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ABSTRACT To study why pancreatic ,8-cells prefer to burst as a multi-cellular complex, we have formulated a stochastic
model for bursting clusters of excitable cells. Our model incorporated a delayed rectifier K+ channel, a fast
voltage-gated Ca2" channel, and a slow Ca,-blockable Ca2" channel. The fraction of ATP-sensitive K+ channels that
may still be active in the bursting regime was included in the model as a leak current. We then developed an efficient
method for simulating an ionic current component of an excitable cell that contains several thousands of channels
opening simultaneoulsy under unclamped voltage. Single channel open-close stochastic events were incorporated into
the model by use of binomially distributed random numbers. Our simulations revealed that in an isolated ,B-cell [Ca2+]i
oscillates with a small amplitude about a low [Ca2+]i. However, in a large cluster of tightly coupled cells, stable bursts
develop, and [Ca2+]i oscillates with a larger amplitude about a higher [Ca2+]i. This may explain why single f-cells do
not burst and also do not release insulin.

1. INTRODUCTION

The pancreatic ,3-cell is responsible for insulin secretion
from the islets of Langerhans. In response to glucose, the
fl-cell exhibits interesting electrical bursting patterns.
Although the exact mechanism of the glucose response is
not yet clear, there are several properties which are well
established. In the absence of glucose, the ATP-blockable
K+ channels control the membrane potential. Upon addi-
tion of glucose, these channels are blocked and the f-cell
depolarizes. The membrane potential then oscillates
between -55 mV (referred to as the silent phase) and -35
mV (the plateau phase ). Fast spikes appear on the top of
the plateau phase. Under steady-state glucose stimulation,
slow waves and bursts occur in regular intervals in elec-
trical recordings from whole islets, but spikes occur rather
chaotically (Bangham et al, 1986; Soria and Ferrer, 1986).
The durations of the silent and plateau phases are altered
by the glucose concentration.
The fl-cells within the same islet are known to be

strongly coupled and burst regularly with the same fre-
quency (Eddlestone, 1984; Meda et al., 1984). When cells
are isolated, however, it is quite difficult and sometimes
even impossible to faithfully record membrane potential
from single cells (Rorsman and Trube, 1986). In isolated
cells, the opening or closing of channels has an important
influence on the membrane potential. As a consequence of
the stochastic noise, the cells may not produce bursts.
Irregular bursts can be observed in a cluster of 70 ,m
diameter (Rorsman and Trube, 1986). The fact that
f-cells in an islet are tightly coupled and produce regular
bursts raises interesting questions. What is the advantage
of the cells working as a unit? Could coupled cells secrete

more insulin than single cells? That is, does stable bursting
give rise to an increase in [Ca2+]i? It is not yet feasible to
correlate experimentally [Ca2"]i levels with cluster sizes.

In recent years, patch-clamp recordings have greatly
enhanced our understanding of the properties of ionic
channels in many excitable cells. New experimental evi-
dence indicates that the Cai-activated K+ channel does not
play a major role in bursting (Cook et al., 1984; Kramer
and Zucker, 1985; Rorsman and Trube, 1986). Using the
whole-cell patch-clamp method, Rorsman and Trube
(1986) have characterized a delayed Cai-insensitive K+
channel and a voltage-gated Ca2" channel that play the
key roles in the bursting of NMRI mice f-cells. Satin and
Cook (1988) have demonstrated the coexistence of low-
and high-threshold voltage-activated Ca2" channels in
insulin-secreting HIT cells and neonatal rat cells. Since the
kinetics of the two channels are very similar and, moreover,
the two threshold potentials are close, they had some
difficulty in separating the two channels (Satin and Cook,
1988). Identification of two functionally different Ca2"
channels is essential in sorting out their cellular functions
(Cook, 1984).
The whole-cell voltage-clamp experiments on fl-cells

(Satin and Cook, 1985 and 1988; Findlay and Dunne,
1985; Rorsman and Trube, 1986) have provided a basis for
formulating a better mathematical model. We have
recently formulated a model based on these experimental
findings (Chay, 1987; Chay and Kang, 1987; Chay and
Cook, 1988). This model differs from our earlier ones
(Chay and Keizer, 1983; Chay, 1986) in that the termina-
tion of spikes and bursts is due to the inactivation of Ca2"
channel by intracellular calcium ions (Kramer and Zuck-
er, 1985). In our earlier model (Chay, 1986), a voltage-
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gated, Ca1-sensitive K+ channel plays the dual role of
generating a pacemaker current as well as the spikes. But,
in our more recent model, the Ca1-sensitive K+ channel is
not operative in the bursting regime, and a voltage-gated
Ca2" channel (that contains two voltage activated gates,
i.e., a high-threshold gate and a low-threshold gate that is
blockable by intracellular Ca2" ions) takes over the role of
the K-Ca channel (Chay, 1987; Chay and Kang, 1987). In
the model of Chay and Cook (1988), we have incorporated
two functionally different Ca2" channels: a high-threshold
fast channel and a low-threshold slow channel that is
blockable by intracellular Ca2" ions (for a review, see
Chay, 1988). All these models are, however, deterministic
and are not applicable to a cell containing a finite number
of channels. Thus, it is our intent to extend our determinis-
tic models to more general stochastic models.
The outline of this paper is as follows. In section II, we

will formulate a stochastic model which is applicable to
single cells containing a finite number of channels, and in
section III we will develop an efficient method of simulat-
ing spontaneous voltage fluctuations from a cluster of
excitable cells. In section IV, we will apply the method to
(-cell clusters to study the effect of the size of f-cell
clusters on voltage fluctuations. Specifically, we will study
the role of stochastic noise on [Ca2+]i levels and a lower
limit for the number of interconnected cells in a pacemaker
group which exhibits a regular firing pattern. In addition,
we attempt to sort out the role of the two calcium currents
by simulating the whole-cell voltage-clamp experiments
(i.e., current traces and I/V plots).

II. STOCHASTIC MODEL

Let us consider a three-dimensional array of excitable cells
contacting through a junctional membrane. Cells are
allowed to communicate through gap junctions, where the
junction is modeled as a resistor. The membrane potential
V(j) of the jth cell in such a multicellular complex can be
computed from a cable model (Plonsey and Fleming,
1969), where a capacitance is connected in parallel to ionic
channels, and the cells are connected in series by a
conductance g,:

gSV2V(J) = Mi I(i) + 47rr2CmdVt')/dt. (1)

Here, Cm is the membrane capacitance, and r the radius of
a cell. Note that if gg = 0, the above equation reduces to a
single cell voltage equation. Note also that if gg is very large
(i.e., infinity), then all M cells discharge virtually simulta-
neously. Thus, a complex consisting of M cells may be
considered as one pacemaker cell with the surface area
increased by a factor M and the number of channels
increased by the same factor.
The components of the membrane ionic current in Eq. 1

are defined by a given model. The excitable cell model that
is considered in this work contains (a) a delayed rectifier

K+ current IKV, (b) a fast voltage-activated Ca2+ current
IC4,f, (c) a slow Ca2+ current Ic ,,, and (d) a leak current IL
that includes contributions from the electrogenic pump
current, exchanger current, and possibly the ATP-block-
able K+ current. Thus, according to the Hodgkin-Huxley
model (1952) the equation which describes the membrane
potential for our model is

-4irr2dV/dt = IKv + ICa,f + Ic., + IL, (2)

where the explicit expression of each ionic component is
given in Table I. We note that our model differs from the
Chay-Cook model (1988) in that we have replaced the
linearity in I(V) by the Goldman-Hodgkin-Katz equation
(Goldman, 1943). The deviation from the linearity comes
in only when the membrane potential is more depolarized
than the "spiking" potential (i.e., > -10 mV), and thus
this replacement affects little on (3-cell bursting. The
Goldman-Hodgkin-Katz equation, however, is needed in
obtaining the inward rectification shown in Fig. 1. Also,
the gating variable of the slow calcium channel is sepa-
rated into a voltage-gated activation term s and Cai-
blockable inactivation term h of the form (Eckert and
Chad, 1984),

h = 1/(1 + [Ca2+]i/Ks), (3)

TABLE I

Delayed rectifier K+ current: IKV - n IK,

where IK,V - PK,V (RT I eFv/RT

PK,V 1.3 pA *mM; [K+]. = 5 mM; [K+]i - 130 mM.
an - X, exp[(V- Vn)/S,]; 0. = k.
V. = -10 mV; S. - 6 mV; X. - 0.05 ms

Fast Ca2" current: Ifc, - m if,
(2FV [Ca2"]0 - [Ca2+]i e2FV/RT

where Ic, = PCAj RT 1 2FV/RT

PC=,f 8.0 pA * mM-1; [Ca2+]0= 3.0 mM.
a.m Xm exp [(V- Vm)/2S]; .m = Xm exp [(Vm- V)/2Sm].
Vm -13 mV; Sm - 8 mV; m = 0.2 ms'1.

Slow Ca2+ current: Ic,, = s h IC,..
where- - |~(2FV [Ca2+]0 - [Ca2+]i e2FV/RT

where Ica, - PC.,. R _ 2IFV/RT
kRT) 1- eF/R

PC,. = 2.7 pA * mM-'; [Ca2,]0 = 3.0 mM.
a, - A, exp [(V- V.)/2S]; fi, = X, exp [(V, - V)/2S.].
V, - -35 mV; S, - 8 mV; A, = 0.2 ms-'.
h - h_, = 1/(1 + [Ca2+]J/K,); K, - 100 nM

Leak current: IL - gL(V- VL),
where gL = 200 pS; VL - -58 mV.

Other parametric values are: f= 0.001, kc, - 0.05ms1i, r - 6 um,
Cm -I AF * cm-2, and RT/F - 26.7 mV. The permeability coefficient
expressed in the unit ofA. mM-' in the table can be converted to a more
familiar unit in meters per second using the conversion factors, I A -

mM1 - I J * V-' * mol-' * m3 * s-' and 4wrr2F - 4.5 x I0`
J . V-' . mol-' . M2.

BIOPHYSICAL JOURNAL VOLUME 54 1988428



FIGURE 1 (A) Peak current-voltage relations elicited
by voltage commands from a holding potential of - 70
mV. Here, the outward (top) current is the delayed K+
current, and the inward (bottom) current is the com-
bined inward current of fast and slow Ca2" currents.
(B) Peak current-voltage of total inward current in two
different external calcium concentrations, i.e., 3 and 12
mM.

where K, is the dissociation constant of Cai ions from the
receptor site of the slow calcium channel. In the Chay-
Cook model, ICa has a voltage-dependent gating variable s,
whose half maximal potential V, shifts to the right on the
voltage-axis as [Ca2+]i increases.

In our model, the Cai-blockable Ca2" current has a

slowly varying component owing to slow changes in
[Ca2"Ii. This change is due to the influx of extracellular
calcium ions through the voltage-gated calcium channel
and the efflux of free intracellular Ca2" ions by the action
of Ca-ATPase pump activity. Thus, in the limit cycle we
may express the dynamical change of [Ca2"]i by

f-ld[Ca2+]j/dt = -(Ic,,f + Ic,A)/2Fv - kc,[Ca2+]i, (4)

where F is the Faraday constant,fa measure the fraction
of free calcium ions in the cell, v the volume of the cell (i.e.,
4wrr3/3), and kc, the rate constant for the efflux of Cai. We
note that during the initial transient period, the efflux of
Cai is also due to sequestration of [Ca2+]i by the intracellu-
lar compartments (e.g., mitochondria). Sequestration,
however, ceases to exist after 10 min or so. Thus, in the
limit cycle steady state, the efflux of Cai would mainly be
Ca-ATPase actively pumping Cai ions out of the cell.
As shown in the two tables, the general form of the time-

and voltage-dependent current component of the y-type
channel has the form

Iy -pyNyiy - pyIy, (5)
where py is the fraction of channels open at time t, iy is the
unitary current, and Ny is the total number of channels,
and Iy is the maximal current per cell. The subscript y
stands for one of the three (delayed K+, fast Ca2+, and slow
Ca2+) channels. The maximal currents for three compo-
nents are given in Table I, where Py is the "maximal"
permeability coefficient of the y-type ions, and [YZ+]j and

[YZ+]i are the extracellular and intracellular concentra-
tions, respectively, of y-type ions carrying charge Z+. For
the sake of clarity, we will drop the subscript y in the
ensuing discussion.

If the number of channels, N, is finite, the fraction, p, of
open channels is stochastic and cannot be determined
uniquely. As N becomes very large, however, the distribu-
tion ofp is approximately normal (according to the Central
Limit Theorem) with mean (p) and variance
(p) (1 - (p))/N. Because the standard deviation of the
distribution ofp is inversely proportional to IN, the width
of the p distribution becomes narrower and narcower as N
approaches cc. Finally, the distribution becomes a delta
function in the limitN - cc, i.e., p takes on its mean value
(p). Ifp stands for n, m, or s in Table I, then (p) can be
determined uniquely from the following differential equa-
tion.

d(p)/dt= (p. (p))/r

p. = 1/[1 + exp ((V1/2 - V)/S)]

T = l/(a + :), (6)

where S is the slope of the Boltzmann curve at the
half-maximal potential V,/2, and a and ,3 are the activation
and deactivation rate constants, respectively (see Table I
for the expressions of a and ,B).

It should be emphasized here that Eq. 6 is applicable to a
cell containing an infinite number of channels or a cluster
containing a large number of strongly coupled cells, such as

cells in an islet. If a cell contains only a finite number of
channels, p is a random variable and is defined by

p(t) -No(t)N, (7)

where No(t) is the number of open channels at time t.
Thus, to determine p(t) we require the number of open
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channels No(t) at time t, where No(t) must be a random
variable. In the next section, we develop a method of
determining No(t) with the random number generators in
commercially available mathematical/statistical libraries.

III. GENERATING THE NUMBER OF
CHANNELS IN THE OPEN STATE, No(t)

In this section, we develop an efficient method of simulat-
ing the ionic current component Iy of an excitable cell
containing several thousand channels under an unclamped
condition. To begin our development, let a channel open
and close by simple first order kinetics:

a
C (closed) -0 (open), (8)

where C and 0 are the closed and open states. If the
channel is in state 0 at time t, then in time At it will either
make a transition to state C or stay in 0. The probability of
making such a transition to the closed state is given by
j3At.

Let Pj,j be the probability that the channel in state i goes
to a new state j in At and let P1,j be the probability that the
channel remains in state i during the interval At. Then
these probabilities are related to the rate constants in Eq. 7
by

Pc,o= aAt Pcc = 1-aAt

Po,c = #At PO,O = 1 - f3At. (9)

Let there be Ni(t) channels in state i at time t. The number
of channels which will be in state 0 at time t + At is the
sum of the channels which would make a transition from C
to 0 and those which will stay in 0 during the time interval
At. In other words,

NO(t + At) = Nco + No,, (10)

where Ni,j is the number of channels which will go to state j
from state i during the time interval At. Since the total
number of channels N is fixed, the number of channels in
the closed state at t + At must be equal to

Nc(t + At) = N-No(t +At). (11)

A question then is how to determine N1,j. During the
interval At, the number of channels which will go to state j
from state i is any number between 1 and N; with the
probability of success being Pjj (see Eq. 9). To find out how
many channels would go to the new state j in the next time
interval, we have to carry out a series of "coin-tossing"
experiments. Fortunately, this experiment can be done
conveniently by using one of the binomial random number
generators in standard mathematical and statistical
libraries (e.g., International Mathematical and Statistical
Library [IMSL]). To use such a generator, we need
information on the probability of success (i.e., P,,) and the
number of trials (i.e., N,). In particular, if we are using

IMSL (version 9), the subroutine

GGBN(DSEED, NR, NIND, P, IR) (12)

should be used to determine Nc,o and No,0. Here, NR is the
number of binomial random deviates to be generated (in
our case NR = 1), and DSEED is an input/output double
precision variable assigned an integer value (e.g.,
DSEED = 123457D0 supplied by a user) and replaced
automatically by a new value to be used in a subsequent
call. If we are calling this routine to determine Nc,o, P
stands for Pc,o, NIND for Nc(t), and IR for Nc,o. If it is for
No,0, P stands for PO,o, NIND for No(t), and IR for No0.
(For a newer vectorized version of IMSL, the reader
should refer to the subroutine RNMTN, a general multi-
nomial random number generator in IMSL version 10).

It is informative to mention here that as Nbecomes very
large, a binomial distribution becomes Poisson or Gaus-
sian. In particular, it is Poisson if either (p) * Ni or
(1 - (p)) * N, is of moderate magnitude (Feller, 1968).
Otherwise, binomial becomes Gaussian. Although it is
always proper to use a binomial distribution in a two-state
stochastic process, a binomial distribution becomes compu-
tationally unfeasible as N becomes large, and thus it is
necessary to use the approximation. The fact that the
binomial random number generator in IMSL works for
large N must mean that the approximation as mentioned
above had already been built into the subroutine.
With the method outlined above, the ionic current at

time t can be obtained by a time-discretization recursive
method. That is, I(t) at t + At can be computed iteratively
starting from p(t) at time zero (i.e., p,. at the resting
potential). The size of At is constrained by the fact that all
the P,i,s in Eq. 9 should be between zero and unity. It is
sufficient to choose the At value to be one-tenth smaller
than the inverse of the largest rate constant among as and
A3s. Because some of the p(t)s are functions of Vas well as
[Ca" ];, we obtain V using Eq. 2 and [Ca2`]i using Eq. 4
with a two-time step Euler method.

IV. SIMULATIONS

The stochastic model given in Table I and the method
presented in section III are the basis for the numerical
simulations. The differential equations, Eqs. 2 and 4, were
solved numerically by a two-time step Euler method. The
Cray X-MP/48 at the Pittsburgh Supercomputing Center
was used to carry out the computations. To obtain No(t)
we used the routine GGBN (binomial random number
generator) in the IMSL library, but to cross-check our
results we also used GGNQF (Gaussian random numbers
generator) in the same library. The parametric values used
for the computation are listed in Table I. The Vm, Vs, Sm,
and S, values were obtained by fitting the Ic,/V curve of
Rorsman and Trube (1986) with our two combined cal-
cium currents as closely as possible. The Rorsman and
Trube value of V. (i.e., - 19 mV) with a smaller PKV gave
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the similar results as those presented in Figs. 1-4. To test
how the size of At affects the results, we have used At
ranging from 0.2 to 0.01 ms, but the results changed little
with changing At. The burst activities presented in Figs.
2-4 are those in the limit-cycle steady state (i.e., the first
5-10 min of the burst activity are not shown).

In Fig. 1 A, we show peak current-voltage relations
obtained by applying step potentials to a cell initially
resting at -70 mV. The outward K+ current shown in Fig.
1 A, top, is the steady-state current, and it exhibits a linear
relation to voltage > - 5 mV. The two inward Ca2,
currents and the combined current are presented in Fig.
1 A, bottom. Reversal of the Ca2, current is seen near + 60
mV, which indicates strong inward rectification. The max-
imum peak (hump) occurs just above -10 mV, and the
secondary hump is invisible in the inward (total) current,
even though a hump of the fast Ca2+ current occurs 22 mV
above that of the slow current. It is interesting that, unlike
in some neuronal cells (Nowcycky et al., 1985), most of the
inward I/V curves in ,-cells show a single hump (Satin and
Cook, 1985; Findlay and Dunne, 1985; Rorsman and
Trube, 1986).

Fig. 1 B shows the effect of external calcium concentra-
tion on peak inward I/V relations. As the Ca2+ concentra-
tion is increased from 3 to 12 mM, the inward Ic, grows
and the reversal potential becomes more positive. If the
independence principle holds, we expect that an m-fold
increase in [Ca2+]o results in an m-fold rise in the current.
The experiment of Rorsman and Trube (1986) shows that
a fourfold increase of [Ca2+] results in only a 1.6-fold
increase in peak inward I/V relations. This suggests ionic
flux coupling in a pore of Ca2+ channels and a saturation of
barrier binding sites (Hille, 1984). Our model assumes that
Ca2+ ions diffuse from one side to the other through a
homogeneous membrane without any interference from
other Ca2+ ions. Thus, Fig. 1 B confirms the independence
principle that is assumed in our model. To correct the
discrepancy, we need to divide the flux (cf., Ic.,f) expression
by 1 + [Ca2+]IO/KM, where KM is the Michaelis-Menten
constant (Hille, 1984).

Fig. 2A, top, illustrates a mathematically predicted
burst pattern in the absence of single-channel stochastic
noises. The five differential equations (i.e., V, [Ca2+]j, n,
m, s) were solved with the GEAR method. The time course
of the membrane potential, V, is presented by the solid line
and the intracellular free calcium concentration, [Ca2+], is
presented by the dashed curve. Note that [Ca2+]i oscillates
between 0.39,uM and 0.54 with the amplitude of 0.15,uM.
The spikes shown in the inset reveal that the frequency in
the final phase is three times larger than that in the initial
phase and that the amplitude is smaller near termination.
Such observations have been made in many published
,-cell experiments (Atwater et al., 1980; Ribalet and
Beigelman, 1980; Cook, 1983). The current components
shown in the next four traces reveal that the fast Ca2,
current has the largest amplitude and the slow Ca2+ the

smallest. It is interesting to note that such a small current
is enough to transform a spiking cell to a burster. Note also
that the slow Ca2" current shows inactivation along the
plateau phase, and this inactivation brings about the
termination of the plateau phase.

Fig. 2 B is to test our hypothesis that some secretagogues
and glycolytic metabolites may act as competitive inhibi-
tors of Ca; and can alter the electrical bursting pattern.
The effect of competitive inhibition was modeled by vary-
ing K,. It is quite apparent that our model predicts an
increase in the active phase and a decrease in the silent
phase as a function of K,. As a result of this electrical
effect, there is a rise in the average [Ca'+]i level. Above
120 nM, the bursts disappear entirely and only spikes
remain. The results on electrical activity are consistent
with the burst pattern that is invoked by addition of glucose
(Atwater et al., 1980; Ribalet and Beigelman, 1980; Cook,
1984) and pH (Eddlestone and Beigelman, 1983; Pace,
1984).
We have simulated intracellular potential recording

from a single isolated ,B-cell (i.e., Eq. 1 with gg = 0), and
the result is presented in Fig. 3, top. The Euler method
with At = 0.02 ms was used for the computation, and the
GGBN (binomial) routine in IMSL was used to generate
random numbers. The cell is assumed to contain 1,000
each of the K+, fast Ca2+, and slow Ca2+ channels. Thus,
the voltage noise seen in this simulation reflects simulta-
neous opening-closing events of 3,000 channels. A signifi-
cant discrepancy between the deterministic model (see Fig.
2 A) and the stochastic model lies in .the amplitude of
[Ca2+]i oscillation and the nature of bursting. Note that a
single cell bursts with very unpredictable periods. Compare
the peak of [Ca2+]i level with that in Fig. 2 A. We find that
the voltage noise results in a decrease in the amplitude of
[Ca2+]i oscillation, and bursts occur so chaotically that
[Ca2+]i is unable to reach the maximum possible peak (i.e.,
0.54 jiM).

It is of interest to find out which channel activity
contributes the most to the voltage noise seen in Fig. 2 A,
top. We have studied such an effect by treating the opening
events of one type of channel stochastically and the other
two deterministically. The voltage noise seen in the second
panel is due to the cell containing 1,000 K+ channels, the
third panel 1,000 fast Ca2+ channels, and the bottom trace
1,000 slow Ca2+ channels. As shown here, 1,000 slow Ca2+
channels are enough to suppress most stochastic noises,
while the cell needs more than 1,000 fast Ca2+ channels to
suppress the noise. It is evident that among the three, the
K+ stochastic event contributes the most to the voltage
noise. Note that for all three cases, [Ca2+]i oscillates with
a much smaller amplitude and also at a lower level than
deterministic [Ca2+]i.

Cells of the islets of Langerhans have been shown to be
electrically as well as chemically coupled (Meda et al.,
1984; Eddlestone et al., 1984). It would be interesting to
know what happens to the voltage noise and the [Ca2+1]
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level when cells cluster together. The results of increasing
the cell number, M, are presented in Fig. 4. To save
computation time, we have introduced a few assumptions:
(a) a single cell contains 1,000 K+ channels, (b) there are
an infinitely large number of Ca2" channels (i.e., two types
of Ca2" channels were treated deterministically), and (c)
the (3-cells are very, very tightly coupled (i.e., gg = oo). The
last assumption allowed us to treat a multicomplex as if it
were a single cell (gg = 0), but with the number of channels
increased by a factor of M. The Euler method with At =
0.05 ms and the GGBN (binomial) routine were used for
the top three traces (1, 10, 50 cells), whereas the Euler
method with At = 0.02 ms and the GGNQF (normal)
routine were used for the next two traces.
When 10 such cells aggregate, irregular bursts develop

(see second panel) that resemble those observed by Rors-
man and Trube (1986) in a cluster of 70 ,um diameter (-80
cells). For an aggregate containing 50 cells or more,
(almost) regular bursts develop but the spikes often run
irregularly by undershooting and overshooting the plateau
level. Note that if there are only 200 delayed rectifier
channels in a cell (instead of 1,000 channels), our 10-cell
aggregate (second panel) corresponds to a cluster of 50
cells, and the 50-cell aggregate (third panel) corresponds
to a cluster of 250 such cells. Note also that as more cells
cluster together, the peak of [Ca2+]i becomes higher.

DISCUSSION
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FIGURE 3 Simulation of electrical activity of isolated single #-cell. The
cell is assumed to contain 1,000 delayed K+ channels, 1,000 slow Ca2"
channels, and 1,000 fast Ca2" channels. In the second panel, the cell
contains 1,000 delayed K+ channels and an infinitely large number of
slow and fast Ca2" channels. Likewise, in the third panel there are 1,000
fast Ca2" channels in the cell, and in the bottom panel there are 1,000
slow Ca2" channels.

This study represents the first quantitative attempt to
search for a clue as to why pancreatic (-cells need to be
aggregated tightly and burst in synchrony. To achieve our
purpose, we have formulated a stochastic model in which
the channels are allowed to open and shut at random, but
with opening and closing probabilities based on experimen-
tal data. We have found that there is a strong correlation
between the size of clusters and the intracellular calcium
concentration level. As the size of a cluster grows, (a) the
voltage becomes less noisy, (b) the bursts become more
regular, (c) the burst period becomes longer, and (d) the
plateau phase becomes longer. The lengthening of the
plateau phase, in turn, gives rise to an increase in the
average [Ca2"]i level. This result is particularly interesting
because [Ca2+]i is implicated in the release of insulin
(Scott et al., 1981; Siegel et al., 1983).
The membrane potential is clearly influenced by the

random opening and closing of 1,000 delayed rectifier K+
channels (see Fig. 3). The opening-closing of this channel
is enough to cause voltage recording of single cells to be
very chaotic. Our theoretical analysis revealed that the fast
voltage-gated Ca2" channels can also make the membrane
potential somewhat noisy. Because of the channel stochas-
tic event, the spikes appear irregular even though a cluster
of 500 cells is tightly coupled together (see Fig. 4). This
irregularity, however, is different from the bimodality
observed by Soria and Ferrer (1986) in the frequency
distribution of the spike amplitude and of the rate of
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FIGURE 4 Burst activity of a cluster of -cells as the cluster size (i.e., the number of cells) increases. The noises seen in this figure are due to
the open-close event of 1,000 voltage-gated K+ channels per cell. From the top to the bottom panel, the cluster contains 1, 10, 50, 100, 500, and
ao cells.

repolarization. As demonstrated by Bangham et al.
(1986), a small number of voltage-gated and Cai-activated
K+ channels could make regular spikes into very irregular
spikes.

In our model, fast voltage-activated Ca2" and delayed
rectifier K+ channels are responsible for spikes, and the
slow Ca2" channel is responsible for an underlying slow
wave. A small fraction of ATP-sensitive K+ channels
which may still be active in the above subthreshold glucose
(Dunne and Petersen, 1986a and b; Kakei et al., 1986;
Rorsman and Trube, 1985; Misler et al., 1966; Himmel
and Chay, 1987; Cook et al., 1988) is included in the model
as a leak current. The slow wave is achieved by the
inhibition of the slow Ca2" channel by the rise in [Ca2+]i.
The model predicts that competitive inhibition of the
Ca2"-gated channel gives rise to the mean Cai level and
lengthening of the plateau phase. The competitive inhibi-
tion, which is modeled by varing K&, is not the only way to

change the electrical activity. Increasing the Ca2+-ATPase
pump activity (kca) can also lengthen the plateau phase
(Chay, 1987). However, there is one important difference
between the effect of kc, and K&. The increase in kca does
not alter the mean [Ca2+]i, whereas the increase in K,
raises the mean [Ca2"]1. This raises an interesting hypothe-
sis on how to separate the electrical activity from the
[Ca2+]i level, as pointed out by Chay (1986 and 1987).
We have not yet studied in detail the sensitivity of the

parametric values on the bursting (and therefore how the
parameters affect the conclusion). However, it is quite
possible to carry out the study using AUTO (Doedel,
1986) and Rinzel's Z-plot analysis (Rinzel, 1985). Based
on Rinzel's conclusion (1985) and our preliminary results,
we predict that the Z-plot analysis will reveal (a) increas-
ing kc, lengthens the plateau phase but not the mean
[Ca2+]i level; (b) increasing K, not only lengthens the
plateau phase but also raises the mean [Ca2"Ji; (c) increas-
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ingf in Eq. 4 increases the burst frequency; (d) Xm and X.
control the amplitude and frequency of spikes; (e) decreas-
ing X, transforms a square-wave burster (e.g., #-cell burst-
ing) to a parabolic burster (e.g., R-1 5 bursting) (Chay and
Cook, 1988).

Although our model is very simplistic, it provides valu-
able information which is not yet obtained experimentally.
To summarize, our model predicts that the mean level of
[Ca2+]i rises as the size of a cluster increases (Fig. 4). A
competitive inhibitor or activator that alters the Cai allo-
steric site has an ability to influence the electrical activity
as well as the mean level of [Ca2"]i (see Fig. 2 B). The
electrical activity and the mean [Ca2"JI can be separated
by appropriately varying kc0 and K, (Chay, 1987). While
newer experiments will eventually refine our model, we
believe that these predictions are model independent.
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