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ABSTRACT The results of Decker and Levitt (1987) suggest that the conductance of H+ ion through the gramicidin
channel is limited primarily by diffusion in the bulk solution at the channel mouth. It is assumed in this paper that the
H+ conductance is 100% diffusion limited. This means that all the factors that influence the H+ flux are external to the
channel and are presumed to be known. In particular, the diffusion coefficient of H+ in this region is assumed to be
equal to the bulk solution value and the only force acting on the ion is that due to the applied voltage. A model of the H+
flux is derived, based on the Nernst-Planck equation. It has three adjustable parameters: the electrostatic radius, the
capture distance, and the radius of the H+ ion. The acceptable range of the parameters was determined by comparing
the predictions of the model with the experimental measurements of the H+ conductance at pH 3.75. The best fit was
obtained for an electrostatic radius in the range 2.3-2.7 A. This is in good agreement with earlier predictions (2.5 A)
based on the assumption that the dielectric constant of the channel water is equal to that of bulk water. The addition of 1
M choline Cl- (an impermeant) increases the H + current at low voltage and decreases it at high voltage. The increase
can be explained by the small surface charge that results from the separation of charge produced by exclusion of the
large choline cation (relative to Cl-) from the membrane surface. The decrease at high voltages can be accounted for by
the change in the profile of the applied potential produced by the increase in ionic strength.

INTRODUCTION

There have been a number of studies that have tried to
obtain information about the structure of the gramicidin
channel from measurements of its cation conductance
(Hladky and Haydon, 1984; Polymeropoulos and Brick-
mann, 1985). The success of these studies has been limited,
primarily because not enough is known about the kinetics
of ion transport within the channel. It should be possible to
avoid most of these unknowns by analyzing the conduc-
tance of H+ because it seems to be limited almost entirely
by diffusion in the bulk solution (Decker and Levitt,
1987)-a process that is, presumably, quantitatively
understood. Here, a theoretical model of the H+ conduc-
tance (in the absence of formic acid) will be developed,
based on the assumption that H+ is 100% diffusion limited.
By comparing the predictions of the model with the
experimental H+ conductance, some definite inferences
can be made about the structure of the gramicidin chan-
nel.
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There are two aspects of the experimental results that
must be fit by the model: the absolute conductance and the
voltage dependence of the conductance. It is relatively easy
to fit the absolute conductance by varying, for example, the
"capture" distance of the channel (the position where the
ion falls into the attractive energy well of the channel). In
order to fit the voltage dependence, part of the drop in the
applied voltage must occur in the bulk solution. The
magnitude of this voltage drop depends on the "electro-
static radius" of the channel. This is the effective radius of
the high dielectric, aqueous region of the channel and is an
important parameter for characterizing the gramicidin
channel, playing an important role in determining the
cation conductance. The electrostatic radius is a function
of the dielectric constant and radius of the region occupied
by the channel water, and the dielectric constant and
thickness of the polar inner wall of the channel, all of which
are unknown. The most important result of this compari-
son between the diffusion-limited model and the experi-
mental H+ conductance is that it places narrow limits on
the possible values of this electrostatic radius.

The exact solution for the voltage profile as a function of
the electrostatic radius requires a complicated numerical
solution (Jordan, 1982). In addition, it is difficult to
incorporate the influence of ionic strength into this exact
solution. To avoid these problems, an approximate analyti-
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cal solution is derived for the profile of the applied voltage
external to the channel. This solution differs from the exact
solution by only a few percent and can be easily modified to
include ionic strength effects.

Factors That Contribute to a Voltage Drop
in the Bulk Solution

There are three different factors that produce a voltage
drop and it is useful to clearly define each of them since
they are often confused.

Voltage Drop for a Pure Lipid Membrane. For
a pure lipid membrane (no ion channels) a fraction of the
total voltage drop will be in the bulk solution because the
aqueous double-layer behaves like a capacitor. Hainsworth
and Hladky (1987) have recently discussed the theoretical
and experimental influence of this voltage drop on the
gramicidin channel conductance. This effect is important
only at very low ionic strength and is relatively insignifi-
cant in these studies. The voltage dependence of the
experimental H+ conductance used in this paper (Decker
and Levitt, 1987) was measured in ionic solutions with
concentrations as high as 27 mM MgCl2, an ionic strength
for which this effect is negligible. In these experiments,
there was no significant difference of the voltage depen-
dence in the solutions containing 2 mM MgCl2 (plus 5 mM
aspartic acid buffer), the lowest ionic strength used, versus
27 mM MgCl2. The results in the figures are the average
values from experiments in which Mg"+ varied from 2 to
27 mM.

Equilibrium Voltage Drop at the Mouth of an
Ion Channel. The channel represents a high dielectric
hole in the low dielectric membrane and this results in a
finite voltage drop in the bulk solution at the channel
mouth. An analytical expression is derived here for the
dependence of this voltage drop on the size of the hole and
on the ionic strength. (Andersen [1983] has developed
another approximation for this effect.) This is the only
factor that is important for the analysis of the H+ conduc-
tance presented here.

Voltage Drop Resultingfrom Flux of Permeant
Ion. The above two factors do not depend on the presence
of an ion current and will be present at equilibrium when
there is no flux (i.e., no permeable ions). This third factor
arises directly from the ion flux that produces a depletion
of permeable ions at one end of the channel and an excess
at the other end. This nonequilibrium ion distribution
produces a voltage gradient. Lauger (1976) derived an
approximation for this effect based on an assumption of
electroneutrality. Recently, Levitt (1985) has presented an
exact solution for the potential (4') based on Poisson's
equation, modified for the conditions of a high dielectric

channel in a low dielectric membrane:

dX(\dX)=(4reE/) 2z CiS.
(1)

The sum on the right side is over all the ions, permeable
and nonpermeable. For the case considered in this paper
where H+ is the only permeable species, the contribution of
the permeable ions to the voltage drop (Eq. 1) is negligible
because H+ is present in such a low concentration
(2.7 x 10- M). The contribution of the impermeable ions
to the voltage gradient (Eq. 1) is important and is included
in the ionic strength influence on the equilibrium voltage
drop discussed above (see Eq. 5).

Derivation of the Flux Equation
At pH 3.75, only a small fraction of the channels are
occupied by H+ ions (Decker and Levitt, 1987), so that
there is no interaction between ions and the flux can be
described by the classical Nernst-Planck equation (Levitt,
1986):

J = Co(e°-e-4o)/H U= 4) + ; u = (e/kT)U

H = f h(X)dX; h(X) =e-l(DS.); (2)

where D is the diffusion coefficient, Se is the "effective"
area available to the H+ ion, + i,0 and -4t0 are the bulk
values of the applied voltage on the left side and right side,
CO is the symmetric bulk solution concentration, and u is
the dimensionless total potential which is the sum of the
applied voltage (it) and the intrinsic channel potential (4).
The integral H can be divided into an integral over the bulk
solutions on the left and right side and over the "channel":

f-L-W L+W
H =J h(X) dX + W h(X) dX

+fJwh(X)dX, (3)

where the physical channel extends from -L to +L and W
defines the distance from the channel end where the H + ion
is "captured" by the channel. The three integrals corre-
spond to the magnitude of the generalized resistances of
the three regions, arranged in series.

In general, the potential energy (u), area (Se), and
diffusion coefficient (D) in the channel are unknown, and
must be either guessed or determined empirically by fitting
the experimental results. However, the transport of H+ in
the gramicidin channel presents a unique case where the
transport is nearly bulk solution limited, i.e., the resistance
of the bulk solutions (the first and third integral in Eq. 3)
represents -95% of the total resistance (Decker and Levitt,
1987). Thus, the gramicidin channel has a very high H+
conductance, relative to the bulk solutions, presumably a
result of a high diffusion coefficient and/or large negative
potential energy in the channel. It will be assumed here
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that the H+ is 100% diffusion limited so that the second
integral in Eq. 3 can be neglected. It will also be assumed
that, in the region of bulk solution external to the capture
position, 4F is zero and D is equal to the bulk solution value
(Do). This is an approximation to the actual situation
where the attractive potential that "captures" the ion must
vary continuously from its value in the channel to zero in
the bulk solution. Although the origin of this attractive
potential in the gramicidin channel is unknown, it must be
of short range since gramicidin is uncharged. The capture
distance W should be regarded as an empirical (and
adjustable) constant that characterizes the position where
this attractive potential becomes significant. Using the
antisymetrical property of ,1, H can then be written as:

DOH = e#o f dXe"-001S,
+ e-'0f d

(eh + e- °)II + (e- ° - e*°)I2

J=L+W/se; 2 = JL+AX(4O + 4)I/Se, (4)
where the second quality results from the expansion of the
exponentials, which is valid because <10% of the voltage
drop occurs in the bulk solution (see Fig. 2).

An analytical approximation for the applied voltage
profile (,6) has been derived previously (Levitt, 1987). In
Eq. 4, only the profile in the bulk solution is needed and the
derivation has been slightly modified to increase the accu-
racy of this result. The modification consists of defining
two radii (Fig. 1): the electrostatic radius of the channel
(a) and another, larger, radius just outside the channel
mouth (d). It is assumed that the field lines are confined to
a cylinder of radius a in most of the channel, and spread
into a radius d at the channel end (see Levitt, 1987 for
details). The radius d was then empirically adjusted to fit
the exact numerical calculations of Jordan (1982) for the
potential external to the channel. The modified expression
for it is written in terms of dimensionless variables (x = XI
d; Q = L/d; w = W/d; c = d3C) normalized by the length d
(in earlier publications, the length a was used to normalize
the variables):

I + 4,hpo
Qexp [-K(X - Q - 1 )]/(x - 9) Q + I xsX

Q{1+ 2(1 + K)[ir/4 - tan-'(x -Q)]} Q< x 2 + 1 (5)

Q{1 + 2(1 + K)[7r/4 +(Q - x)k2]}OI xzQ
Q = [1 + 2(1 + K)(7r/4 + k 2)] ; K2 = 8iryc1;

,y = e2/(Ewk Td); k = dla,

where K = d/Debye length and c; is the dimensionless
impermeant concentration. Choosing d = 1.5a (k = 1.5),
this approximation becomes very good, agreeing to within
1% of the exact numerical external (x > Q) potential

FIGURE 1 Diagram of assumed allignment of field lines used to derive
expression for the profile of the applied voltage (Eq. 5). The field lines are
constained within the electrostatic radius (a) in the channel and diverge
into a larger radius (d) at the channel end. The value of d was adjusted in
order to find the best fit to the exact numerical solution for the potential
outside the channel. The figure is drawn with d/a = k = 1.5, the value
that gave the best fit.

(Jordan, 1982) for L/a varying from 1.25 to 10. Fig. 2
shows this voltage profile in the low ionic strength limit for
the bulk solution region at the right end (x > 0) of the
gramidicin channel (half length = L = 12.5 A) for dif-
ferent values of the electrostatic radius (a). The profile has
been rescaled so that the voltage in the bulk solution is zero
and V,O = 2 V/0.

An expression for the "effective" area (in terms of the
dimensionless variable sc = Se/d2) available to the H+ ion
has been derived previously (Levitt, 1987):

g + (x _Q)2f 9 sx < Q + k-

e,/ 2(x-Q)(x-Q-b) Q+ k-' < x
(6)

g= (k-1 - b)2, f = - k2b2,

where B is the "effective" radius of the H+ ion and b =
B/d. It is assumed in Eq. 6 that the electrostatic radius (a)
is equal to the physical radius available to the H+ ion. This
should not reduce the generality of the result since the
effective radius of the H+ ion (b = B/d = k-'B/a) is
treated as an arbitrary adjustable parameter in fitting the
experimental results.

The integrals I, and I2 are then obtained by carrying out
the integrations in Eq. 4, using Eqs. 5 and 6. (In this
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FIGURE 2 Profile of applied voltage (Eq. 5) at the right end of the
gramicidin channel (half length = 12.5 A) relative to the total transmem-
brane voltage for different values of the electrostatic radius (a) for the
case where K =0. The profile of Eq. 5 has been rescaled so that the voltage
(V) in the right bulk solution is zero and V,O = 24'o.
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integration, the tan-' [y] was approximated by y - y3/3).
The final analytical expression is

irdIl = 13- (2b) 'log (1- kb)

rdI21QVIO==(I + 7rt/2)I3-t[I + g/(3f)]
.f ' log [(g +f/k2)/(g +fw2)]
+ [t/(3f)](k-2 - w2)
+ (2b)-'(1 + 7rt/2) log [(1 - b)/(1 - bk)]

-t(I -b2/3) log [(k-bk)/(1 - bk)]

+ (t/6)(1 - k-2) + (tb/3)(1 -k-')
+ 0.5e'{Ei(-K)- e-'Ei[-K(l-b)]Ib2
- [KEi(-K) + e1]/b}

t = 1 + K; I3= {tan- [k-1 (f/g)'12]
- tan-'[w(f/g) 1/2]}(gf) 1/2, (7)

where Ei is the exponential integral function. The H+ flux
is then obtained from Eqs. 2, 4, and 7.

Comparison of Theoretical and
Experimental Values of H+ Conductance at
Low Ionic Strength

There are three adjustable parameters in this expression
for the H+ flux: the electrostatic radius (a); the capture
distance (w = W/d); and the radius of the H+ ion (b = B/
d). As b increases, the cross-sectional area available to the
ion decreases, decreasing the flux. As a increases, the
voltage drop in the bulk solution increases with a corre-
sponding increase in the voltage dependence of the flux. As
w increases, the H+ ion is "captured" further out in the
bulk solution so that the ion sees less of the voltage drop
and the voltage dependence is decreased. It will be
assumed that w ranges from a minimum of 0 to a
maximum of 1 (W = d). Values of w outside this range do
not seem to be physically likely.

Fig. 3 shows a comparison of the experimental (o) and
theoretical H+ current for the entire range of parameters
that can fit the data for the gramicidin channel (2L = 25
A). Each panel is for one value of the electrostatic radius
(a), ranging from 2 to 3 A. For each curve, b was chosen so
that the current matched the experimental value at 100 mv
and then w was varied to give the best fit to the voltage
dependence. For a =2.0 A, the theoretical curves have too
little voltage dependence, even for the extreme value w = 0.
Similarly, for a = 3 A, the theoretical curves have too
much voltage dependence, even for the extreme value w =
0.9. Good fits to the experimental results can be obtained
for values of a ranging from 2.33 A (w = 0-0.5) to 2.67 A
(w = 0.5-0.8). Although this analysis suggests that the
electrostatic radius of the gramicidin channel is probably
in the range of 2.3 to 2.7 A, a radius in the range of 2-3 A
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FIGURE 3 Variation of parameters to find the best fit of the theoretical
H+ current (lines) to the experimental results (e) at pH 3.75 and low
ionic strength. Each panel is for a different value of the electrostatic
radius (a). For each value of w (capture distance), b (H+ ion radius) was
adjusted to fit the data at 100 mV. The theoretical lines correspond to the
following sets of parameters: a = 2 A (w = 0, b = 0.255, ; w = 0.5,
b = 0.605, ---); a = 2.33 (w = 0, b = 0.28, ; w = 0.5, b = 0.62, ---);
a = 2.67 (w = 0, b = 0.3, ; w = 0.5, b = 0.635, ---; w = 0.8,
b = 0.843, );a = 3 (w = 0.5, b = 0.255, ---; w = 0.9, b = 0.91,

cannot be ruled out, given the number of assumptions that
were made in deriving this result.

Comparison at High Ionic Strength
The theoretical equation for the potential profile (Eq. 5)
includes the influence of the ionic strength through the
parameter K (d/Debye length). This expression was
derived by assuming that the inert electrolyte was excluded
from a hemispherical region of radius d (= 1 .5a - 3.7A) at
the channel mouth (Levitt, 1987), a distance approxi-
mately equal to the radius of choline. The presence of inert
electrolyte external to this hemisphere screens the poten-
tial, reducing the fraction of the applied voltage difference
that is external to the channel. Fig. 4 shows the decrease in
the external potential produced by the addition of 1 M cho-
line.

The experimental single-channel H+ current at pH 3.75
in the absence (-) and presence (*) of 1 M choline Cl- is
shown in Fig. 5. It can be seen that choline increases the
conductance at low voltages and decreases it at high
voltages. The decrease at high voltage is expected since the
increase in ionic strength will decrease the voltage drop in
the bulk solution (see Eq. 5 and Fig. 4). The increase at low
voltages is more surprising and probably results from the
large size of the choline ion relative to the Cl- ion (Carnie
and McLaughlin, 1983). The small Cl- can get closer to
the membrane, creating a negative surface charge that
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increases the concentration of H+ at the channel mouth.
This effect is treated approximately in the Appendix where
it is shown that it is of the right size to account for the
observed increase in conductance. This negative surface
charge should increase the H+ concentration and there-
fore, the conductance, by some constant factor at all
applied voltages. To correct for this surface charge, the
experimental H+ conductance in the presence of choline
was scaled so that it was equal to the low ionic strength
conductance at 50 mV (as one would expect theoretically,
see Fig. 5). This scaled data (o) are shown in Fig. 5.
The lines in Fig. 5 are the theoretical H+ current in the

absence (C = 0) and presence (C = 1) of 1 M choline Cl-
and for the case where there is no voltage drop in bulk
solution (C = infinite). The same set of parameters
(a = 2.33 A, w = 0.2, b = 0.4) was used for all three
curves. The agreement between the scaled experimental
data (o) and the theory for 1 M choline is quite good,
providing additional support for the validity of the model
and the accuracy of the estimate of the electrostatic radius
(a).

DISCUSSION

The electrostatic radius is an important parameter for
characterizing the ion transport properties of an ion chan-
nel. This radius and the pore length completely define the
magnitude of the electrostatic potentials of the channel;
including the Born image potential, the potential from a
fixed charge in the channel, the ion-ion interaction poten-
tial, and the profile of the applied voltage (Levitt, 1987).
The dielectric constant of the channel should vary contin-
ually as one moves out from the center of the water-filled
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FIGURE 5 Experimental HI
current in absence (e) and pres-
ence (*) of 1 M choline chloride.
The results in the presence of 1
M choline have been scaled (0)
so that the current at 50 mv is
equal to that in the absence of
choline. The solid lines corre-
spond to the theoretical current
for a = 2.33 A, w = 0.2 and b =

0.4 in the absence (C = 0) and

pore, through the polar inner and nonpolar outer peptide
regions of the gramicidin channel. Even the concept of a
continuum dielectric constant is questionable on the local
scale of this problem. This complicated system is usually
replaced by an "equivalent" electrostatic radius (defined
as the radius of a channel with the dielectric constant of
bulk water (e = 78) in a lipid (e = 2) membrane) that
mimics the electrostatic potential on the axis of the real
channel (Jordan, 1984). The electrostatic radius (a) deter-
mined here from the H+ conductance corresponds to this
"equivalent" radius.

The major uncertainty about the magnitude of this
equivalent radius is the value that should be used for the
dielectric constant of water in the channel. It is not clear
whether this single file of oriented water molecules should
have the same dielectric constant as bulk water. Jordan
(1984) estimated that the equivalent radius should be -2.5
A, based on the assumption that the 2 A radius hole in the
channel was filled with water that had a dielectric constant
equal to that of bulk water, along with an estimate of the
additional effect of the polar gramicidin wall. This value is
remarkably close to the value determined here from the H+
flux (best estimate 2.3-2.7 A). However, one must retain
some skepticism about this agreement, considering the
number of assumptions that have gone into these calcula-
tions.

APPENDIX

Surface Potential Resulting from Addition
of Large Cation

This surface potential arises from the separation of charge
that results from the exclusion of the large cation (and
resultant excess of anions) in a region close to the mem-
brane surface. It will be assumed that there is a region of
thickness p (equal to the difference between the cation and
anion radius) at the membrane surface from which cations
are excluded and in which anions are distributed according
to their Boltzmann distribution.

The dimensionless form of Poisson's equation can be
written as (Carnie and McLaughlin, 1983):

S2 = - 2;Zici; k= e 4/kT; c = C/Co

S = X/X X2 = kTE,/(8-re2CO) = 9.47/Mo, (lA)

where X is the Debye length, C0 is the bulk solution
concentration in number/(length)3, and, in the last equali-
ty, X is in Angstroms and Mo is the molar concentration. In
Region I (p sX co; p/X < < c), both ions have a
Boltzmann distribution:

presence (C = 1) of 1 M large impermeant ion, and for the case where
there is no voltage drop in the bulk solution (C = infinite). += e-+; e+. (2A)
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The Poisson-Boltzmann equation is then:

d24s 1d+=-2 2(e-+ - e°) C0-o(3A)

The exponentials have been expanded because 0 is small.
The solution to this equation, subject to the boundary
condition that both X and d4/dx are zero at o= , is

ol = Be-i. (4A)

In Region II (0 < X s p; 0 < .< p/X), the cation is
excluded and the Poisson Boltzmann equation becomes

d2,0 1 1 (5A)

Since it is assumed that there is no surface charge at the
membrane surface, the boundary condition is do/dt = 0 at
t = 0 (Carnie and McLaughlin, 1983). The solution to this
equation is

I-1 + A(e+Z42 + e-t/42 (6A)
Solving for A using the condition that both 0 and d4/dx
must be continuous at t = p/X:

A = v2[e( p/A)/2(1 + vF2) + e\( X - 1)]'. (7A)

The potential at the membrane surface is then

II(O) = -1 + 2A. (8A)

For p = 1.5 A (assuming a 3.3 A radius for choline and a
1.8 A radius for Cl-) and Mo = 1 M; A = 0.38 and
II(O) = -0.23 (in units of kT/e 25 mV). This surface
potential should increase the H+ ion concentration (and,
therefore, the H+ current) at the membrane surface by a
factor of e-+ = 1.26. Experimentally, the H+ current at 50
mV is increased by a factor of 1.13 by the addition of 1 M

choline Cl-. Since the H+ ion is captured at some distance
from the membrane surface where the potential will be-less
than the surface potential, this experimental result is
consistent with the theory.
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