Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Aug;54(2):331–336. doi: 10.1016/S0006-3495(88)82963-1

Leukocyte relaxation properties.

K L Sung 1, C Dong 1, G W Schmid-Schönbein 1, S Chien 1, R Skalak 1
PMCID: PMC1330300  PMID: 3207829

Abstract

Study of the mechanical properties of leukocytes is useful to understand their passage through narrow capillaries and interaction with other cells. Leukocytes are known to be viscoelastic and their properties have been established by micropipette aspiration techniques. Here, the recovery of leukocytes to their normal spherical form is studied after prolonged deformation in a pipette which is large enough to permit complete entry of the leukocyte. The recovery history is characterized by the time history of the major diameter (d1) and minor diameter (d2). When the cell is removed from the pipette, it shows initially a small rapid recoil followed by a slower asymptotic recovery to the spherical shape. In the presence of cell activation and formation of pseudopods, the time history for recovery is prolonged compared with passive cell recovery. If a protopod pre-existed during the holding period, the recovery only begins when the protopod starts to retract.

Full text

PDF
331

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagge U., Amundson B., Lauritzen C. White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol Scand. 1980 Feb;108(2):159–163. doi: 10.1111/j.1748-1716.1980.tb06513.x. [DOI] [PubMed] [Google Scholar]
  2. Chien S., Schmid-Schönbein G. W., Sung K. L., Schmalzer E. A., Skalak R. Viscoelastic properties of leukocytes. Kroc Found Ser. 1984;16:19–51. [PubMed] [Google Scholar]
  3. Martz E. Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes. I. Resolution and characterization. J Immunol. 1975 Jul;115(1):261–267. [PubMed] [Google Scholar]
  4. Nathan C. F., Mercer-Smith J. A., Desantis N. M., Palladino M. A. Role of oxygen in T cell-mediated cytolysis. J Immunol. 1982 Nov;129(5):2164–2171. [PubMed] [Google Scholar]
  5. Schmid-Schönbein G. W. Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed Proc. 1987 May 15;46(7):2397–2401. [PubMed] [Google Scholar]
  6. Schmid-Schönbein G. W., Sung K. L., Tözeren H., Skalak R., Chien S. Passive mechanical properties of human leukocytes. Biophys J. 1981 Oct;36(1):243–256. doi: 10.1016/S0006-3495(81)84726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sung K. L., Schmid-Schönbein G. W., Skalak R., Schuessler G. B., Usami S., Chien S. Influence of physicochemical factors on rheology of human neutrophils. Biophys J. 1982 Jul;39(1):101–106. doi: 10.1016/S0006-3495(82)84495-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sung K. L., Sung L. A., Crimmins M., Burakoff S. J., Chien S. Determination of junction avidity of cytolytic T cell and target cell. Science. 1986 Dec 12;234(4782):1405–1408. doi: 10.1126/science.3491426. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES