio of lipid to
protein. For DMPC, aL = 0.657 nm2 (Lewis and Engel-
man, 1983), for BR, ap = 8.75 nm2 (Henderson and
Unwin, 1975), and for GR, ap = 1.13 nm2 (Tank et al.,
1982a). From Eq. 9, BR corresponds to a hexagon of
radius 1.59, and GR corresponds to a hexagon of radius
0.20. DBR* can therefore be obtained from Eq. 12, and
DGR* is approximately the value from Eqs. 4-6 for y = 1.
To interpret these experiments, we also need the diffu-

sion constants at infinite dilution, DO(0). These could be
obtained by using Eqs. 4-6 or 12 to extrapolate the
measured value at the lowest concentration to zero concen-
tration. Here it is more convenient to show the calculated
and observed values on log-log plots, so that the choice of
D0b.(O) simply corresponds to a vertical shift of the calcu-
lated curve.

Results are shown in Fig. 6. The calculated values from
Eqs. 46 and Eq. 12 are shown in Fig. 6 a; observed values
for BR and GR, in Fig. 6 b. Clearly the observed values of
D fall off more sharply at high concentrations than the
calculations predict.

Similar results are obtained for rhodopsin. The diffusion
constant of rhodopsin in rod outer segments (ROS) is given
by Poo and Cone (1974) and by Liebman and Entine
(1974). No value for the diffusion constant in ROS lipids
at low protein concentration is available, but Vaz et al.
(1982) measured D for bovine rhodopsin at low concentra-
tions in DMPC multibilayers. In Eq. 2 we use the diffusion
constants obtained by Poo and Cone (1974) and Liebman
and Entine (1974) for D(c), and the results of Vaz et al.
(1982) for D(0). We find that D* 0.3-0.4. According to
Dratz and Hargreave (1983), c = 0.24 in ROS, so from Eq.
12, D* - 0.6.

10.11 . . . . * * ..

b:

GR-. @ sxBR

1.01

0.1 . . ,... ........ ...
0.001 0.01

c
0.1 1.0

FIGURE 6 Lateral diffusion constants for proteins as a function of the
area fraction of protein. (a) Calculated values for R - 0 from Eqs. 4-6
(dotted line) and R = 1-4 from Eq. 12. The dashed curve is calculated
from Eq. 12 assuming 30 boundary lipids rigidly attached to BR. (b)
Observed values for bacteriorhodopsin in DMPC (from Table 3 of Peters
and Cherry, 1982) and gramicidin in DMPC (redrawn from Fig. 7 of
Tank et al., 1982). Observed values of D are given in ,um2/s; calculated
values are normalized to one at c- 0.

There are several possible explanations for the discrep-
ancy.

(a) The effect of boundary lipids. To examine their
effect, we assume that a complete shell of 30 lipids (Heyn
et al., 1981) is rigidly bound to BR and recalculate the
diffusion constants, using ap = [8.75 + 30(0.657)] nm2 in
Eq. 13; these results are also shown in Fig. 6 a. Even this
extreme assumption does not decrease the diffusion con-
stant enough to match the observed values for BR. In ROS,
-38% of the lipids are motionally restricted as shown by
electron spin resonance (Watts, 1982). If these lipids were
rigidly bound to rhodopsin, Eq. 12 would give D * = 0.42.
This value is still somewhat greater than the measured
values.

(b) Association of protein. Rotational diffusion mea-
surements show that BR begins to form clusters at a
lipid/protein molar ratio of 100:1 (Cherry and Godfrey,
1981), corresponding to a protein area fraction of 0.12. But
formation of the trimer will have little effect on the
observed diffusion constant. The equation of Saffman and
Delbriick (1975) shows that at infinite dilution the diffu-
sion constant of trimer is -10% lower than that of mono-
mer. Fig. 5 shows that the effect of concentration on the
diffusion constant for hexagons of radius 1-4 is indepen-
dent of radius. So it should not make much difference
whether a given area fraction of BR is present as monomer
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or as trimer. This conclusion agrees with the experimental
results of Vaz and co-workers on various proteins (Clegg
and Vaz, 1985).

(c) Protein-protein interactions. Diffusion rates can be
affected by hydrodynamic interactions, a lipid-mediated
interaction, or a protein-protein potential. The theoretical
results of Ohtsuki and Okano (1982) for interacting
Brownian particles in three dimensions suggest that any
protein-protein potential, attractive or repulsive, will
reduce the diffusion constant for self-diffusion (see also
Abney et al., 1987). But note that for BR, Pearson et al.
(1983) found that they could simulate the observed pair
distribution function using only a hard-core repulsion.

(d) Perturbation of the lipid viscosity by the protein.
This has been suggested frequently (see, for example,
Jacobson et al., 1981; Cherry and Godfrey, 1981; Peters
and Cherry, 1982), but up to now there has been no way to
separate the effect of the protein as an obstacle from its
effect on lipid dynamics.

Lipid Diffusion in the Presence of Pro-
tein. Tank et al. (1982a) and Peters and Cherry (1982)
also measured diffusion constants of lipid analogues as a
function of protein concentration. Their results are shown
in Fig. 7.

Strictly speaking, to describe these experiments in terms

Ior. . . . I . . - I

#A

E 1.0

0

A-
0.001 0.01 0.C

C

FIGURE 7 Lateral diffusion constants for lipids as a function of the area

fraction of protein. (a) Calculated values for mobile point obstacles from
Eqs 4-6 for y I and 3, and for immobile hexagonal obstacles (from

Table II of Eisinger et al., 1986 for D as a function offLp). (b) Observed
values for diO-Cl8[3] in bacteriorhodopsin-DMPC mixtures (from Table
3 of Peters and Cherry, 1982) and NBD-PE in gramicidin-DMPC
mixtures (redrawn from Fig. 7 of Tank et al., 1982). Observed values ofD
are given in om2/s; calculated values are normalized to one.

of the Monte Carlo calculations, we would need values of
the diffusion constant for point tracers in the presence of
mobile hexagonal obstacles. These are not yet available,
but Eqs. 4-6 give values for point tracers in the presence of
mobile point obstacles, and the calculations of Eisinger et
al. (1986) give values for point tracers in the presence of
immobile hexagonal obstacles. As shown in Fig. 7, the two
treatments give similar values ofD * (c).
To apply Eqs. 4-6, we need a value of y (Eq. 7). If we

use the observed values of D at the lowest protein concen-
trations, we obtain 'YBR = 2.0 and 'YGR = 2.1. (One could
also use Eqs. 4-6 to extrapolate those values of D to zero
concentration; this would change the y's by a few percent.)
In Fig. 7, curves for -y = 1 and y = 3 are plotted to show the
sensitivity ofD to y.

Again, the observed decrease in D* is greater than the
calculated value. Possible causes include: (a) Perturbation
of the lipid viscosity by the protein. (b) Protein-lipid
interactions; in particular, an attraction leading to tran-
sient binding of the lipid analogue to protein. If the probe is
preferentially bound to the protein, the lipid diffusion
constant will be decreased (Elson and Reidler, 1979;
Jacobson et al., 1981; Jihnig, 1981; Koppel et al., 1981).

DISCUSSION

These results on lipids and proteins indicate that the
geometrical effects modeled in this paper have a significant
effect on the diffusion constants of both lipids and proteins,
but are not sufficient to account for the entire concentra-
tion effect observed. The diffusion constants of both lipids
and proteins are lower than the calculated values, suggest-
ing that the dominant factor is an increase in lipid viscosity
due to the proteins.

Blebs and spherocytes could be a particularly favorable
case for a test of protein effects on lipid diffusion. Neither
the perturbation of lipid viscosity by proteins nor the
transient binding of probe to protein is likely to depend on
the attachment of the proteins to the cytoskeleton. To a
first approximation, the only difference between native and
perturbed membrane is the mobility of the obstacles
(provided, of course, that the compositions of the native
and perturbed membranes are the same).
The effect of protein-protein interaction can be exam-

ined in various ways. Monte Carlo calculations can be
carried out for interacting particles; a simple case of this
was recently treated by Pink et al. (1986). Distribution
functions of proteins in membranes can be obtained from
electron micrographs and used to test models of the
protein-protein interaction (Pearson et al., 1983) and to
calculate an effective pair potential (Braun et al., 1984).
This potential can then be used to calculate the diffusion
constant (Abney et al., 1987).

It would be helpful if two points were considered in
designing experiments on diffusion in the presence of
obstacles. First, the theory gives values of the diffusion
constant relative to the limiting value at zero concentration
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of protein, so that measurements at two or three low values
of c would be useful. Second, the current form of the theory
assumes randomly distributed obstacles and cannot be
applied to systems in which the proteins form large clus-
ters. The use of a nonaggregating protein would permit a
larger range of protein concentrations to be used.

In summary, the theory of Tahir-Kheli (1983) and of
Van Beijeren and Kutner (1985) allows us to treat the
"archipelago effect"-the obstruction of diffusion by
immobile species-and the concentration dependence of
lateral diffusion of proteins in a unified manner, and allows
calculation of D* for arbitrary ratios of the jump rate of
obstacles to the jump rate of tracers. The Monte Carlo
model presented predicts the geometrical effect of obsta-
cles on diffusion, making it possible to separate purely
geometrical effects from those of protein-protein and
protein-lipid interactions. The geometrical effects and the
sum of the other effects appear to be of comparable
magnitude.
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