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THRESHOLD FOR REPETITIVE ACTIVITY FOR A SLOW

STIMULUS RAMP:
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ABSTRACT We have obtained new insights into the behavior of a class of excitable systems when a stimulus, or
parameter, is slowly tuned through a threshold value. Such systems do not accommodate no matter how slowly a
stimulus ramp is applied, and the stimulus value at onset of repetitive activity shows a curious, nonmonotonic
dependence on ramp speed. (Jakobsson, E. and R. Guttman. Biophys. J. 1980. 31:293-298.) demonstrated this for
squid axon and for the Hodgkin-Huxley (HH) model. Furthermore, they showed theoretically that for moderately slow
ramps the threshold increases as the ramp speed decreases, but for much slower ramp speeds threshold decreases as the
ramp speed decreases. This latter feature was found surprising and it was suggested that the HH model, and squid axon
in low calcium, exhibits reverse accommodation. We have found that reverse accommodation reflects the influence of
persistent random fluctuations, and is a feature of all such excitable systems. We have derived an analytic condition
which yields an approximation for threshold in the case of a slow ramp when the effect of fluctuations are negligible.
This condition predicts, and numerical calculations confirm, that the onset of oscillations occurs beyond the critical
stimulus value which is predicted by treating the stimulus intensity as a static parameter, i.., the dynamic aspect of a
ramp leads to a delay in the onset. The condition further demonstrates a memory effect, i.e., firing threshold is
dependent on the initial state of the system. For very slow ramps then, fluctuations diminish both the delay and memory
effects. We characterize the class of excitable systems for which these behaviors are expected, and we illustrate the
phenomena for the HH model and for a model of cAMP-receptor dynamics in Dictyostelium discoideum.

Excitable systems may spontaneously oscillate if parame-
ter values or stimulus intensities are tuned into appropriate
ranges. For a wide class of theoretical models for electri-
cally excitable membranes (1-3), as well as for other types
of excitable biological systems (4, 5), the threshold param-
eter values for oscillatory behavior may be characterized
explicitly. At criticality, the system response changes from
a damped to a maintained oscillation; here, the decay rate
of the damped oscillation passes through zero and this
decay rate is determined from a mathematical analysis of
linear stability. In order to compare experimental results
with this theoretical prediction, one might then ramp the
stimulus or parameter sufficiently slowly through critical-
ity to observe the onset of oscillations. This dynamic aspect
of the tuning however introduces some additional effects
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which have significant consequences for the interpretation
of threshold. One finds that the onset of oscillations is not
observed until the parameter value has passed well beyond
the predicted criticality, i.e., there is a delay in the onset
(Fig. 1) and an associated memory effect. Moreover, the
delayed threshold depends nonmonotonically upon the
ramp speed, with decreasing behavior for very slow ramps.
This decrease in apparent threshold is surprising to a
physiologist who expects that accommodation would lead
to the opposite trend. We have obtained new insights into
the delay/memory effect and have identified the source of
nonmonotonicity with the profound effect of persistent
fluctuations as such a system passes through criticality.
The first observations of delayed onset and dependence
upon ramp speed were brought to attention in the biophysi-
cal literature by Jakobsson and Guttman (7,8) who
reported on experiments with squid axon and numerical
calculations with the Hodgkin-Huxley (HH) equations
(1). This model shares the essential qualitative feature
with a class of excitable/oscillatory systems: repetitive
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FIGURE 1 Delayed onset of oscillations for slow ramp of stimulus or
control parameters in models of two different excitable systems. Vertical
arrows correspond to threshold conditions at which maintained oscilla-
tions would first occur for steady parameter values. (4) Voltage time
course for standard Hodgkin-Huxley model (1) of electrical behavior of
squid axon under applied current ramp, / = Rt + I, with R = 0.03
pA/(cm?.s). Membrane starts from resting state at ¢ = 0 with I, = 0. (B)
Time course of extracellular (y) cCAMP for slowly tuned, three-variable,
model (Egs. 3 of [4]) of signaling system that controls aggregation of
slime mold Dictyostelium discoideum after starvation. Four parameters,
identified as affecting developmental transitions from steady to oscilla-
tory behavior (6), are ramped from zero at different speeds: ¢ =
22x107%, k, =93 x 10724, k; = 3 x 1073 ¢), Fg = 2.6 x 107 1; o, k.,
k; have units min~' and Fy is dimensionless. Initial conditions: pr(0) = 0,
B(0) = 0,¥(0) = 0.127.

activity for a steady stimulus arises as a damped oscillation
changes into a maintained oscillation.! While some aspects
of the HH theory are considered in need of revision (e.g.,
[10]), the specific form of the model is not crucial to our
conclusions. The above qualitative feature should be
shared by any alternative model which seeks to account for
the oscillatory properties seen in squid (11, 12), or similar
properties in other systems. For these reasons, and in order

'In mathematical terms this type of transition from steady state to
periodic behavior is called a Hopf bifurcation (9). It is one of the few
generic ways in which periodic solutions arise. Both hard oscillations and
soft oscillations may originate as Hopf bifurcations. (i.e., sub- and
supercritical bifurcations, respectively [9]); The HH model exhibits each
type at I, and I,, respectively (14).
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to relate directly to the motivating study of Jakobsson and
Guttman, we use the HH case to illustrate our results.

The HH model exhibits repetitive firing in response to a
steady current if the current strength is in an appropriate
range I, < I < I, (13, 14); the values /, , are computed by a
linearized theory. This suggests that if the current is
applied as a slow ramp then the repetitive response should
be elicited as the current passes a critical level. Jakobsson
and Guttman (7, 8) demonstrated this for the HH model,
and for squid axon, and they emphasized that neither
exhibits full accommodation no matter how slow the ramp.
They found, for a ramped current in the model, that the
observed or apparent threshold level, J;, typically exceeds
the steady threshold value I,. Furthermore, as we show
here, the deviation /; — I, depends on the initial current I,
so that there is a memory effect associated with the slow
tuning. The calculations of Jakobsson and Guttman also
showed that I; depends on the ramp speed, R, and in a
surprising nonmonotonic way. For moderately slow ramps,
I;increases as the ramp speed decreases; one might say that
the HH membrane shows partial accommodation. For
much slower ramp speeds however, the computed I; shows
a decreasing trend as R decreases; it was suggested that the
HH model, and squid axon in low calcium, exhibit reverse
accommodation.

Our work indicates that the reverse accommodation
feature of the nonmonotonic behavior is characteristic of a
class of systems when a stimulus, or parameter, is slowly
tuned through a threshold value. It reflects the influence of
persistent random fluctuations, i.e., for very slow tuning,
there is a longer time for fluctuations to accumulate and to
increase the chance of firing, thereby resulting in a lower
value of /. We have also derived analytically a condition
which yields an approximation for I; in the idealized case of
a slow ramp when fluctuations are ignored. This condition,
based on our deterministic analysis, predicts that I; should
exceed the critical value, I, (the steady current at which
the depolarized rest potential loses stability), and more-
over, that the deviation depends on I,. Thus, one observes a
memory effect when the current is ramped slowly from a
stable holding state. However this effect is diminished in
the presence of significant environmental fluctuations.

Numerical computations were performed on a Vax
11/8600 and the IBM System 3090 Vector Facility. We
used a classical fourth-order Runge-Kutta method with
fixed time step of 0.05. The computer program was written
to use vector instructions to advantage. Vectorization over
parameter space (e.g., ramp speed) results in a significant
decrease in execution time.

Fig. 2 illustrates the dependence of ; upon 1/R; slower
ramp speed is in the rightward direction, and each point is
for a different value of R. At ¢t = 0, the membrane is at rest
and I, = 0. Notice first, the delay effect, i.e., the deviation
I; — I,. For all but the fastest ramps, the slowly rising
current must pass above I, the threshold for repetitive
firing for a steady current, before an action potential
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FIGURE 2 The onset of repetitive firing depends on ramp speed R as
well as on persistent fluctuations; from numercial integration of the
standard HH equations at 6.3°C. Each plotted point denotes the current J;
at which the first action potential occurs (when the membrane potential
first exceeds 40 mV above rest). For each ramp, the membrane is initiated
from rest and the current starts at zero. The lower dashed line is the
threshold values for a steady current, I, = 9.78 uA/cm? and the upper
dashed line is an analytical prediction of J; for a very slow ramp in a
noise-free system. Results for two levels of precision, single (SP) and
double (DP), are superimposed to show the effects of fluctuations due to
roundoff error. The data points SP depart from the DP results near
1/R = 0.01. For double precision, flucutations have an effect only at
much slower ramp speeds (1/R > 0.03).

occurs. Our analytic results predict, if the ramp is very slow
and if the environment is noise-free, that /; is about as far
above I, as the initial current (I, = 0 for Fig. 2) is below [};
the upper dashed horizontal line illustrates this prediction
for the HH model.

Next we focus on the data labeled SP, and we identify
two behaviors: a net increasing trend on the left and a
decreasing trend on the right. The increasing trend is
consistent with the notion of accommodation (1, 15, 16); a
slower stimulus leads to an effectively increased threshold.
These data on the left also exhibit a fine structure:
localized regions of decreasing /; but with abrupt increases
to create a sawtooth appearance. The sawtooth feature, as
also interpreted by Jakobsson and Guttman, reflects the
susceptibility of the membrane to fire during the depolariz-
ing phase of a subthreshold oscillation. Each short
decreasing segment of a sawtooth corresponds to firing
approximately after a certain number n of subthreshold
oscillations; these segments are pieces of hyperbolae:
(1/R)I; = n- T, where T, equals the period of the
subthreshold oscillations. The nearly discontinuous jumps
in I; correspond to adding one more subthreshold oscilla-
tion (n — n + 1) so that these jumps approximately equal
R . T,, and therefore they become smaller for smaller R.

The data on the right in Fig. 2, the decreasing portion,
have an identifiably different structure. The regular saw-
tooths are absent and the data appear to reflect some
stochasticity. This different structure was not noticeable in
the results of Jakobsson and Guttman because they had so
few data points for small R. Since the HH model is
deterministic and the numerical integration algorithm is
deterministic we were led to consider machine roundoff
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FIGURE 3 The memory effect. When current is initiated from rest, the
onset of firing is delayed until 7 sufficiently exceeds the steady threshold
I, = 9.78 pA/cm?. Each point is for a different initial current I; ramp
speed R = 33.3 uA.cm?/s. Computations in single precision (SP) show
that fluctations due to roundoff error can destroy the memory effect for
I, — I, > 5, whereas in double precision (DP) the memory effect remains
over the range shown. Temperature is 6.3°C.

error as the likely source of randomness; please note that
roundoff error is distinct from the truncation error of a
finite difference method. In order to demonstrate the effect
of roundoff, the calculations were repeated in double
precision, and plotted here with the label DP. The sawtooth
data were reproduced and the increasing trend was
extended to slower ramp speeds before the much smaller
roundoff errors could interfere with the memory effect. We
conclude that this decreasing trend does not reflect a
special biophysical mechanism, reverse accommodation,
which is unique to the HH model. Other systems (17, 18)
which exhibit a memory effect have also shown similar
sensitivity to random fluctuations. Furthermore, we have
found in double or quadruple precision calculations of slow
passage through threshold for the HH model, and for a
canonical model of excitability (17), that small amplitude,
additive white noise mimics the influence of single preci-
sion round-off error. We remark that this magnitude of
noise is comparable with that of conductance fluctuations
in a 1-cm? patch of HH membrane. With a simplified
model (HH with white noise Na*- and K*-conductance
fluctuations on the order of 1/ vN, where N = 10° chan-
nels) we have generated results which resemble those in
Fig. 2.

For the above calculations, the membrane and applied
current were initiated from rest, and we observed a time
delay in the onset of firing until 7 sufficiently exceeded I,.

This condition is derived under the assumption that the slowest decaying
mode (for I < I,) of the linearized equations is oscillatory. The assump-
tion is valid for the HH equations over a substantial range of I but violated
slightly for I, near zero, nevertheless the integral condition yields a good
approximation of the computed results for I;.
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The results of Fig. 3 show, for a given ramp speed, how I, —
I, depends on the deviation, I; — I, of the initial current
from the steady-current threshold. This dependence
emphasizes the memory aspect: over a certain range of
initial states, the greater is I, — I, then the greater is I, —
I,. These numerical results are in agreement with our
analytic results which are asymptotic for a very slow ramp
in a noise-free system (17). This analysis shows that
satisfies the following condition:

0=./';"Re{)\(1)}d1, 1)

where, Re {\(I)} is the exponential decay rate of sub-
threshold oscillations, (which is negative) when I is below
I,, and the growth rate (positive) of small oscillations when
I is above I,. For I = I,, RefA(I)} passes through zero,
Im{\(I)} is nonzero, and this characterizes the (Hopf
bifurcation [9]) threshold I, for steady current at which
the depolarized state changes stability from an attracting
spiral to a repelling spiral. Because this is an integral
condition we see immediately that I; must exceed I;; the
accumulating effect of exponential decay for I < I, must be
balanced by sufficient influence of a growing mode.

The derivation of this integral condition (Eq. 1) is
motivated by an observation that when the current is
slowly ramped from rest, the system closely tracks the
steady-state solution of the static problem. Therefore, a
slowly-varying solution can be derived as a perturbation
from the steady-state solution. To check stability, we
linearize the full problem about the slowly-varying solution
and determine when the linear system exhibits exponential
growth. To solve the linear problem we use a classical
asymptotic method of mathematical physics, the (Went-
zel-Kramers-Brillouin) method (19), and seek an asymp-
totic expansion, for each dependent variable, of the form

¥7) = exp [1%’][%(1) + RN + Ry0) + - - -] @)

where
R« 1,7=Rtand 6(r) = 64(1) + Roy(t) + R%5(r) + - - - .

Here, R is the ramp speed, 7 is the slow time variable, and
¥, 0; are to be determined. The WKB formulation seeks the
solution as a rapidly-varying phase function, with a slowly
modulated amplitude (the y;(v) series). Exponential
growth occurs when Relo(7)}/ R is of order 1; in the limit as
R tends to zero, this means Relo(r)} = 0. When this
expansion in Eq. 2 is substituted into the linear system, a
solvability condition is found for y, that requires

2 (Re ()} = Re DU, ®

where Re {\(I(7))} is defined is the preceding paragraph.
The stability criterion (Eq. 1) follows by integrating Eq. 3
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with respect to 7, setting Re {s,} equal to zero and changing
the integration parameter from 7 to /.

For the special case when I, is very close to I;, the
integral condition implies that /; must also be very close to
(just barely above) I;. The data of Fig. 3 deviate from this
prediction; for I = I,, I, — I is ~3. This discrepancy arises
because the integral condition is derived asymptotically as
R tends to zero.

For small, but nonzero R, and for I, near I, the growth
condition for Eq. 2 means that the integral condition is
written in the more precise form

kR = j,' “Re \(D)} dI, “@

where k is an order one constant. Furthermore, by using a
Taylor’s series approximation for ReA when I — I, is
small, i.e., Re A = X\ (I — I,), where X is an appropriate

positive constant (for HH, A = 0.02), we obtain the
improved estimate

I— 1, = [(2kR/N) + (I, — I)"1'~ 5

Thus, if kR is comparable in magnitude to A, then the
memory aspect is still present but not dominant. This
formula predicts the zero slope for I, near I, in Fig. 3, and
with k = 2.7 we compute [; — I, =3 for I, = I,.

The results of Fig. 3 further show that if the initial
current is sufficiently below I, then there is enough time, as
the current increases, for fluctuations to take effect and to
decrease the memory effect. In this situation the mem-
brane no longer distinguishes initial states which are too
far away; the data in Fig. 3 that are labeled SP (from
single-precision calculations) thus level off for I, — I,
greater than a certain value. With double precision arith-
metic (data labeled DP), the HH membrane, responding to
a slow current ramp, is capable of recognizing different
initial states which are more distant.

Parameter changes that affect membrane dynamics and
the steady thresholds 7, and I, will also alter the memory
effect. For example, at higher temperature /, is larger and
I, is smaller. If the difference I, — I, is not too large then
one can expect that the membrane in response to a slow
ramp (from a holding state not too far from I;) would not
exhibit repetitive firing; the current would sweep right
through the vulnerable range without eliciting an action
potential. Stimulus configuration and geometry also have
an effect. Here, we have considered a space-clamped
membrane. For an HH cable model subjected to a spatially
localized ramping stimulus one may find an apparent
accommodation; cable properties induce an additional load
that will result in a different range, I, — I;, which may be
smaller (20, 21). In these considerations however, one
must be aware from our results, that the influence of
fluctuations can be significant. For interpreting steady-
state threshold criteria, and for comparing with experi-
mental behaviors, one must consider the dynamic effect of
slowly tuning a stimulus in the presence of persistent
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fluctuations. These joint considerations may be adequate
to explain various aspects of accommodative phenomena,
on certain time scales at least, without having to hypothe-
size additional biophysical mechanisms. Finally, we
emphasize again that our results apply generally to systems
which exhibit similar threshold-crossing behavior to the
HH model (e.g., [1-5]), i.e., the local behavior around
steady state is decaying oscillations and changes to grow-
ing oscillations as the steady-stimulus parameter is
increased beyond threshold. Such models exhibit a finite
minimum firing frequency. Another class of excitable
membrane model is characterized by a zero firing fre-
quency at threshold, e.g., the model formulated by Rall
(22) and simplified versions of Conner’s model (23). Our
preliminary numerical experiments with such models do
not reveal a noticeable memory effect.
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