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ABSTRACr This paper is concerned with the accurate and rapid calculation of extracellular potentials and currents
from an active myelinated nerve fiber in a volume conductor, under conditions of normal and abnormal conduction. The
neuroelectric source for the problem is characterized mathematically by using a modified version of the distributed
parameter model of L. Goldman and J. S. Albus (1968, Biophys. J., 8:596-607) for the myelinated nerve fiber. Solution
of the partial differential equation associated with the model provides a waveform for the spatial distribution of the
transmembrane potential V(z). This model-generated waveform is then used as input to a second model that is based on
the principles of electromagnetic field theory, and allows one to calculate easily the spatial distribution for the potential
everywhere in the surrounding volume conductor for the nerve fiber. In addition, the field theoretic model may be used
to calculate the total longitudinal current in the extracellular medium (IL(z)) and the transmembrane current per unit
length (im(z)); both of these quantities are defined in connection with the well-known core conductor model and
associated cable equations in electrophysiology. These potential and current quantities may also be calculated as
functions of time and as such, are useful in interpreting measured IoL(t) and im(t) data waveforms. An analysis of the
accuracy of conventionally used measurement techniques to determine IL(t) and im(t) is performed, particularly with
regard to the effect of electrode separation distance and size of the volume conductor on these measurements. Also, a
simulation of paranodal demyelination at a single node of Ranvier is made and its effects on potential and current
waveforms as well as on the conduction process are determined. In particular, our field theoretic model is used to predict
the temporal waveshape of the field potentials from the active, non-uniformly conducting nerve fiber in a finite volume
conductor.

INTRODUCTION

The study of currents and potentials in and around active
myelinated nerve fibers is a subject of great interest in
electrophysiology. The effects of demyelination on the
nerve fiber's ability to conduct an action potential and the
nature of conduction after the myelin sheath grows back
some days after the nerve fiber is demyelinated, are but a
few of the many aspects of myelinated nerve fiber conduc-
tion that are studied using extracellular current and poten-
tial measurements from an excised myelinated nerve fiber
situated in a finite volume conductor (Paintal, 1965, 1966;
Rasminsky and Sears, 1972; Bostock and Sears, 1978;
Bostock et al., 1983). Magnetic measurements of action
currents have also been obtained by Wikswo et al. (1980)
from a vertebrate nerve trunk, and by Barach et al. (1985)
and Roth and Wikswo (1985) from an invertebrate nerve
cord containing unmyelinated axons. Previous work (Clark
and Plonsey, 1968) produced a model based on the princi-
ples of electromagnetic field theory that can be easily
modified to rapidly and accurately calculate the potential
and current density distribution, everywhere in the finite
cylindrical volume conductor that bathes the active nerve
fiber. The input data required for the calculation consist of
the transmembrane potential distribution 4bm(Z) and the
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specific conductivities of the intra- and extracellular
media. Simulated transmembrane potential data are used
in this theoretical study into the nature of the potentials
and currents flowing around the single myelinated fiber
under conditions of normal and abnormal conduction.

MODELING ASPECTS

The expressions for the intracellular and extracellular
potential distributions 4i(p, z) and V'(p, z) from an active
nerve fiber of radius a positioned at the center of a finite
volume conductor of radius b (Fig. 1) may be obtained by
solving Laplace's equation under conditions of quasista-
tionarity. The general form of these solutions is given as

.(p, z) = - A(k)Io(jkjp)e ikzdk p<a (1)

0(p, z) = fyfX [B(k)Io(jkjp)
+ C(k)Ko(lklp)]e-jkz dk a <p <b, (2)

where In and Kn are modified Bessel functions of the first
and second kind order n. Since axial symmetry (o/&k = 0)
is assumed, only order n = 0 is of interest here. The
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be written as

41(p, z) = IoIkp
)=2,r - Io(lkla)A(Ikl)

Fm(k)e-jkz dk p ' a- (7)

and

V°(P, z) = 2r I io(lklp) + K 0(lklb)Ko(lklp)I
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FIGURE 1 A stylized diagram of the equivalent filtering problem for the
extracellular potential where $m(Z), 4O(z), and 4°(z, p) are the spatial
transmembrane, outer membrane surface, and field potential distribu-
tions, respectively. The membrane filter is M(IkI) and W0(IkI p, b) is the
medium filter. Immediately above the block diagram are representative
waveforms of the spatial transmembrane, outer membrane surface, and
field potential distributions. Fiber geometry is shown at the top of the
figure. The external medium is considered uniform, homogeneous, and
isotropic with a specific conductivity ao (S/cm); the internal medium is
assumed to be uniform, homogeneous, and isotropic and is characterized
by a specific conductivity a;. The fiber radius is denoted by a and the
volume conductor radius is b.

coefficients A(k), B(k), and C(k) can be solved for by
applying the following boundary conditions at p = a and
p = b.
At p = a,

-u0- (3)dP a OP a

cV(a-, z) = 4,j(z) (4)

4V0(a+, z) = Isj(z), (5)

where 4%i(z) and 4%O(z) are potential distributions in z
along the inner and outer surfaces of the membrane,
respectively.
At p = b, the sheath-like boundary may be either

conductive or nonconductive. In our consideration we will
consider it to be nonconductive, that is

= 0
Cp b

Upon applying the boundary conditions and after per-
forming some algebraic manipulations, the expressions for
intracellular and extracellular potential distributions may

(6)

Fm(k) -Jkzdk a+ p < b,A(IkI)n(IkI) ejkdk a p
where the quantities 1(lkl) and A(Ikl) are defined as

X7(l|kl|-)--rIo(IkIa) I - IlX(lJklba)KI(lTk ab)][ Ii(IkIa)Kl(IkIb) J

and

1 +l(lklb)Ko(lkla)
A(lkl)-1 _ a; Io(lkla)Kl(lk|b)A(Ikl) I ' I(kaK(kb

00 Il(lklb)Kl(lkla)
I(Ikla)K,(Iklb)

(8)

(9)

(10)

Here ,, and v; are the specific conductivities (S/cm) of the
extra- and intracellular media. The terms I,, and K, are
modified Bessel functions of the first and second kind,
respectively, and of order n; the term Fm(k) is the Fourier
transform of the spatial transmembrane potential distribu-
tion Wm(Z) (Note: 4m(Z)o 4j(z) - o(z))

Using the definition of the extracellular field potential
(8) the expression for transmembrane current per unit
length im(z) may be expressed as

im(z) =-27raa0 ad fo[I,(Ikla)

IXk1lb)) KI(jkIa) Jkllm(k) e-jkz dk. ( 11)Kj(IkIb) ]A(Ikj)n(jkj)
The derived expressions for potential given by Eqs. 7 and

8 allow one to determine the potential everywhere in the
intra- and extracellular media. Based on these expressions,
it is possible to compute the current density field anywhere
in these media and hence the total longitudinal currents
IL(z) and IL(z), associated with the cable equations. In
general, the current density field J in each of these media
consists of a radial and axial component, that is

J°(p, z) = J°(p, z)ap + J°(p, z)-a
J'(p, z) = J,(p, z)5, + J'(p, z)-a

(12)

(13)

where

J,(p, z) n -0goW(P, z)
p CI~~~p

JO(p, z) _ - g XI(p, Z)
oz

(14)

(15)
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J(PZ)(p.Z) (16)p ~~~op
09bi(P,z) (17)

oz

and ap and az are the unit directional vectors.
The expressions for total longitudinal current in each of

these media is

IL(z) =
b

2irpJ°(p, z)dp = -2 ar
b

p (P' ) dp (18)
fa

IL(Z) = J( 2irpJ'(p, z)dp = - 27ror p p (19)

We proceed by using the expressions for potential 7 and
8, differentiating them with respect to z, interchanging the
order of integration and evaluating the integral in p by
using the Bessel function identities (Abramowitz and
Stegun, 1965) given as

(X2 x'Kn ,()x=-[""XI (20)
4 2xInK (x)dx= [xMK.(x)]x (20)

The results for the total longitudinal currents are

jr ]kFm(k)
IL(z) =-au. J kI0IkItIkI

[I(jkla) -I _)KI(IkIa)] e-jkzdk (22)

and

where M(Ikl) is the cell membrane filter function used to
calculate the potential distribution at the outer surface of
the membrane, W',,(Ikl p, b) is the medium filter function
used to calculate the extracellular potential and is defined
in association with Eq. 8, Cmo(Ikl, a, b) is a transmembrane
current filter function (Eq. 11), and CLO(k, a, b) is the
external longitudinal current filter function (Eq. 22).
Thus,

0(P',Z) = 2 f WO(jkj p, b)M(Ikl)Fm(k)e-ikzdk (28)

im(Z) =- -oa f Cmo(Ikt, a, b)Fm(k)e -kZdk (29)

and

IL(z) = -ooa f CL.(k, a, b) [jFm(k)]e-ikzdk.L~~~~ (30)

Discrete Fourier Methods of Solution
In the preceding paragraphs, integral expressions have
been developed for a number of variables including extra-
cellular potential V°(p, z), transmembrane current per unit
length im(z), and the total intracellular and extracellular
longitudinal current, IL(z) and IL(z), respectively. Compu-
tation of these quantities is greatly facilitated by reformu-
lation of these integral expressions in terms of the method-
ology of the Discrete Fourier Transform (DFT) technique
(Greco et al., 1977; Ganapathy et al., 1985; Wilson et al.,
1985). Reformulation of these equations for representation
in the discrete spatial (z) and spatial frequency (k)
domains will be illustrated using the transmembrane cur-
rent per unit length as an example

IL(Z) = au, I(jkFm(k) rIi(IkIa)1 (23)

The problem of calculating currents and potential in
terms of the integral Eqs. 8, 11, and 22, is simplified by
definition of the following set of filter functions:

1M(IkI) = ~- 1A(Ikl)

1 N-1

Im(Pq) = - im(Zn)ei2rnqIN27rau0 n-0

=- DFT [im(Zn)] (31)
2vau0

1 N-1

(24) i4(Zn) = - 2iraa0- Z I(Pq)eJ2TrnqN q-O

Il(IklIb)
W0(Ikl p, b) [0Io(lkl p) + K (lklb) Ko(lkl p)

(|kl){l- A(Ikl)l (25)

Cmo(Ikl, a, b)= Il(lkl a) - l(lkl b)Kl(lk a)

|kl
A(Ikl)n(lkl)

K,(IkI b) 1k
CLo(k, a, b) I-Il(IkI a) - K(ll b)KI(lkl a)b

k

lkI A(Ikl)n(lkl)'

(26)

(27)

= -2irac0 IDFT[Im(Pq)] (32)

where

27r
NZ

(33)

Here Z and P are the sampling intervals in the z- and
k-domains, respectively, and n and q are integers. The
function zm(Z) is approximately band-limited in both the z-
and k-domains, meaning that im(z) is nonzero for a small
finite range of z values (-ZI < Z < Z2) and essentially
zero outside this range. Similarly, im(z) is band-limited
with respect to frequency content; therefore Im(k) is non-
zero only within a small range Iki < M (a constant) and
essentially zero elsewhere. Thus, the discrete functions
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im(Zn) and Im(Pq) approach zero as Zn and Pq, respec-
tively, become large. The sampling interval Z is chosen to
be small enough so that no aliasing occurs in the k-domain,
and the number of samples or sampling duration, NZ, is
chosen to include the entire signal. Relationships similar in
form to the DFT pair of equations (i.e., Eqs. 31 and 32)
exist for I°(z) and F° (k) as well as 'L(Z) and FL(k).
Thus the various cable equations can be evaluated as

products of DFTs (equivalent to linear convolution). Once
again the transmembrane current is given as an example.

Im(Pq) = Fm(Pq)Cmo(Pq, a, b), (34)

where q = 1 .... N. The transmembrane current itself is
given by

i,(Zn) := - 27raaoIDFT[Im(Pq) ].

Models for the Active Source Fiber
Our study involves an investigation of the nature of the
potential and current density fields in a cylindrical volume
conductor surrounding an active nerve fiber. In previous
studies of Clark and Plonsey (1966, 1968), rather simple
simulated action potential distributions were used as mem-
brane source potential waveforms for the volumne conduc-
tor problem. In the present study, spatial distributions of
transmembrane potential 4m(Z) are obtained from a dis-
tributed parameter model simulation of the active myeli-
nated nerve fiber. These simulations yield much more
realistic action potentials and the model parameters may
be conveniently varied so as to represent a variety of
experimental conditions. Fig. 2 a shows the equivalent
circuit model for the representative myelinated nerve fiber.

(35)

The other cable equations are also evaluated in a similar
fashion using DFTs.
The equivalent filtering approach is illustrated in Fig. 1

for the case where extracellular potential is evaluated; the
filters involved in the calculation are the membrane filter
M(Ikl) and the medium filter W0(Ikl p, b) for a cylindrical
volume conductor of radius b. The input to the membrane
filter is the spatial distribution of the transmembrane
potential along the nerve fiber 4m(Z). This is the potential
distribution present across the equivalent cell membrane of
the nerve fiber, along its entire length at an instant of time.
The membrane filter transforms the spatial transmem-
brane potential distribution into the spatial potential distri-
bution on the surface of the nerve fiber 4),(z), which in
turn serves as input to the medium filter that produces the
spatial potential distribution in the volume conductor
medium at a particular radius p. Specifying a number of
values of p, the potential distribution throughout the
external volume conductor medium may be easily deter-
mined. The spatial current distributions im(z) and IL(z)
associated with the classical cable equations may be evalu-
ated in a similar fashion at any instant of time provided the
transmembrane potential distribution is specified at that
instant of time.
The filters used in this technique are time-invariant and

depend on certain electrical and geometrical parameters.
Only the model input, namely the spatial transmembrane
potential !m(Z) changes with time; and it may be different
at different instants of time. This fact may be exploited
when the extracellular currents and potentials are recon-
structed as functions of time in that the filter functions
need only be calculated once in the entire process for any
given geometric and electrical configuration. Therefore,
the particular spatial transmembrane potential distribu-
tion at each instant of time is presented as input to the field
theoretic model and output is returned consisting of the
desired current or potential distribution at that particular
time instant.

b

\ /
|----c . b- - a- ' 'b

I ., C

r. Az

FIGURE 2 The (a) distributed parameter model and (b) the electrical
network describing membrane patches of the myelinated nerve fiber. The
patches of membrane in a are characterized by a modified Frankenhaeus-
er-Huxley model at the nodes and a parallel RC network in the internodal
region. In b Cm is the specific membrane capacitance (AF/cm2), EL, EN.,
EK, and Ep are the leak potential, sodium Nernst potential, potassium
Nernst potential, and the Nernst potential of the nonspecific ion channel
(mV), respectively, and gA, gNa, gK, and gp are the specific conductances
(mS/cm2) of the leak channel, the sodium channel, the potassium
channel, and the nonspecific ion channel respectively, C'my and g'my are
the specific capacitance and the specific conductance associated with the
myelin sheath adjacent to the node, Cmy and gmy are the specific myelin
capacitance and conductance respectively, and ri and r. are the lumped
resistance per unit length (Q/cm) of the intra- and extracellular media,
respectively. The myelinated fiber is shown on top where the regions are
labeled as a for the nodal region, b for the paranodal region, and c for the
internodal region.
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The model is characterized by patches of membrane,
coupled by resistances r,Az and r0Az, where Az represents a
unit segment along the fiber; r, and r. are resistances per
unit length. The shunt elements representing nodes of
Ranvier are characterized by the Frankenhaeuser-Huxley
model of the myelinated nerve (Frankenhaeuser and Hux-
ley, 1964), with an additional shunt element to account for
the myelin sheath adjoining the node of Ranvier on either
side. The internodal region between two nodes of Ranvier
is represented by a parallel RC circuit. The conductance
and capacitance values used are those in accordance with
the specific conductance and the specific capacitance of
the myelin sheath. This representation of the myelinated
nerve fiber is based on the work of Goldman and Albus
(1968). The Frankenhaeuser-Huxley membrane model
used by Goldman and Albus (1968) consists of three ionic
currents and one leak current that are assumed to be
present in the nodal membrane of the myelinated fiber.
The three ionic currents consist of a fast inward sodium
current, a delayed outward potassium current, and a very
small inward current that is considerably slower than the
fast sodium current. This later current is said to be due to
nonspecific ions but is characterized in the model as a
sodium current. Since experimental evidence (Horakova et
al., 1968; Chiu et al., 1979; Brismar, 1980; Kocsis and
Waxman, 1980) has proved the existence of potassium
channels in the paranodal region and their almost complete
absence in the node, we decided to associate the potassium
and the nonspecific inward current in the membrane model
with the paranodal region; the segments in the internodal
region of the fiber are characterized by lumped parallel
resistive capacitive elements as in Goldmann and Albus
(1968). An equivalent circuit model of the nodal, parano-
dal, and internodal regions of the myelinated nerve fiber is
shown in Fig. 2 b.
The parabolic partial differential equation describing

the propagation of a nerve impulse along these distributed
parameter networks is given as

02V(Z, t) F OV(z, 1) .1
a a,)= 2ira(r, + r.) [Cm. t + 1jon- stimJ (36)

where V is the transmembrane voltage, Cm is the mem-
brane capacitance, i4.0 the total ionic current, and ijti. is the
stimulus current density. The parabolic partial differential
equation is numerically integrated by a stable, implicit
technique known as the Crank-Nicholson method (Crank
and Nicholson, 1947). The formulation must include boun-
dary conditions at either ends of the fiber, and in this case
the ends are considered to be sealed, reprsenting an infinite
resistance to longitudinal current flow and hence,

-(0, t) =-(L, t) = 0, (37)
clz aOz

where L is the length of the fiber.

The resulting set of N + 1 equations for a cable with N
segments is reproduced in matrix form, thus

-2 4 + 0

1 0

0 1

o o
0 0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0 0

0 0

0 0

1 0

0 4+0

0

0

0

-2

vo,j+

V2,j+l

VN-1,j+1

VN,j+ I

(N-I,j

ON-1j

. (38)

where the terms 0 and 0 are specified in Table II. The
tri-diagonal form of the matrix on the left-hand side of Eq.
38 may be easily inverted to solve for the vector V, which is
the transmembrane voltage at every point along the fiber,
for each instant of time.

COMPUTATIONAL ASPECTS

To obtain the spatial transmembrane potential distribution
along the fiber at each instant of time, the distributed
parameter model characterizing the myelinated nerve fiber
is evaluated. This simulation of the myelinated nerve fiber
is run for a predetermined length of time for a given length
of the nerve fiber, which implies that a certain fixed
number of "time portraits" of the electrical activity along
the fiber can be generated. Each one of these time portraits
is a spatial transmembrane potential distribution. To
reconstruct the extracellular currents and potentials, each
of these time portraits is presented to the field theoretic
model and the corresponding extracellular current or
potential distribution is returned. Given an adequate (Ny-
quist) sampling rate in time, the resulting set of time
portraits of the extracellular currents and potentials com-
pletely define the extracellular currents and potentials as
functions of time.
The process of reconstruction of the time waveform is

further simplified by the fact that there exists a basic set of
spatial transmembrane potential distributions that repeat
with time. The number of members in this set depends on
the velocity of propagation of the electrical activity along
the nerve fiber, the spatial sampling interval Az, and the
sampling interval in time At. Under normal conditions of
conduction, this set consists of very few members that are
needed to completely specify the extracellular potentials
and currents at any given spatial point along the nerve, for
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any instant of time. All the time portraits of the transmem-
brane potential that are generated by the distributed
parameter model simulation of the myelinated nerve fiber
are therefore not required as input to the field theory
model. During abnormal conduction, however, the number
of spatial transmembrane potential distributions required
increases several-fold, depending upon the extent of the
region of abnormality. A large region of abnormality
results in the distortion of several representative spatial
waveforms through the region and most of these need to be
included in the basic set for a successful reconstruction.

Slowed conduction can be introduced by simulating
paranodal demyelination which not only changes the mye-
lin-specific capacitance and conductance on either side of
the node, but also strengthens the potassium and nonspe-
cific currents from the exposed area of the paranodal
region. Complete conduction block may also be induced in
this manner. The various values of the parameters used in
the simulation are given in Table I, which lists the standard
set for both electrical and geometric parameters. The
radius of the volume conductor b is specified as a multiple
of the fiber radius a. The partial differential equation that
describes the propagation of the electrical activity along
the nerve is numerically integrated using a modified
Crank-Nicholson method (Ganapathy et al., 1987). Table
II lists the various parameters that are required to solve the
matrix Eq. 38 using this method.

RESULTS

With the parameter values specified in Table I, the distrib-
uted parameter network for the myelinated nerve fiber can
be solved to obtain the transmembrane potential difference

TABLE I
ELECTRICAL AND GEOMETRIC MODEL PARAMETERS

Parameter Value used

Fiber radius (a) 0.0005 cm
Myelin thickness (at) 0.0002 cm
Length of a node of Ranvier (NL) 0.0004 cm
Internodal distance (INL) 0.2 cm
Radius of the volume conductor (b) n * a
External resistivity (R.) 70 Q cm
Internal resistivity (R;) 100 Q cm
External resistance per unit length (r.) Ro/{7ra2(n2-1)1
Internal resistance per unit length (ri) R1/7ra2
Membrane capacitance (Cm) 2,uF/cm2
Myelin capacitance (Cmy) 0.00387 uF/cm2
Myelin conductance (gmy) 0.083308 MS/cm2
Leak potential (El) 0.026 mV
Leak conductance (g,) 30.3 mS/cm2
Sodium permeability constant (PNa) 0.008 cm/s
Potassium permeability constant (PK) 0.0012 cm/s
Nonspecific permeability constant (Pp) 0.00054 cm/s
External sodium concentration ([Na']0) 114.5 mM
Internal sodium concentration ([Na+]i) 13.74 mM
External potassium concentration ([K+]0) 2.5 mM
Internal potassium concentration ([K+]i) 120.0 mM

TABLE II
CRANK-NICHOLSON PARAMETER VALUES

Parameter Defining expression or value

Step size in time (At) 0.005 ms
Step size in space (Az) 0.02 cm
aforunmyelinatednode [CmKINL + (Az - NL)CmyK2]/

(AzAt)
a' for the myelinated node K2Cmy/At
Wi,j (iN, + iK + ip + ii)(NL/Az)
W'j]y for unmyelinated node V * gy * (AZ - NL)/AZ
WI, for myelinated node V. gmy
yi,j for the unmyelinated node K1 Wi,j + K2 Wi,
y for myelinated node K2W1

o for unmyelinated node -(2 + a)
0 for myelinated node -(2 + a')
Xi,j for unmyelinated node -Vi._ j + (2 - a)V1, - V+,j + zij
k,1j for myelinated node -Vi- 1,j + (2 - a')Vi,j - V+1,j + y',

K, = 4wa [r, + (n2 - 1)r] (Az)2; K2 = 47r(a + at) [ri + (n2 _ I)rj(Az)2.

at every point along the fiber for any time instant desired.
The solution is shown as a three-dimensional view in Fig. 3
where the transmembrane potential is shown along a small
length of the fiber, covering five nodes of Ranvier. The
spatial transmembrane potential can be seen along the
isochronal lines in the figure; electrical activity is shown
here as propagating in the negative z-direction. The famil-
iar action potential is seen in the transmembrane potential
as a function of time, at a fixed point in space. The
discontinuous nature of the propagation velocity along the
nerve fiber manifests itself as discontinuities in the spatial
waveform, which can be traced along each isochronal line.
The extracellular potential calculated at the fiber sur-

face as a function of time, at different points along the
nerve fiber, is shown in Fig. 4. The magnitude of the
calculated potential at the nodes of Ranvier is 10 times its
value at the internodes (note scale changes in Fig. 4). The
discontinuous nature of the propagation is illustrated more

109.63-

E

Gi:a
a0

_0.2

stance (cm)

FIGURE 3 A three-dimensional view of the propagating action poten-
tial, propagating from right to left along the spatial axis (negative
z-direction). The activity is shown over a time period of 4 ms and a spatial
distance of 0.82 cm, which includes five nodes of Ranvier.
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FIGURE 4 The values of extracellular potential as a function of time at
several points on the surface of the nerve fiber. The potentials at the nodes
of Ranvier are plotted on a scale 10 times the scale at which the potentials
in the internodal region are drawn. The arrow indicates the direction of
propagation of the electrical activity along the fiber.

clearly in this figure where the activity is proceeding from
bottom to top along the fiber.

Fig. 5 is a three-dimensional view of the transmembrane
current per unit length im. Upward currents in the figure
are inward membrane currents, therefore the current
spikes seen pushing out of the plane are inward currents.
The troughs seen in the figure represent outward current.
It can be seen that there is a strong inward current at the

nodes of Ranvier followed by a prolonged outward current.
At the internodal points along the fiber the current is
completely outward and is 10 times smaller in magnitude
than the peak to peak current at the nodes. Once again the
propagation is in the negative z-direction, which means
that the activity is traveling from right to left along the
fiber.
A three-dimensional plot of the total longitudinal cur-

rent outside the fiber (I') is presented in Fig. 6 where this
current has been reversed in polarity for clarity of view.
The total longitudinal current outside the fiber I' is
essentially a negatively directed current in both the nodal
and the internodal regions. Propagation in Fig. 6 occurs in
the same direction as that exhibited in Figs. 3 and 5 (i.e., in
the negative z-direction) and therefore Io being a nega-
tively directed current, flows in the opposite direction.
Observing Fig. 6 one will note that the strength of this
current drops slightly at the nodes of Ranvier where the
transmembrane current per unit length is strongest. The
latter effect is best seen in Fig. 7.

Fig. 7 a shows the transmembrane current per unit
length as a function of time, at several points along the
fiber. These spatial points correspond to those that were
considered when the extracellular potential on the outer
surface of the fiber was shown in Fig. 4. The current
waveforms at the nodes are plotted on a scale 10 times the
magnitude of the scale used to plot the currents at the
internodes. As can be easily seen on comparing Figs. 4 and
7 a, the extracellular potential on the outer surface of the
fiber follows the transmembrane current per unit length
very closely, which is not surprising when it is recalled that
the extracellular medium is treated in this model as a
simple resistive medium.
The total longitudinal current outside the fiber is shown

as a function of time at the same spatial points as those
used in Figs. 4 and 7, a and b. As stated before, it can be
seen here that the longitudinal current decreases in magni-

I 14
'I

L
L

B. 02

-79.84
4. 0B:-

-049
FIGURE 5 A three-dimensional view of the transmembrane current per
unit length across the equivalent cell membrane of the fiber. The polarity
of the current has been reversed so that troughs represent outward
currents and spikes inward currents. Propagation is from right to left
along the spatial axis and the activity is shown for a time period of 4 ms
over five nodes of Ranvier.

o8

[s 8

istance (cm)

FIGURE 6 A three-dimensional view of the total longitudinal current
outside the nerve fiber. The polarity of the current is such that troughs
represent positive currents and spikes negative currents. Propagation is
from right to left along the spatial axis (negative z-direction).
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FIGURE 7 The calculated current waveforms for (a) the transmem-
brane current per unit length and (b) the total longitudinal current
outside the fiber as functions of time at several points on the surface of the
fiber. In a the current values at the nodes are on a scale 10 times that used
for the waveforms at the internodal points. The propagation of electrical
activity is from bottom to top along the fiber as indicated by the arrows.

tude at the nodes; however, the difference in magnitude is
not as significant as in the case of the transmembrane
current or the extracellular potential. For example, the
total longitudinal current in the internodal region is only
twice as much as its value at the nodes. The discontinuous
nature of the propagation of the electrical activity along
the myelinated fiber is very prominent in Fig. 7 where the
electrical activity is shown moving from bottom to top
along the fiber.

When experimental measurements of current are made,
the procedure is to record the voltage at two points along
the myelinated fiber and from this differential voltage
measurement, first the total longitudinal current and then
the transmembrane current per unit length are estimated
(Paintal, 1965, 1966; Rasminsky and Sears 1972; Bostock
and Sears, 1978). To study the effects of this technique on
the current finally evaluated, we simulated the same
approximation scheme in our model. Fig. 8 is an illustra-
tion of the total longitudinal current obtained by using the
extracellular potential difference between two points that
were 120 ,um apart, and dividing the difference by the
resistance per unit length of the volume conductor medium
(r0). This approximates the well-known cable equation
formula IL(z) = - 1/r0[dV0(z)/Oz)]. By taking the differ-
ence of two values of the longitudinal current obtained at
points 120 ,um apart and dividing the result by the distance
between the two points, an estimate of the transmembrane
current per unit length is found. On the left-hand side of
Fig. 8 several longitudinal current waveforms are plotted in
this fashion. To the right of these waveforms is an estimate
of the transmembrane current per unit length found using
the same differencing technique on the longitudinal cur-
rent waveforms at the left. The results obtained in this
fashion agree very well with the results predicted by our
model. All the calculations seen in Fig. 8 were performed
for a volume conductor radius b = 30a.
When the external volume conductor is reduced in

extent, i.e., when the value of b is made to approach that of
the fiber radius a, the calculated extracellular potential
waveforms are considerably larger in peak to peak magni-
tude. The same differencing scheme that was used in
obtaining the results in Fig. 8 may be repeated for different
values of the volume conductor radius as well as for

n
i S~~~~ - - QS~~~~~~56 PlA/cm

0.6 A/cm
0.4 ms

FIGURE 8 Estimates of total longitudinal current and transmembrane
current per unit length as functions of time at several points along the
fiber. These estimates were made with an electrode separation of 120 gm.
See text for details.
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different values of separation distance between the values
used to estimate the current waveforms. Changing the
separation distance between the values used to estimate the
currents is equivalent to changing the separation distance
of the electrodes used to make the differential recording
experimentally. The results of this simulation are shown in
Fig. 9 A for the longitudinal current and Fig. 9 B for the
transmembrane current per unit length. In both A and B of
Fig. 9 the first column corresponds to an electrode separa-

A a

I mu

b

b=30a

b 15.a

b=lSa

b=5a

A b=a

InAX ~

B a

105 S
I Msw

1I0
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b c

b=30a

b=15 a
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-1--
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FIGURE 9 Estimates of (A) total longitudinal current outside the fiber
and (B) the transmembrane current per unit length as functions of time
for different electrode separations and various volume conductor extents.
In both cases, column a corresponds to an electrode separation of 200 m,
column b to an electrode separation of 400 gm, and column c to an
electrode separation of 600 Am. The various rows correspond to the
different values of volume conductor radius b.

tion of 200 ,um, the center column to a separation distance
of 400 ,um, and the third column to a separation distance of
600 ,um. In all cases we found that the estimate made with
an electrode separation of 200 ,um agreed very well with
the calculated value at that point, both for the total
longitudinal current and the transmembrane current per
unit length. When the volume conductor radius was
reduced both the total longitudinal current and the trans-
membrane current per unit length increased in magnitude.
The estimates made for the current waveforms using an
electrode separation larger than 200 ,um resulted in an
under-determination of the current magnitude. The extent
by which the total longitudinal current was underestimated
reduced when the volume conductor boundary approached
the fiber surface. This effect was apparent to a much
smaller extent in the case where the transmembrane
current per unit length was estimated. All these estimates
were made with the electrodes centered about the node.
When the node was not centered between the electrodes

the estimate was found to be underdetermined even when
the electrode separation was 200 ,um. Fig. 10 shows the
results of a simulation where the pair of measurement
electrodes was swept across the node of Ranvier from left
to right, starting with the node centered between the pair of
measurement electrodes up to a point when the left-hand
side electrode is on the node. The estimated current
waveforms are smaller in duration and amplitude when the
node is no longer centered between the electrodes. As the
positon of the node moves closer to the electrode on the left
the waveform also shifts toward the left leading to an error
in the estimated time of occurrence of the waveform. All
three errors, namely the amplitude error, the duration
error, and the time of occurrence error decrease with a
reduction in the volume conductor extent. In the case of the
estimated transmembrane current per unit length wave-
form, when the volume conductor extent is made zero,
corresponding to the case where a thin adhering layer of
conducting fluid is present around the fiber, the estimated
current waveform is error-free even when the node is
off-center by as much as 50 ,gm. The estimated longitudi-
nal current is more sensitive to electrode positioning and
under the same conditions it can be estimated correctly
only when the node is off-center by <25 ,um. The estimated
transmembrane current per unit length can be correctly
found for a volume conductor of radius b = 30a even when
the node is off-center by 25 ,m, which is certainly not the
case for the estimated total longitudinal current, as is
clearly seen from Fig. 10 a. Under all circumstances we
found that the estimated transmembrane current per unit
length was less sensitive to electrode positioning than the
estimated total longitudinal current waveform.
The effects of slowed conduction, simulated by inducing

paranodal demyelination at one node in the cable, are
shown in Fig. 11 a for the transmembrane potential distri-
bution and in Fig. 11 b for the calculated transmembrane
current per unit length; once again the spikes represent
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FIGURE 10 Estimates of (a) total longitudinal current outside the fiber
and (b) the transmembrane current per unit length as functions of time;
for two volume conductor extents when the pair of measurement
electrodes is moved from left to right across a node of Ranvier. The
distance di is the separation distance between the node and the electrode
on the left of the electrode pair as shown in the inset. The electrode
separation is 200 um.

inward current, troughs represent outward current, and
conduction is in the negative z-direction. The results shown
were obtained upon increasing the length of the paranodal
region at the node by 10%. As expected, the transmem-
brane potential drops in magnitude as it reaches the
abnormal region. The transmembrane current at the
abnormal node has a very strong component of outward

FIGURE 11 A three-dimensional view of (a) transmembrane potential
and (b) calculated transmembrane current per unit length for slowed
conduction induced by simulating paranodal demyelination at one node.
The electrical activity is shown as propagating from right to left along the
spatial axis. The current polarity is such that the upward spikes are

inward membrane currents and the troughs are outward membrane
currents.

current as can be seen from the fairly well pronounced
trough at that point (Fig. 11 b). We also found a prolonga-
tion of the inward current just before and just after the
abnormal region. This is not a surprising result if it is
recalled that one of the effects of slowed conduction is the
prolongation of the action potential through the abnormal
region. One of the consequences of the broadening of the
action potential is to prolong the voltage drive on the
sodium channel, thereby prolonging the inward current.
Also as the electrical activity crosses the abnormal region,
there is an abrupt slope change in the spatial waveform
through that region as a consequence of the change in
conduction velocity. The resulting strong discontinuity in
the transmembrane potential waveform is emphasized in
the transmembrane current record.
The effects of slowed conduction on the transmembrane

current per unit length and the total longitudinal current
outside the fiber are seen very distinctly in Fig. 12, a and b.
The electrical activity is shown as propagating from bot-
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FIGURE 12 The calculated current waveforms for (a) the transmembrane current per unit length and (b) the total longitudinal current

outside the fiber as functions of time at several points on the surface of the fiber for the case of slowed conduction. In a the current values at the
nodes are on a scale about six times that used for the waveforms at the internodal points. The propagation of electrical activity is from bottom
to top along the fiber as indicated by the arrows.

tom to the top of the fiber. Fig. 12 shows that both the
transmembrane current per unit length and the total
longitudinal current waveforms are distorted as the activity
propagates into the abnormal region. The decrease in the
velocity of propagation is very prominent in both figures,
and both waveforms are smeared in time as they pass
through the abnormal region. The waveform shapes are

restored to normal by the time the activity reaches the node
that is distant one node beyond the abnormal node. The
records shown in Fig. 12 are in general agreement with the
experimental findings of Bostock and Sears (1978). The
extracellular potential waveforms faithfully follow the
transmembrane current per unit length waveforms, which
is as it should be for a passive, resistive external medium.

Fig. 13 shows the calculated extracellular field potential
as a function of time at a point directly above a node of
Ranvier for normal conduction in a and for slowed conduc-
tion in b. With increasing distance from the fiber surface
the extracellular potential falls in magnitude and fre-
quency content for both normal and abnormal conduction.
In the case of abnormal conduction the calculated extracel-
lular potential has a strong positive peak reflecting the
presence of the strong outward current. The extracellular
potential also has a second positive peak that corresponds

a b

p=2a

2.9pV
I no

p=Sa

FIGURE 13 The extracellular potential as a function of time at a

distance equal to the fiber radius and four times the fiber radius from the
fiber surface, directly above a node of Ranvier. The node considered is the
central node in the simulation when the propagation of electrical activity
is (a) normal and (b) slowed. In the case of slowed conduction, the node
considered here is the single node at which paranodal demyelination has
been induced.
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to the hyperpolarization seen in the transmembrane poten-
tial at the end of the action potential.

DISCUSSION OF RESULTS

In this paper we have shown that it is possible to recon-
struct the extracellular currents and potentials as functions
of time using a simple and efficient filter theory approach.
The resulting currents and potential waveform correspond
well with experimental values in literature. Also simulated
is the experimental technique that is used to measure
currents in practice. The results of the simulation indicate
that electrode separation and placement are critical factors
when such measurements are made. The node of Ranvier
must be centered between the electrodes for the estimate of
current magnitudes to be correct. Decreasing the extent of
volume conductor (Fig. 9) makes electrode separation a
less critical factor for the estimation of the total longitudi-
nal current, but this improvement is not as apparent for the
case of the transmembrane current per unit length.

Electrode positioning (Fig. 10) was found to be a critical
factor for obtaining error-free estimates when relatively
large volume conductors were considered. With a decreas-
ing volume conductor extent, the position of the node
relative to the two measuring electrodes was found to be
less critical. This can be explained upon noting that with a
decreasing volume conductor extent the extracellular
potentials tend to be larger in magnitude and spatial
duration. Fig. 14 shows the characteristics of the mem-
brane and medium filter functions when the volume con-
ductor radius is varied. The membrane acts as a second
derivative filter and so the shape of the membrane filter
characteristic is a family of parabolas as seen from Fig. 14
a. As the outer boundary of the volume conductor is
decreased, the membrane filter characteristic no longer
approaches zero as the spatial frequency k tends to zero, as
in the infinite medium case. Rather as b becomes smaller
the membrane filter gain at low spatial frequencies
increases (Fig. 14 a, inset). The medium filter characteris-
tic shown in Fig. 14 b is computed at a field radius p = 7a
and has the nature of a low pass filter whose cut-off
frequency decreases as the volume conductor radius is
increased. Thus, the filter characteristics of both filters
show an increase in lower spatial frequency gain as the
outer boundary of the volume conductor is made smaller.
This increase in lower spatial frequency gain results in a
larger signal magnitude and a larger spatial extent of the
signal (a larger spatial extent corresponds to an increase in
the lower spatial frequency content of the signal). The
difference between the potentials at two closely spaced
points along the fiber is therefore less significant under
these circumstances, making the effects of slight shifts in
electrode positioning negligible.
The effects of slowed conduction are seen in the trans-

membrane potential, the transmembrane current, and the
calculated extracellular potential waveforms (Figs. 11-
13). The method by which paranodal demyelination was

a
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FIGURE 14 The characteristics of (a) the membrane filter function
M(IkI) and (b) the medium filter function WO(jkI p, b) vs. k for various
values of the volume conductor radius b. The case chosen is for a
cylindrial myelinated fiber having a radius of 5 um. In Fig. 14 a the
characteristics are labeled in the inset as (1) for b = 30a, (2) for b = 50a,
(3) for b = 90a, (4) for b= 150a, and (5) for b = 800a. The medium filter
is evaluated at a field radius p = 7a.
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simulated results in the strengthening of the outward
potassium currents from the paranodal regions of the
abnormal node. This is reflected in the prolonged trough
seen in the transmembrane current per unit length wave-
form of Figs. 11 b and 12 a and also in the strong second
positive peak of the extracellular potential waveform of
Fig. 13, column b. The calculated extracellular potential
waveforms are in general of the same shape as the trans-
membrane current per unit length, which is as it should be
for a passive, resistive extracellular medium, and hence
both reflect the prolonged outward current that exists at
the abnormal node. The upstroke velocity of the action
potential in the abnormal region decreases and this is
reflected in the extracellular potential and the transmem-
brane current per unit length waveforms as a broadening of
the first positive and negative peaks.
As stated before, the calculation technique described in

this paper is quite rapid, involving a small fraction of the
computational time required by a comparable finite differ-
ence or finite element characterization of the myelinated
nerve fiber's immediate surroundings. The field theory
model can be easily modified to include one or more
regions around the nerve fiber, each with varying degrees
of anisotropy. This technique, which combines a distrib-
uted parameter model of the nerve fiber with a field theory
model of its environment, can therefore be extended to the
quantitative study of a number of intriguing problems in
nerve electrophysiology including (a) the electric field
stimulation of myelinated nerve and the subsequent deter-
mination of excitability thresholds, and (b) a more detailed
study of nerve conduction in demyelination disease.
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