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ABSTRACT The translational diffusion coefficients, rotational relaxation times and intrinsic viscosities of rigid bent
rods, composed by two rodlike arms joined rigidly at an angle a, have been evaluated for varying conformation using the
latest advances in hydrodynamic theory. We have considered semiflexible rods in which the joint is an elastic hinge or
swivel, with a potential V(a) = 'AQa2 with constant Q. Accepting the rigid-body treatment, we calculate properties of
broken rods by averaging a-dependent values for rigid rods. The results are finally used to interpret literature values of
the properties of myosin rod. Q is regarded as an adjustable parameter, and the value fitted is such that the average
bending angle of myosin rod is .600.

INTRODUCTION

Several important biopolymers present a typical broken-
rod conformation in which two rodlike arms are joined
either rigidly or by means of a flexible hinge or swivel. A
well-known example is myosin rod (Harvey and Cheung,
1982; Trybus et al., 1982), and other relevant cases include
fibronectin (Odermatt et al., 1982), proteoglycan (Trimm
and Jennings, 1982) and, in some regard, DNA (Hager-
man, 1984). For rigid bent rods, the hydrodynamic proper-
ties can be obtained using the theory of rigid particles
(Garcia de la Torre, 1981; Garcia Bernal and Garcia de la
Torre, 1980; Garcia de la Torre and Bloomfield, 1978,
1981). Some results have been already presented (Garcia
de la Torre and Bloomfield, 1978; Mellado and Garcia de
la Torre, 1982; Wegener, 1984, 1986; Roitman, 1984).
Recently, a modification that affects mainly the rotational
coefficients was introduced in the theory (Garcia de la
Torre and Rodes, 1983). Here, we use the most rigorous
version of the theory in a systematic calculation of hydro-
dynamic properties of rigid bent rods.
The dynamics of semiflexible, broken rods is more

complex owing to the additional degrees of freedom and
the interplay between internal and frictional forces. For
completely flexible rods, a formalism developed by
Wegener and others is available (Wegener et al., 1980;
Wegener, 1982; Harvey et al., 1983; Garcia de la Torre et
al., 1985). A different approach for semiflexible rods is the
so-called rigid-body treatment. In this formalism, one
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obtains first the properties for instantaneous conformations
of the particle that are regarded as rigid structures, and the
observable properties are later calculated averaging over
conformations. This procedure is implicit in early studies of
broken rods (Yu and Stockmayer, 1967; Wilemski, 1977),
and was used in previous estimations of the flexibility of
myosin rod (Garcia de la Torre and Bloomfield, 1980;
Garcia Molina and Garcia de la Torre, 1984; Solvez et al.,
1987). In combination with Monte Carlo averaging, the
rigid-body treatment has been employed by Hagerman and
Zimm (1981) in their study of rotational dynamics of
weakly bending worm-like rods.
The rigid-body treatment is generally regarded in

macromolecular hydrodynamics as an approximation that
furnishes bounds for the transport properties (Wilenski
and Tanaka, 1981; Zimm, 1982; Fixman, 1983). As kindly
pointed out by a referee of this paper the rigid-body
treatment may be even exact (although the conformational
average is carried out a posteriori) if the function over
which the average is done has been derived without using
the rigid-body treatment. We do not address here this
theoretical aspect but, from a practical point of view, we
just recall that, usually, the results of this treatment differ
only a few percent from the rigorous ones. Such is the case,
precisely for some properties of semiflexible broken rods,
as shown by Wegener (1986). The rigid-body results for a
simple model, the semiflexible trimer with moderate or
high stiffness are also in very good agreement with those
obtained from solution of the diffusion equation (Roitman
and Zimm, 1984 a, b) or from Brownian dynamics simula-
tion (Diaz and Garcia de la Torre, 1988).

BIOPHYS. J. © Biophysical Society * 0006-3495/88/08/269/07 $1.00
Volume 54 August 1988 269-275

269



Here we apply the rigid-body treatment to semiflexible
rods, averaging the conformation dependent values
obtained for rigid rods. The properties are evaluated as
functions of a flexibility parameter, whose value is adjusted
for myosin rod. This represents an improvement over
previous studies of the flexibility of this fibrous protein.

METHODS
The geometry of the bent rod model is presented in Fig. 1. The particle
has two straight, rod-like arms of diameter b and lengths LI and L2, which
are modeled as strings of N, = L,/b and N2 = L2/b touching beads. The
total length of the particle is

L=L,+L2=Nb, (1)

where N = N, + N2. We shall use a length ratio y defined as

'y = LI L = N,/N (2)
with y = 1/2 for the case of equal arms. The arms are rigidly joined, making
an angle a as defined in Fig. 1.

For the calculation of hydrodynamic properties we use the most
rigorous form of the bead-model theory (Garcia de la Torre and Bloom-
field, 1978; Garcia Bernal and Garcia de la Torre, 1980), including a
volume correction for the rotational constants (Garcia de la Torre and
Rodes, 1983). A brief description of the theory can be found in reviews
(Garcia de la Torre and Bloomfield, 1981; Garcia de la Torre, 1981).
Here we just introduce the needed quantities. The translational diffusion
coefficient, D,, is extracted from the translational diffusion tensor evalu-
ated at the center of diffusion DD,,

D, = ('/3)Tr (DD,1) (3)
All the information needed to study rotational dynamics is contained in
the rotational diffusion tensor, Dr. The five rotational relaxation times
describing the time course of properties like electric birefringence and
electric dichroism (Wegener et al., 1979) and fluorescence polarization
anistropy (Belford et al., 1972), reduce to three for the bent rod due to the
existence of a plane of symmetry. D, can be diagonalized to obtain three
eigenvalues and the corresponding eigenvectors. One of the eigenvectors is
perpendicular to the particle's plane, and its eigenvalue is denoted as D,.
The other two eigenvectors are in the particle's plane, and define the two
other principal axes of rotation, indicated as xp and yp in Fig. 1. For
convenience, xp is taken as the axis defined by the eigenvector of the
largest eigenvalue. The corresponding eigenvalues are D, and Dy. The
reciprocals of the three relaxation times are given by

1/-yl = 6D - 2A

x xp

(4a)

(4b)1/72 = 3(D + Dj)

I/Y3= 6D + 2A, (4c)
where

D = ('/3) (D. + Dy + D.) (5a)
A = (DX + D2 + D 2 + DXDy + DxD, + DD )I/2. (5b)

The amplitudes of the three exponential terms in the decay of electro-
optical or spectroscopic properties depend on the components of certain
tensors or vectors in the system of principal axes of rotational diffusion.
These are specified giving just the director cosine of xp with respect to x
(cos , in Fig. 1).
The intrinsic viscosity, [v], has been calculated as described elsewhere

(Garcia de la Torre and Bloomfield, 1978, 1981). The subtle coupling
effects described by Wegener (1984) have not been included in our
computational procedures because, as shown by him, their effects on [X7]
of bent rods would be smaller than 1%.

For semiflexible rods we assume a potential, V, which is quadratic in a
with equilibrium at a = 0:

V/kBT= Qa2. (6)
The elastic constant Q in Eq. 6 is regarded as an adjustable flexibility
parameter such that Q = 0 for a completely flexible rod and Q for a
very rigid rod. Then, the probability of a conformation with angle a is

p(a) = g(a) exp (-Qa2)/fXg(a) exp (-Qa2) da, (7)

where g(a) is a weighting factor. In principle, one can distinguish
(Harvey et al., 1983) between hinged and swivel-jointed rods. In the first
type the bending motion takes place in the particle's plane only, and g(a)
is a constant, while in the second one torsional motions are allowed and
g(a) = sina. We anticipate that, in practice, the results for the two types
are nearly identical if Q is high, and for low Q (high flexibility), the
swivel-jointed rod seems to be more realistic. Therefore we have chosen
the sina weight in our calculations.

Having assigned statistical weights to conformations corresponding to
each value of a, in the rigid-body approximation one obtains the
observable value of a given property, B, as the average of B(a) over
angles:

B = fTdap(a)B(a). (8)

RESULTS AND DISCUSSION

Straight Rods
The cases a = 0 and y = 0 correspond to a rigid, straight
rod. In Table I we present results for the hydrodynamic
properties of rigid rods of varying length. Actual values of
the properties can be obtained from the normalized values
listed in Table I and factors involving the thermal energy
kBT, the diameter of the macromolecule, b and its molecu-
lar weight, M.

For the straight rod the relaxation times are

Istr= 6Dstr

2= 5D + DXtr

I 1Yt'= 2D lr + 4Dtr.

(9a)

(9b)

FIGURE 1 Geometry of the bent-rod model.

(9c)

The values of D"' to be used in Eq. 9b and c can be
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TABLE I
HYDRODYNAMICS PROPERTIES* OF A RIGID, STRAIGHT
RODS, MODELED AS STRINGS OF TOUCHING BEADS

N= L/b In]'l/Dttr
10 0.651 2.845 26.298
16 2.147 2.057 7.968
20 3.820 1.754 4.458
24 6.144 1.536 2.760
30 11.047 1.302 1.526
32 13.102 1.241 1.284
40 23.711 1.048 0.706
48 38.630 0.912 0.432

*The quantities actually listed are (M/NA b3) [i]ft, (6rob/kT)D,'r) and
(6ernb31kT)( 1 /T5lr).

obtained from the values of 1 /'Itr using Eq. 6. The
rotational diffusion coefficient for rotation around the rod
axis can be estimated for the rod of beads, in the context of
the volume correction, from

D t' = kBT/IroLb 2 (10)

For the purposes of interpolation and extrapolation of the
properties for other values of N, we have obtained by least
squares fitting of the results in Table I the following
relationships:

Dt = (kBT/3ir710L)
* (In N + 0.5014 + 0.1118/N + 2.5274/N2) (I la)

1/7lt'= (18kBT/lrnfL 3)

In N - 0.3325 - 0.5461 /N + 3.1608/N2) (I1 b)

l/[]`= (45M/2NAirL3)
(in N - 0.6811 + 0.2362/N + 6.0470/N2) ( lIc)

These equations reproduce the values in Table I with an
error that is smaller than 0.1% in most cases.
We must stress that the present values of properties of

rigid rods modeled as straight strings of beads are to be
used as references in the analysis of the properties of bent
and hinged rods. Since a cylindrical model is more realistic
for rodlike biopolymers than a string of beads, the results
reported for cylinders (Tirado et al., 1979, 1980, 1984)
should be preferred in the interpretation of experimental
data of straight rods.

Bent Rods

We have calculated Dt, [X] and the three relaxation times
for rigid bent rods as a function of L/b, L,/L, and a. The
results are displayed in Table II. If desired, the three
eigenvalues can be extracted from Eqs. 4 and 5. We tried to
present our results in the form of interpolating functions of
the three variables. This can be done individually for L/b,
and perhaps for y, but not for the angle because the
properties depend appreciably on a. On the other hand, an
interpolating function of three variables would surely fail

in some regions. Therefore, we decided to present, albeit at
the cost of more space, the numerical values. Nonetheless,
we have found that the following functions ofN (with given
a and y) are valid for interpolation and moderate extrapo-
lation: D,/D'tr, a + b In N; YIyt/'yl and [7]/[7]str, a + b/N;
-?Itr/Y2 and S,tr/l73 aN + b + c/N. Note that the two
shortest relaxation times are normalized with the longest
relaxation time of the straight rod.
The cosf3 values needed to determine the orientation of

the principal axes of rotational diffusion are presented
separately in Table III. For the limiting case of equal arms,
we illustrate in Fig. 2 the deviation of the properties from
those of a straight rod as a increases. While D, is practi-
cally insensitive to conformation, 78 and [77] decrease down
to ..1/5. The two largest relaxation times are very sensitive
to the conformation. For a close to 0 or 1800, we have 73,
72 << -y), and there will be two well-separated time scales in
the decay of electro-optical properties. However, for inter-
mediate a the three relaxation times are of the same order
of magnitude and the decays will be typically multiexpon-
ential. Examples of such behavior have been presented
already (Mellado and Garcia de la Torre, 1982).

Semiflexible Rods
By numerical integration of the data in Table II and
according to Eq. 8, the properties of semiflexible rods can
be evaluated as functions of the flexibility parameter, Q.
We recall that the rotational quantities that are averaged
are the reciprocals of the relaxation times. In Fig. 3 we
present some results for equal arms, expressed as in the
case of bent rods with reference to the values for the
straight rod. An example of the utility of Fig. 3 for
evaluating flexibility will be presented later on.
The various properties differ with regard to their Q-

dependence or, in other words, their sensitivity to flexibili-
ty. While the translational diffusion coefficient, and to a
lesser extent the radius of gyration, are rather insensitive to
changes in Q, the intrinsic viscosity and the longest relaxa-
tion time vary remarkably with Q. The latter property will
usually be preferred since it is determinable by a variety of
modern electro-optical or spectroscopic techniques that
(unlike the viscosity) need very small amounts of sample.

Analysis of Solution Properties
of Myosin Rod

Experimental data for the translational diffusion coeffi-
cient, rotational relaxation time, intrinsic viscosity, and
radius of gyration of the myosin rod are summarized in
Table IV. As recently reviewed by Cardinaud and Ber-
nengo (1985), the total length of the rod should be close to
150 nm, with 78 and 72 nm for the two arms, light
meromyosin and subfragment S2 respectively, so that 7y >
'/2. The hydrodynamic radius of the rod is 2 nm (Garcia de
la Torre and Bloomfield, 1980). Table IV shows that the
properties of the rod deviate clearly from the values
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TABLE II
HYDRODYNAMIC PROPERTIES OF BENT RODS NORMALIZED TO THE VALUES OF STRAIGHT RODS

a Y =/2 Y_=1_/3_Y_ = 'h4
N-
L/b= 16 24 32 40 48 15 24 48 16 24 48

Translational diffusion: D,/D"tr
15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 1.001 1.000 1.000 1.000 1.000 1.001 1.000 0.999 1.001 1.000 0.999
60 1.005 1.003 1.002 1.000 1.000 1.005 1.003 0.999 1.004 1.001 0.998
45 1.002 1.001 1.000 1.000 1.000 1.002 1.001 0.998 1.002 1.002 0.998
75 1.011 1.008 1.006 1.003 1.003 1.010 1.007 1.001 1.008 1.006 1.001
90 1.020 1.017 1.014 1.011 1.011 1.018 1.015 1.008 1.015 1.012 1.007
105 1.035 1.032 1.029 1.027 1.025 1.030 1.027 1.021 1.025 1.023 1.017
120 1.057 1.055 1.052 1.050 1.049 1.048 1.047 1.041 1.037 1.038 1.034
135 1.088 1.089 1.087 1.085 1.085 1.072 1.074 1.071 1.056 1.058 1.057
150 1.134 1.138 1.139 1.137 1.138 1.105 1.111 1.112 1.079 1.084 1.087
165 1.205 1.218 1.223 1.225 1.227 1.147 1.161 1.170 1.106 1.117 1.126
180 1.351 1.403 1.438 1.461 1.483 1.204 1.237 1.276 1.139 1.159 1.187

Longest relaxation time Ttr/T1
15 1.015 1.016 1.017 1.017 1.018 1.012 1.014 1.015 1.010 1.010 1.011
30 1.062 1.067 1.070 1.071 1.072 1.050 1.055 1.060 1.038 1.042 1.046
45 1.145 1.156 1.162 1.166 1.169 1.114 1.126 1.137 1.086 1.094 1.103
60 1.270 1.292 1.304 1.312 1.317 1.208 1.229 1.249 1.154 1.167 1.182
75 1.450 1.490 1.511 1.524 1.534 1.330 1.367 1.400 1.234 1.257 1.281
90 1.702 1.771 1.808 1.831 1.847 1.485 1.540 1.589 1.329 1.362 1.396
105 2.058 2.176 2.240 2.279 2.307 1.666 1.744 1.813 1.433 1.475 1.517
120 2.551 2.754 2.864 2.932 2.979 1.858 1.963 2.051 1.536 1.587 1.636
135 3.072 3.337 3.476 3.561 3.618 2.044 2.169 2.274 1.632 1.689 1.744
150 3.328 3.598 3.741 3.830 3.889 2.201 2.340 2.459 1.715 1.777 1.835
165 3.581 3.896 4.066 4.171 4.242 2.321 2.473 2.604 1.783 1.850 1.917
180 4.152 4.653 4.954 5.157 5.306 2.410 2.575 2.740 1.840 1.918 2.010

Relaxation time rStr/T
15 5.883 9.406 12.867 16.021 18.782 5.624 9.981 21.627 6.275 10.656 25.445
30 4.430 5.883 6.906 7.620 8.128 4.582 6.759 10.183 5.363 7.998 13.699
45 3.365 3.971 4.326 4.548 4.695 3.666 4.730 5.972 4.450 5.969 8.402
60 2.760 3.060 3.222 3.319 3.383 3.081 3.660 4.254 3.815 4.748 6.028
75 2.469 2.657 2.756 2.815 2.854 2.761 3.140 3.506 3.420 4.085 4.921
90 2.389 2.542 2.622 2.671 2.704 2.638 2.943 3.233 3.235 3.790 4.464
105 2.468 2.627 2.711 2.763 2.799 2.664 2.970 3.262 3.210 3.762 4.440
120 2.692 2.891 2.998 3.065 3.110 2.820 3.192 3.555 3.338 3.981 4.831
135 3.081 3.371 3.531 3.631 3.700 3.117 3.641 4.213 3.617 4.495 5.839
150 3.716 4.219 4.519 4.715 4.853 3.603 4.484 5.709 4.088 5.465 8.157
165 4.802 5.965 6.829 7.493 8.016 4.321 6.193 10.098 4.754 7.132 13.946
180 6.667 10.103 14.178 18.947 24.418 5.236 9.172 25.224 5.480 9.314 26.704

Relaxation time rStr/X
15 20.866 34.573 48.415 61.029 72.070 19.327 36.969 83.475 22.018 39.813 98.749
30 14.528 20.324 24.406 27.257 29.286 15.186 23.836 37.550 18.188 28.754 51.684
45 10.020 12.406 13.803 14.675 15.524 11.309 15.549 20.518 14.593 20.585 30.335
60 7.232 8.358 8.961 9.323 9.558 8.713 10.979 13.321 11.729 15.417 20.628
75 5.564 6.185 6.504 6.693 6.817 7.040 8.505 9.892 9.960 12.493 15.927
90 4.570 4.967 5.170 5.290 5.369 6.109 7.188 8.235 8.901 10.979 13.788
105 4.001 4.300 4.453 4.545 4.607 5.684 6.672 7.666 8.480 10.532 13.337
120 3.761 4.040 4.187 4.276 4.337 5.745 6.888 8.114 8.655 11.046 14.549
135 4.041 4.500 4.763 4.923 5.049 6.365 8.069 10.085 9.508 12.802 18.272
150 5.452 6.616 7.356 7.862 8.226 7.816 10.979 15.564 11.106 16.394 27.237
165 8.521 12.106 14.992 17.299 19.157 10.422 17.502 32.731 13.641 22.786 50.121
180 13.968 26.057 41.386 59.816 81.236 13.805 28.984 92.824 16.299 31.504 100.896

Intrinsic viscosity [v] / [v]st'
15 0.991 0.990 0.990 0.990 0.989 0.993 0.992 0.991 0.995 0.995 0.994
30 0.965 0.962 0.960 0.959 0.958 0.972 0.969 0.966 0.979 0.977 0.975
45 0.922 0.916 0.912 0.910 0.909 0.937 0.931 0.926 0.952 0.949 0.945
60 0.865 0.854 0.849 0.846 0.842 0.892 0.881 0.873 0.918 0.911 0.905
75 0.797 0.782 0.774 0.769 0.765 0.837 0.822 0.809 0.876 0.866 0.857
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TABLE II
(Continued)

a 'Y=1/2 'Y =/3 /4
N= -
L/b= 16 24 32 40 48 15 24 48 16 24 48

90 0.721 0.701 0.691 0.684 0.679 0.775 0.755 0.738 0.828 0.815 0.803
105 0.641 0.617 0.603 0.595 0.590 0.710 0.685 0.664 0.778 0.761 0.746
120 0.561 0.532 0.517 0.508 0.501 0.645 0.615 0.590 0.728 0.707 0.688
135 0.483 0.451 0.435 0.425 0.418 0.582 0.549 0.521 0.679 0.656 0.634
150 0.411 0.377 0.360 0.350 0.343 0.525 0.490 0.461 0.634 0.609 0.586
165 0.344 0.310 0.294 0.284 0.277 0.477 0.441 0.412 0.596 0.570 0.544
180 0.269 0.235 0.218 0.207 0.200 0.440 0.406 0.375 0.566 0.538 0.508

calculated from Eq. 11 for a straight rod having L = 150
nm, b = 2 nm, and N = 75. In all cases the deviation is in
the direction of a less extended conformation. Using these
straight-rod values, the straight-to-flexible ratios can be
evaluated for each property, and interpolating these ratios
in plots like those in Fig. 3, values of the adjustable
flexibility parameter can be obtained. For such purpose we
constructed plots (not shown) for N = 75 by extrapolation
of N-dependent results. The curves obtained were very
close to those displayed in Fig. 3, thus confirming the weak
dependence of the ratios on N.

In Table IV we present the results for Q. In the case of
Dt, the experimental datum is out of the range of the
theoretical results and therefore it cannot be used to
estimate Q. Due to the insensivity of D, to conformation,
this coefficient is found to be almost useless in the analysis
of flexibility. This circumstance was already detected by
Garcia de la Torre and Bloomfield (1980). On the other
hand, the other properties, RG, [Xl] and yj can be well
described in terms of partial flexibility. The interpolated Q
values are in good agreement. A more illustrative measure

0.5

0.1

0.05

0.01

TABLE III
COS 0 FOR BENT RODS OF UNEQUAL ARMS

a =1/3 'Y Ih
N=
L/b= 15 24 48 16 24 48

0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.998 0.998 0.998 0.996 0.996 0.996
30 0.993 0.992 0.992 0.985 0.985 0.984
45 0.982 0.982 0.981 0.964 0.964 0.963
60 0.965 0.964 0.963 0.933 0.932 0.930
75 0.937 0.935 0.933 0.887 0.885 0.882
90 0.892 0.887 0.884 0.823 0.819 0.815
105 0.819 0.810 0.803 0.738 0.731 0.724
120 0.707 0.692 0.679 0.629 0.619 0.609
135 0.556 0.534 0.517 0.499 0.486 0.474
150 0.387 0.362 0.343 0.356 0.340 0.325
165 0.223 0.197 0.177 0.207 0.189 0.172
180 0.070 0.044 0.022 0.057 0.038 0.019

of flexibility is the average bending angle, (a), which is
obtained as in Eq. 8 with B -= a. The (a) values
corresponding to the three values of Q are given in Table
IV. The agreement is excellent; the three values are very
similar, and close to 600, which would be, according to our
analysis, the average bending angle of myosin rod in
solution.

Ra

'll
ii

30 0o 90 120 15i0 160

dC (degrees)

FIGURE 2 Variation of properties of rigid bent rods with equal arms,
normalized to those of the straight rod, with the angle. The results
correspond to L/b = 48 but are rather insensitive to this ratio.

FIGURE 3 Variation of properties of semiflexible rods with the dimen-
sionless flexibility parameter Q. The results correspond to L/b = 48
although, for the three properties shown here, they change very slowly
with this ratio. Previous results for the root mean squared radius of
gyration, RG, are also displayed.
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TABLE IV
EXPERIMENTAL VALUES OF SOLUTION PROPERTIES
AND FLEXIBILITY PARAMETERS OF MYOSIN ROD

Property Experimental Reference Straight rod Q (a)

(Theoretical)
D,, cm2s-' 1.24 x 10-' * 1.38 x 10-' -

T1,/.s 26 37 0.65 55
[X1], cm' g-' 265 311 0.70 53
Rg, nm 38 ** 43 0.42 63

Mean: 57

*Lowey et al. (1969).
$Average of several literature values in the range 24-28 As (Highsmith et
al., 1977, 1982; Hvidt et al., 1982, 1984). A 17 ps value reported by
Cardinaud and Berengo (1985) is not considered.
1Burke and Harrington (1972). We take a molecular weight of 250,000
(Highsmith et al., 1977).
**Hvidt et al. (1982).

The present analysis of the myosin rod flexibility
improves the previous one by Garcia de la Torre and
Bloomfield (1980) in several respects and provides numer-
ical values for quantities as Q or (a). Qualitatively, our
conclusions confirm those from several other workers that
myosin rod has an appreciable yet limited flexibility.

This work was supported by grant 561/84 from the Comision Asesora de
Investigaci6n Cientifica y T6cnica to J. Garcia de la Torre.
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