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ABSTRACr The principles of statistical physics are used to formulate general expressions for the steric partition
behavior of molecules in both random and ordered membrane structures that may be applied to any shape of the solute
and/or the volume-excluding element of the membrane. These expressions fully define partitioning in terms of the
volume excluded to point molecules and to finite-sized molecules. The mean effective exclusion volume for a molecule is
calculated as a function of a global interaction energy, which varies with position, conformation, and orientation of the
molecule. It allows consideration of electrostatic and other nonsteric factors. To test the model, specific partition
functions are derived for several simple geometries describing the membrane and solute. Frequently, the derived
expressions agree with past analyses; however, a new expression describing partitioning within an random network of
fibers is derived. It agrees with past results only in the limit of low exclusion volumes. With greater volume exclusions,
past results greatly overestimate the partition function. It is applied to gel electrophoresis and chromatography and
survives testing with available experimental data. Unlike past analyses, it predicts nonlinear Ferguson plots for agarose
gel electrophoresis. In addition, an analytical expression predicting the minimum radius of a sphere excluded from a
random fiber matrix is derived, tested, and found to agree with experimental data.

INTRODUCTION

The understanding of the physicochemical basis of the
partitioning of molecules within membrane compartments
containing volume-excluding elements is fundamental to
many biophysical processes. Many biochemical fraction-
ation techniques such as gel-exclusion chromatography,
ultrafiltration, cell separation, and dialysis rely on the
differential penetration of molecules or cells into porous
volume-excluding membranes (1). The partition function
is essential in interpreting elution volumes in size exclusion
chromatography (2, 3), Ferguson plots in gel electrophore-
sis (3, 4), and molecular transport across filtration mem-
branes and through solutions of macromolecules (5). In
addition, partitioning of molecules within restrictive vol-
umes strongly influences transmembrane transport
through lipid membranes and ion channels (6-8), intracel-
lular diffusion and convection through cytoplasm (9),
intracellular compartmentalization of macromolecules
(10), transcapillary exchange (11, 12), and receptor-
ligand interactions at cell membrane surfaces (i.e., lipid
polar region or the glycocalyx) (7, 12-14). The equilib-
rium distribution coefficient (partition function) of macro-
molecules between the bulk and membrane phase must be
known in order to characterize these systems.

For many years the steric partition behavior of mole-
cules in these types of restrictive environments has been
predicted from the Ogston theory. Ogston derived an
expression describing the distribution of spaces available to
a spherical molecule in a random network of cylindrical
fibers (15). Laurent and Killander (2) used Ogston's
probability equation to determine the partition function of
a sphere in random fiber matrix. Elegant work by Giddings
et al. (16) confirmed the results of Ogston. They utilized
statistical mechanics to derive more general solutions of
the partition function for rigid macromolecules of various
shapes by integrating the configurational probability func-
tion of these molecules over position and orientation
space.

Extension of the theory based on the models of both
Ogston (15) and Giddings et al. (16) (OG theory) has
become the foundation for understanding the physical
basis of size exclusion chromatography (2, 3) and gel
electrophoresis (3, 4) These models are realistic in terms of
known polymer structures such as agarose, cross-linked
dextran, starch, hyaluronic acid, and polyacrylamide.
Application to gel electrophoresis predicts constant retar-
dation coefficients and linear Ferguson plot (log [mobili-
ty]) vs. gel concentration where mobility is defined as the
migration rate per electric field strength) for all types of
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molecules and gels (3). However, in contrast to this
prediction, recent evidence indicates that Ferguson plots
for various molecules and gels types are in fact nonlinear
(17-21). Linearity within Ferguson plots may exist only
within defined gel concentrations (17-19). Recently this
nonlinear behavior has been explained empirically with
adjustments of parameters contained within the Ogston
theory (20, 21).

In this analysis, I will utilize statistical physics to
describe the exclusion of molecules within porous mem-
branes. Expressions for the partition behavior of molecules
in both random and ordered membrane structures are
derived rigorously. A general expression applicable to any
geometry of both the permeating molecule and the volume-
excluding element is derived and applied to give specific
expressions for various simple geometries. These analytical
expressions frequently agree with past analyses; however,
important exceptions are found. For a membrane consist-
ing of a random network of rodlike fibers, the analytical
results approach the results of the OG theory and its
extensions only in the limit of very low exclusion volumes.
With higher exclusion volumes the OG theory greatly
overestimates the partition function. This new model is
applied to gel chromatography and electrophoresis. It is
tested and shown to agree with available experimental data
from both molecular mobility studies during gel electro-
phoresis and molecular partition behavior (i.e., elution
volumes) during gel chromatography. Depending on the
molecular dimensions of both the gel fiber and the perme-
ant molecule, this analysis unlike the OG theory predicts
nonlinear Ferguson plots with the retardation coefficient
varying with gel concentration. In addition, an analytical
expression predicting the maximum radius of a spherical
particle entering a gel is derived, tested, and found to agree
with available experiment results.

MATHEMATICAL ANALYSIS

The partition behavior of any molecule between two vol-
umes in equilibrium is dependent on the change in free
energy between the two phases. From a statistical stand-
point, the ratio of the number of accessible states available
to a molecule between two volumes in equilibrium equals
the partition function (ci = C,/C2, where C is the concen-
tration in volume 1 or 2). A state is accessible if the energy
of that state is favorable relative to the thermal energy.

General Statistical Analysis
of Accessible States

The mean number of accessible states (Q° ) available to an
imaginary point equivalent particle without charge of no
size (radius, r = 0) within any volume is directly related to
the total free volume (vf, normalized as free volume per
unit total volume) available to that molecule so that

Q° = VfQ,, ~~~(1)

where the superscript o denotes the zero molecular radius
and the subscript t denotes the total possible number per
volume in a given solution without significant exclusion.

Eq. 1 can be proved rigorously by considering a macro-
scopic system of solute particles dissolved in a solvent
treated as a continuum. Dividing a unit volume into a large
number of identical ensemble volumes, we can enumerate
the likelihood that each ensemble can manifest its maxi-
mum number of accessible states. Within any ensemble
volume the possible number of distinct accessible states for
any molecule (Q) is related to the ensemble number of
molecules (n) and the number (N) of available positions
for each molecule in the volume so that'

N(N-1)(N-2) ...(N-n+ 1)
Q= .~~~~~~~~-

N!
n!(N - n)!

if n = 1. (2)

If the representative ensemble volume only contains 1
molecule (n = 1), Eq. 2 reduces to its simplest form. As the
molecular concentration increases, the more precise facto-
rial expression in Eq. 2 must be used.

In the membrane phase, N is calculated for a single
conformation of the volume-excluding element in the
ensemble volume. Within an ensemble volume the mole-
cules potentially may be arranged and oriented (which
constitutes a state) in a manner that either does or does not
overlap with any exclusion element contained in the ensem-
ble volume. The number of available positions (N) that do
not overlap and the number of positions (N') that do
potentially overlap equal the total number of possible
positions (N,, which as per Eq. 2 equals Q,) or N + N' =
N,. If this equation is divided by N,, one gets the probabil-
ity (p = N/N,) that any single coordinate position within
the ensemble volume is available for a point molecule (i.e.,
does not overlap with the volume-excluding element) and
the probability (q = N'/N,) that any one position is not
accessible because of overlap with the volume-excluding
element. Since each state is statistically independent, the
probability (P(N)) that N of the N, possible positions are
accessible is dependent on p and q (= 1 - p) in the form of
a binomial distribution:

P(N) - NNN )! pN(1 - p)N-N. (3)

For a point molecule, N, must be large so that the binomial
distribution reduces to a gaussian distribution that allows

'(a) The n factorial in the denominator corrects for the fact that each
particle is not distinct and is equivalent to the other; therefore, a switch of
positions by two particles does not constitute a new accessible state. (b) In
developing Eq. 2, the solvent is assumed to be a continuous medium and
not particulate in nature. A more exact treatment in terms of solvent
particles (in addition to the solute molecules which greatly increases both
N and n) is possible, but the loss in simplicity and clarity would probably
not be regained in predictive ability.
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calculation of the mean value of N denoted by Nm as
N

Nm4- [P(N)N] = N,P. (4)
N-0

Analysis for a Point Molecule
For a single point molecule of infinitesimal size in a
prescribed location within any volume the probability (p)
that it is does not overlap with the volume-excluding
element is just related to the available free volume (v?) or
the volume excluded (v°) to that point molecule:

p - = 1 - Ve°. (5)

Eqs. 2, 4, and 5 give the mean number of accessible states
(Q° ) for point molecules as

- n!(N°np)! Ntop - f°v° (6)

which agrees with Eq. 1 and proves the intuitively obvious
result that the number of accessible states for a point
molecule in any volurxie is proportional to the free volume
available.
From Eqs. 1 and 6 it is evident that for point molecules

partitioning between two compartments the ratio of the
number of accessible states within each volume is simply
the change in free volume or exclusive volume from one
volume to another. Therefore, the mean number of accessi-
ble states available to a point molecule within a membrane
or gel (Qg) depends on the available free volume within the
membrane or gel phase (g) relative to the volume available
in the bulk solution (b) so that

QQ= Vg/Vi = 1 - AVr/Vh = 1 - AV'/V'

finite size can exist at any position available to a point
molecule as given by Eq. 8 (for r = 0) unless it overlaps
with the volume-excluding element. A particle of finite size
has a maximum number of possible locations/accessible
states (Qm) within a unit volume containing an exclusion
element. If the volume exclusion element is structured in a
fixed, regular order, a typical ensemble volume may be
chosen. Let F(w) be the probability that w positions or
states (out of Om states) are still accessible if a finite size
molecule in any single conformation replaces the imagi-
nary point molecule so that

r7(w) - - prw ( - (9)

where Pr is the probability that any single position available
to a point molecule is also available to a finite size molecule
since the exclusion volume element does not overlap with
the volume of the molecule centered at this position.
Obviously, the volume located near the surface of the
volume excluding element is available to all point size
molecules but is not available to finite size molecules
because of steric exclusion from overlap. The ratio of the
free volume available to the finite size molecule (4f)
relative to the point molecule is equal to p, so that the
single-state dependency equation is

Pr = Vf/Vff 1 - AVf/V- 1 - AVf/r4, (10)

where Av4 = v - v' and Av = v - v,. For large values of
Qm, the binomial distribution given by Eq. 9 reduces to a
gaussian distribution so that

(7)

where the change in free volume (Av' = v° - v' ) or in
exclusion volume (Av° = v° - v' ) is relative to the free
volume in the bulk solution. Eq. 7 defines the partition
function for a point molecule (4)) between two phases or
compartments. When the reference compartment, in this
case the bulk solution, is without significant volume exclu-
sion or molecular self-exclusion from high solution concen-
trations, Eq. 7 yields

Ur - W Pr (11)

which becomes for a single phase

Qr /(1 - Vg)/(1 - V:g). (12)

Combination of Eqs. 8 and 12 results in the overall
partition function for a molecule of any given size in any
single conformation:2

Itr _ Qg/Qbr = I Vreg for v.g -< 1;
4, = £A/Cib = 1 Ve0'9~~~~~g (8)

which, if only steric interactions exist, may be interpreted
as a loss in entropy relative to the bulk solution. As v°
approaches 1, the accessible states ratio is zero and as v°
approaches 0, the ratio becomes 1 with equal accessible
states in both volumes.

Analysis of Molecules of Finite Size
The analysis is more complex for a molecule of finite size.
Using the same general approach as above, the accessible
states or availability of positions for point molecules and
molecules of finite size can be compared. Any molecule of

s= Qg/Qb = 0, for Vr4g 1, (13)

assuming both v°b and VEb = 0 (see Eqs. 7 and 10). At
higher solute concentrations, the self-exclusion volume
increases so that vr, : 0 and may increase the partitioning
of molecules into the membrane phase (manuscript in
preparation).

2The implicit assumption in such an analysis is that the molecule can enter
the membrane in a conformation/configuration conducive to the space
available. When v' approaches trf of the membrane phase, this assumption
is true only for very flexible molecules.

SCHNITzER Steric Partition Behavior in Membranes 1067



Randomly Distributed Volume
Exclusion Element

The preceding analysis has assumed that the same volume
exclusion element (i.e., size, geometry, and location) exists
in a fixed-ordered state within each ensemble volume.
These equations are only accurate for a single conforma-
tion of the volume exclusion element which is the same in
all ensemble volumes so that p is defined for the represen-
tative ensemble volume. However, frequently the volume
exclusion element(s) of membranes used for chromatogra-
phy and electrophoresis are not regularly structured and
are treated as a randomly oriented and distributed fibrous
network. If within any chosen volume both the location and
total content of the membrane's volume-excluding element
varies randomly, a typical ensemble volume cannot be
chosen; however, the total volume still may be divided into
equal subunit volumes. The normalized exclusion volume
within any subunit volume will vary between 0 and 1,
inclusive. However, if the situation is truly random, it must
vary in a manner consistent with a binomial distribution of
the obstructing species so that the mean volume exclusion
of the membrane (v°) equals the summation of the volume
exclusion element(s) within each subunit volume (v°;) as
defined in Eq. 14, especially if the number of subunit
volumes (Nv) is quite large. Within each subunit volume
the volume exclusion element may be in any one of NC
different distinct conformations. A random volume-
excluding element may occupy any coordinate position
within the subunit volume so that every single position
within each subunit volume must have a finite and equal
probability of being occupied. Therefore, the probability
(pg) that any single conformation of the volume exclusion
element does overlap with a single position occupied by a
point molecule within any single subunit volume is simply

i-N,

Pc° (vOj/Nj/Nc = vO/NC. (14)
i-I

Likewise, the same probability for a molecule of finite size
relative to a point molecule (pc) is (see derivation of Eq.
10)

Pc= Av'/(Ncvf) = Avl/(Ncvf) - ( - . (15)

The overall probability (Pj(nc)), that nc conformations of
the volume exclusion element do overlap with a molecule in
a fixed position while (Nc- nc) do not, is defined by a
binomial distribution that reduces to a Poisson distribution
since Nc is large resulting in pc << 1 so that

p (nc) Aexp (-)(16)

where X = NCPC = v° for point molecules and X = NCPC =

Av'/vf for finite size molecules. If n, equals 0, Eq. 20
reduces to the desired probability of no overlap:

P°(0) = exp (-v°) and P'(0) = exp (-Avr/vf). (17)

The mean number of accessible states for a molecule is
calculated using Eq. 17 in a manner similar to the develop-
ment of Eqs. 2-13 so that the partition function for any
molecule becomes

= exp (-v°) exp [(vo - vr)/(l - vo)]. (18)

Volume Exclusion
for Finite-Sized Molecules

The number of accessible states depends strongly on the
energy available to that system and increases rapidly with
increasing energy. A state is accessible in a thermody-
namic sense (which by Eqs. 13 and 18 is dependent on v°
and t4) only if the energy of that state is favorable relative
to the thermal energy. Hence, a volume is available to a
molecule if the interaction energy of the molecule when
located in this volume (creating multiple accessible states
within this volume) and other surrounding molecules
(usually the solvent and the volume-excluding element of
the membrane) is favorable. This may be expressed mathe-
matically as a volume integration of the interaction energy
(E) within the subunit volume which depends on the
position (x, y, z), conformation, and orientation (0) of the
molecule so that

Nf

ffff Iexp [-Ei(x,y,z, 0)/kT]/NfI ddxdydz
fffexp (-E */kT) dxdydz

= 1 -vr, (19)

where k is the Boltzmann constant, T is temperature, and
the center of the partitioning molecule is placed at coordi-
nate positions (x, y, z) and E is evaluated over all positions
(within the volume) of the molecule for any single confor-
mation i of Nf possible conformations. The energy term E
consists of the combined intermolecular and intramolecu-
lar interaction energies of the solvent, volume-excluding
elements, and permeating molecules. The superscipt *
indicates a logical reference state which in this case is a
state without any permeating molecules. Therefore, vr
becomes the mean effective volume excluded from the
molecule within the membrane phase. For only steric
interactions, E, equals zero whenever the molecule and the
membrane's volume-excluding element do not overlap and
is infinite when they do. E* equals 0 when only steric
interactions are considered, especially if the solvent is
treated as a continuum.
As E within the volume integration increases, v
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increases and v' decreases until v' = 1 and v' = 0 when E
approaches infinity (relative to kT). For example, when
solute and membrane are similarly charged, electrostatic
repulsion increases E as the membrane and the molecule
approach each other so that integration of Eq. 19 predicts
the intuitively obvious result that v' increases. If E is
negative as in the case of adsorption to the membrane, vf
may become greater than 1 so that v' is negative and 4) is
greater than 1.

Specific Geometry of the Molecule
and Membrane

The analysis up to this point has been kept very general
with few inherent assumptions and details about the
membrane phase. These general results may be applied to
any particulhr membrane system when v' is defined by the
geometry of both the permeating molecule and the volume
exclusion element of the membrane phase. In this section
specific partition functions are developed for several dif-
ferent membrane and molecular geometries from the gen-
eralized expressions given by Eq. 13 or 18 combined with
Eq. 23 when only steric interactions are considered. The
specific expressions are compared to past results derived
using a different approach.

For rigid molecules of arbitrary shape, Eq. 19 may be
simplified considerably if only steric interactions are con-
sidered:

V'= fff exp [-E (x, y, z)/kT] dx dy dz/

fff dx dy dz = 1-v'. (20)

This integral can be solved for any arbitrary shape of both
the volume-excluding element and the solute. For a simple
assembly of rodlike fibers of radius rf and of length per unit
volume L, Eq. 20 defines a volume exclusion of radius rm:

Vr = ILr2L = vo (rm/rf)2 ov° (1 + rp/rf)2, (21)
where

rm = fr d4f f dA, (22)

where r is the distance of closest approach between the
center of the molecule and the volume-excluding element,
which in this case is a cylindrical fiber, measured over all
possible orientations. One may envision this process as
rolling the molecule over the surface of the fiber and
measuring the distance between the centers of the molecule
and fiber. For spherical molecules (radius = rp), rm is
simply rp plus rf since both are constant for all possible
orientations (ignoring fiber end effects). For a solute
molecule shaped like a capsule consisting of a hemisphere
of radius r, capping each end of a cylinder of radius r, and

half-length rL, one gets:3

rm = (2/7r)((rf + r,){O - ln [tan (0/2)]1
+ rL(cos0 +sin 01)), (23)

where 0 = arctan [(rf + rr)/rL].
Regardless of the shape of the molecule or the volume-

excluding element, rm can be evaluated, if need be by
numerically summating the distance over many orienta-
tions (with accuracy increasing as the number of tested
orientations increases). Since the three-dimensional struc-
tures of many macromolecules have been determined by
x-ray crystallography and are available in the Protein Data
Bank, Eqs. 21 and 22 may be used with the specific
coordinate positions of atoms within the molecule to assess
graphically or calculate numerically rm, v', and the mean
radius of the molecule (22). With v4 evaluated, Eq. 13 or 18
may be used to calculate the partition function for any
arbitrarily shaped molecule or volume-excluding ele-
ment(s).4

Cylindrical Fiber Matrix Model. For a mem-
brane with a fixed uniform meshwork of cylindrical fibers,
Eq. 13 combined with Eq. 21 becomes for any molecule of
arbitrary shape

) = 1 - v°(rm/rf)2, rm < rfe 1/2: D = 0, r. 2 rfvo 1/2 (24)

and for a randomly oriented and distributed meshwork of
fibers, Eq. 18 becomes

4) = exp (-v°) exp {v°[l -(rm/rf)2]/( I-v) 1, (25)

3 For more complex geometries such as prolate ellipsoids of revolution and
oblate ellipsoids, an analytical approximation for rm is possible using the
solution of Giddings et al. (16) (add 2r, to their analytical expression for
the mean external length of the molecule and divide this sum by 2 to get
rm). However, this expression tends to overestimate rm since the site of
tangential intersection of the molecule and fiber is not necessarily on the
central axis (fiber center to molecule center). Exact analytical solutions
for rm are nontrivial. Another approach may be to evaluate vr utilizing the
area projection method of Giddings et al. (16) (multiply the fiber length
per unit volume by the mean area of the fiber interacting with the
molecule projected over all directions in space). Molecular projection
areas are given for several interesting molecular geometries (16).

4Frequently the volume-excluding element is not distributed uniformly or
randomly but is distributed either continuously or discretely over a range
of values. For example, the radii of the pores of a membrane may vary.
Also, the exclusion element may consist of different geometric forms. If
the distribution of volume exclusion elements is known and the volume-
excluding elements are independent of each other, then for rigid mole-
cules and for steric interactions only Eq. 20 reduces to

ve = 2 v., or fve,dr, (Fl)

where i represents the different exclusion volumes. If the assembly of
volume excluding elements is continuous in its distribution then the
integral term should be used; otherwise, for a discrete, noncontinuous
distribution the summation term suffices.
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where rm is defined by Eq. 22 (equals rf + rp for spherical
molecules), v° may be defined either by Ilr1L (L is fiber
length per unit volume) if independent structural details
are available or p,g where p, is the effective specific volume
of the gel and g is the concentration of the gel (wt/vol).
This result clearly differs from the results of OG theory
(see Eq. B2).

Other Membrane Geometries. Eqs. 13 and 18
are solved for cylindrical pore and planar membrane
models. Since many of these expressions agree with those
of Giddings et al. (16), they are presented in Appendix A.
Expressions for 4' for membranes with continuous or
discrete distributions of radii (i.e., pore or fiber radii) are
also included in Appendix A.

RESULTS

This analysis first proves in a general manner without
specifying the geometry of the membrane's volume-exclud-
ing element that for a point molecule the relative number
of accessible states between two volumes in equilibrium is
either directly proportional to (ordered membrane struc-
ture) or exponentially dependent on (random membrane
structure) the volume available to that molecule within
each state. Then, the partition behavior of any molecule is
calculated from the accessibility-state ratio for finite size
molecules relative to point molecules which is dependent on
the relative change in free or exclusion volume for the two
molecules. The analysis is performed for both uniform (Eq.
13) and random (Eq. 18) volume exclusion elements.
Finally, the partition function specifically is calculated
using various geometries for the permeating molecule and
the volume exclusion element and compared with past
analyses.

In this section, first the general effects of the membrane
volume exclusion are discussed briefly without specifying
the geometry of the permeating molecule or the volume-
excluding element of the membrane. The partition func-
tion for a random fiber matrix is applied to gel chromatog-
raphy and electrophoresis (see Appendix B). The model is
tested using data derived from experiments on molecular
mobility during gel electrophoresis and on molecular parti-
tion behavior during size exclusion chromatography. An
expression predicting the minimum exclusion radius of
molecules totally excluded from a random fiber matrix is
tested and compared with available experimental data.
Finally, the predictions of this analysis and the OG theory
are directly compared to each other in terms of the
partition function and retardation coefficient.

General Volume Exclusion Effects
Fig. 1 shows the effect of the membrane volume exclusion
(ve) on the steric partition function (f), the relative
mobility of the molecule (,u/s0, log(,/A0)), and both the
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o9 1.5

- 1.0

- 0.0

q -0.5

0~
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-1.5. ........ .... .

0.0 0.1 0.2 0.3

MEMBRANE VOLUME EXCLUSION-ve
FIGURE 1 The effect of the membrane volume exclusion (ve and vz) on
the steric partition function ($), the relative mobility of the molecule
(u/tt., log(u/,u0)), and both the partition function ratio (46/4) and
mobility ratio (p.or/1s) as predicted by the OG theory and this new theory.
The thin solid curves represent $ and u/p.. The dotted curves represent
log(J/Mu), and the thick solid curves signify both cOG/4 and ;OG/; 4E is
evaluated using Eq. 18 and is extended to predict molecular mobility via
Eq. Bl (see Appendix B). For each curve the relative volume exclusion for
a molecule (f- v'/v°) is kept constant (curve 1, f- 1; curve 2, f- 4;
curve 3. f- 16). In terms ofa cylindrical model of a fibrous gel,fequals 1
if the equivalent spherical particle radius is O;f- 4 if rp/rf - 1; andf- 16
if rp/rf - 3.

partition function ratio (4'O/f) and mobility ratio (toG/r )
as predicted by the Ogston/Giddings models (OG) with
their extensions and by this new theory when the relative
volume exclusion for a molecule (vr/v) is kept constant
(i.e., molecular radius and fiber radius). To make this
comparison possible, the OG theory is generalized so that 4'

exp (-vr). As the membrane volume exclusion
increases, the steric partition function of any sized mole-
cule decreases, the extent of which depends on the total
volume excluded from that molecule (vr). The partition
function for a point molecule where v4 equals v° decreases
slowly with increasing v. However, as v/v° increases, the
partition function decreases very rapidly. As shown in Fig.
1 the discrepancy between the predictions of this theory
and the OG theory increases significantly with increasing
v° and v . The OG theory predicts a partition function
always greater than or equal to the present theory. When v°
equals v the predictions of both theories are the same;
however, very large differences may become apparent as
the membrane volume exclusion and/or the molecular size
increase. Intuitively, it is obvious that as the volume-
excluding element occupies all of the space within a volume
(v° 1), 4 must approach 0. All of the new expressions for
the steric partition function (Eqs. 13, 18, 24, and 25)
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predict 4i equals 0 for all finite-sized molecules if v° is 1.
However, the OG expression (Eq. B2) clearly does not.

Since the mobility ratio is equal to the partition function
(Eq. BI), it has the same dependency on v° and v (see Fig.
1). The difference in the predictions of the two theories is
also the same. The plot of log (Al/A.) vs. v' shown in Fig. 1
is essentially a Ferguson plot. The logarithm of the mobil-
ity of a point molecule (where v equals ve) decreases slowly
and almost linearly with increasing v°. However, as v:/v°
increases, the logarithm of the mobility ratio decreases
more rapidly in a curvilinear manner. This nonlinearity
may be interpreted as increasing the retardation coeffi-
cient as vr/v° increases (see later results).

Comparison to Gel Electrophoresis Data

As a test of this new analysis, the predicted Ferguson plots
as expressed by Eq. 25 combined with Eqs. B I and B4 were
compared to the available experimental data of the electro-
phoretic mobility of various molecules through agarose
gels (see Figs. 2-4). These figures show the nonlinear
effects of gel concentration/percentage of agarose on the
electrophoretic mobility of molecules. The logarithm of the
mobility ratio (Alu/'u - mobility of molecules in gels/
mobility assessed at a gel concentration of 0) equals 1 as
the volume exclusion approaches 0, as expected. The
experimental data indicate that the nonlinearity increases
with membrane volume exclusion and molecular size, in
agreement with the theoretical results presented in Figs.
1-4.
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FIGURE 3 Ferguson plot of the mobility of bovine albumin during
agarose electrophoresis. The hydrodynamic radius is 3.64 nm. All other
parameters defined in legend to Fig. 2.

Recent electron microscopic examination of agarose gels
indicates that the agarose fiber radius should not be
considered a constant over the range of gel concentrations
tested (20). As shown graphically in Fig. 5 from the work
of Waki et al. (23), the fiber radius clearly decreases as the
gel concentration increases. Therefore, the fiber radius
used in modeling these data was estimated as a function of
gel concentration by simple linear interpolation between
the available data points (solid line in Fig. 5). The Fergu-
son plots given in Figs. 2-4 are developed using this
expression for the fiber radius so that all variables of the
model are known. With all model parameters defined by
available experimental data, the theoretical expression
provides an excellent nonlinear fit of the Ferguson plot of
these data for all three molecules tested.

Comparison to Gel Chromatography Data
The model developed by Laurent and Killander (2) is used
to extend the new expression for the partition function to

1 0
0

a:FIGURE 2 Ferguson plot of the mobility of ovalbumin during agarose
electrophoresis. The experimental data points were graciously provided
by Dr. D. Tietz and Dr. A. Chrambach as published previously (20, 21).
The solid curve represents an extension of Eq. 18 (see Appendix B) with
all variables defined by available experimental data (see text). A hydro-
dynamic radius of 2.76 nm (as defined by the standard Stokes-Einstein
relation to diffusion) was used for the molecular radius (rp). An effective
specific volume for the agarose of 1.0 was used, a value justified by the
high water content of the fibers (26, 27). The data of Waki et al. (23)
were used to estimate the fiber radius of the agarose gels with linear
interpolation between the available data points (see Fig. 5). The fiber
radius varied from 5.0 nm at 0.25% to 2.0 nm at 10% agarose.

0 2 4 6
%- AGAROSE

8 10

FIGURE 4 Ferguson plot of the mobility of phosphorylase b during
agarose electrophoresis. The hydrodynamic radius is 6.52 nm. All other
parameters defined in legend to Fig. 2.
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FIGURE 5 Dependence of the agarose fiber radius on gel concentration.
The + symbol represents the fiber radius determined by Waki et al. (23)
who examined agarose gels using electron microscopy. The solid line
represents linear interpolation between data points and was the function
used to estimate the fiber radius at any given gel concentration.

size-exclusion chromatography (see Appendix B, Eq. B5).
As shown in Fig. 6, Eqs. 18 and B5 fit experimental data on
the partitioning of many different macromolecules during
gel chromatography through various Sephadex columns.
All parameters within the model are defined except for the
membrane volume exclusion which apparently varies with
different batches of Sephadex so that only a range of values
is available. Therefore, the model was tested by numerical
optimizing v° as a single unknown variable utilizing a finite
difference Levenberg-Marquardt algorithm to minimize
the sum of the squares of the difference (24). The v°
resulting in the best fit agrees well with the range of v°
(calculated from the bed volume to weight dry Sephadex
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FIGURE 6 Size selectivity curves for Sephadex gel chromatography of
various macromolecules. Experimental data from chromatography
through G200, G75, G50, and G25 Sephadex columns using various
macromolecules. The data points are compiled from several studies as
tabulated by Laurent and Killander (2). The A and 0 symbols represent
various dextran molecules, whole A and 0 are degradation products of
cellulose. The other symbols represent various other molecules including
globular proteins. The molecular hydrodynamic radius was used as
calculated and tabulated previously (2). The specific volume of dextran is
0.61 (2). The fiber radius used was 4.5 A, a value consistent with the
molecular structure of dextran.

ratio) given by Pharmacia Fine Chemicals (Piscataway,
NJ) for their Sephadex columns.

Prediction of Minimum Exclusion Radius
To test this model further with available experimental
data, an expression is derived from the general partition
function (Eq. 18) predicting the minimum radius of a
spherical molecule that cannot enter a random fiber matrix
gel by solving for rp:

rpL = (( + - i)rf, (26)

where rpL is the limiting or minimum particle radius that
cannot enter the gel (the minimum exclusion radius) and
4'L iS the desired minimum partition value (a very small
nonzero value).

Fig. 7 shows excellent theoretical agreement with the
data of Serwer and Hayes (25) who studied the exclusion
of spheres by agarose gels and its dependence on sphere
radius and gel concentration. The predictive error percent-
age is <20% for all points with an average absolute value of
7.84%. Values of rpL decrease as a nonlinear function of gel
concentration. This expression is the first nonempirical
expression based on steric exclusion theory that adequately
predicts the minimum exclusion radius of a molecule.
Previously, only empirical linear expressions were available
for predicting this exclusion radius (25).

Direct Comparison to the OG Theory and
its Extensions

Comparison of the analytical solutions for the steric parti-
tion functions developed by Ogston (15) and Giddings et
al. (16) (the OG theory) with the results of this analysis
indicate exactly the same expressions for plane (Eqs. A4
and A5) and cylindrical pore (Eq. Al) membrane models;
however, differences may be quite significant for mem-
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FIGURE 7 Minimum exclusion radius for a molecule in an agarose gel.
The A represent the data of Serwer and Hayes (25). The solid line is
defined by Eq. 26 with all model parameters defined experimentally. The
model was numerically optimized to the experimental data since IL
(effective zero partition value) is arbitrary (O - 7.5 x 10-5).
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branes consisting of a random assembly of rodlike fibers
(Eqs. 25 and B2). Even in this case, it is clear that this
analysis predicts the same trends predicted by the OG
expression (with quantitative differences) for changes of
partition parameters such as rf, g, rp, etc. Rather than
repeat the graphical results showing the effect of these
various parameters on the partition function (15, 16), the
predictions of the two approaches are compared directly.
The general rule evident from this comparison is that they
agree when the volume exclusion is very small.
The two expressions (Eqs. 25 and B2) for the partition

function are compared analytically in Appendix C (Eq.
C 1) and graphically in Fig. 8. The percentage that the new
partition function (4)) is reduced when compared to the OG
expression (4OG) is a function of the rp to rf ratio for
different gel concentrations or volume exclusions. 4BO is
always 2 4). The percent difference approaches zero as v°,
p5, g, and/or rp/rf approach zero. As the values of these
parameters become greater than 0, the disparity between
the two expressions increases significantly. For any given g,
as rp and v; increases, the percent reduction becomes
greater until a plateau of 100% relative reduction is
reached. This reduction is more pronounced at any given
rp/rf ratio as g and its dependent parameters (i.e., v° and v:)
increase. As g increases, the new expression for the parti-
tion function approaches 0 much more rapidly than the OG
expression so that the relative error reaches a maximum of
100% at smaller rp/rf values.
The current theory of the mobility of molecules during

gel electrophoresis is based on the OG model and predicts a
constant retardation coefficient (slope of a Ferguson plot)
for any particle transported through a random fiber matrix
(3,4, and Appendix B). However, as shown directly by Eq.
B6 and by the theoretical and experimental data in Figs.
2-4, the retardation coefficient may not be constant. The
new expression for the partition behavior of molecules in
random fibrous gels yields an expression for the retarda-
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FIGURE 8 Comparison of the partition function of this theory and the
OG theory. The percent reduction in the partition function as calculated
by 100% (c1 - 1Oe)/4Oe (Eq. Cl) is plotted as function of the particle to
fiber radius for various gel concentrations (g). For an effective specific
volume of 1.0, g - v .

tion coefficient (Eq. B6) that varies with gel concentration.
When compared to the OG expression, the fractional
difference between the two expressions is defined analyti-
cally by Eqs. C2 and C3. Fig. 8 shows the percentage
difference of the two expressions. The new expression is
always greater than or equal to the OG expression. When
v, is very small (v° - 0), the two analytical expressions
agree. However, as vo increases, the discrepancy increases
rapidly and becomes very large with the limiting difference
given by Eq. C3. The discrepancy increases as either rp/rf,
vo, vr, or g increases (the error becomes negligible as the
magnitude of any of these parameters approaches zero).
As shown in Fig. 9,'the percentage increase approaches a
plateau rapidly as a function of rprf. When the particle and
fiber radius are equal, a maximum difference is reached;
therefore, this difference may be significant even at low
rp/rf values.

DISCUSSION

This analysis in its most general form (Eqs. 13 and 18)
provides a derivation of the partition function and its
extensions for any geometry of the volume-excluding ele-
ment and permeating molecule (see Fig. 1). Specific
mathematical expressions are derived for molecules of
arbitrary shape partitioning within membranes contaihing
an assembly of cylindrical pores, planes, and rodlike fibers
(with uniform, random, or nonrandom distributions).
These expressions agree with those of Giddings et al. (16)
for the simpler membrane geometries including networks
of cylindrical pores (Eq. Al), planes (Eqs. A4 and A5),
and even uniform fibers (Eq. 24). However, for a mem-
brane consisting of an assembly of randomly distributed
and oriented fibers, the expression differs significantly
(compared Eqs. 25 and B2). Therefore, the random fiber
matrix model was tested using data from agarose gel
electrophoresis analyzed by Ferguson plots (see Figs. 2-4).
With all variables within the model defined experimental-
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FIGURE 9 Comparison of the retardation coefficient predicted by this
theory and the OG theory. The percent increase as calculated by 100%
(KR- KRO)/KRO (Eqs. C2 and C3) is plotted as a function of rp/rf for
various gel percentages. Other parameters as in Fig. 8.
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ly, it agrees well with the data and predicts the nonlinear
behavior of the Ferguson plots. In keeping with experimen-
tal observations (16-21), this analysis predicts that the
nonlinearity of Ferguson plots increases as the size of the
molecule or particle increases. The model also shows
excellent agreement with size selectivity curves for gel
chromatography (see Fig. 6). In addition, an expression for
the minimum exclusion radius of a molecule to a gel is
derived and shown to agree well with recent experimental
data (see Fig. 7).
A direct comparison to the standard OG-based theories

shows virtual agreement between these theories only at
very low volume exclusions. Differences in the prediction of
both partition functions and retardation coefficients may
be very significant and increase rapidly with increasing
volume exclusion and molecular size (see Figs. 1, 8, and 9).
(oc is always >4. For any molecule of arbitrary shape, the
crucial parameters describing partition behavior in this
new model clearly are v° (membrane volume - volume
excluded to a point molecule) and v' (volume excluded to a
finite-sized molecule). Without specifying the geometry of
the membrane's volume-excluding element, this analysis
proves that for a point molecule the relative number of
accessible states between two volumes in equilibrium is
dependent on the volume available to that molecule within
each state. Then, the partition behavior of any molecule is
calculated from the accessibility-state ratio for finite size
molecules relative to point molecules, which is dependent
on the relative change in free or exclusion volume for the
two molecules. However, in the Giddings et al. model (16),
they assume that partitioning is dependent only on the
volume available to the molecule.
As in the OG analyses, the final analytical expression for

molecular partitioning in a random fiber matrix assumes
that the fiber network-particle interaction is negligible,
other than the steric, space-occupying effects. Obviously,
particle-fiber interactions do exist, may be significant and
may vary depending on the gel type, the environmental
conditions (i.e., ionic strength of the solution, pH), and the
permeating molecule itself (28). Since most polyelectro-
lytes contain hydrophilic, ionic, and hydrophobic groups,
electrostatic and van der Waal forces along with hydration,
hydrogen bonding, and hydrophobic considerations can
affect particle-fiber interactions, especially near the fiber
surface. It is intuitively evident that the sum of the
interaction forces may result in attraction or repulsion of
the particle in the volume near the fiber, thereby changing
the partition behavior of the molecule within this volume.
This concept is expressed mathematically in Eq. 19. Each
relative position of the particle and the volume exclusion
element may not have the same free energy and therefore
the same probability of existence. If the forces are signifi-
cant, the calculated vr, assuming accurate knowledge of v°,
will only represent an apparent mean effective volume
exclusion for the molecule. If these forces are repulsive in
nature so that the interaction energy is positive, Eq. 19

predicts that v' will be larger than its true steric value,
resulting in a lower partition function. If particles are
attracted towards or bind the volume-excluding element,
the observed v may be smaller than its true value to the
extent that the observed 4) may even become positive.5

This analysis provides a logical framework for evaluat-
ing important factors in partition behavior such as electro-
statics (work in progress) and molecular concentration
effects (manuscript in preparation) from both experimen-
tal and theoretical perspectives. The general expressions
for the partition function (Eqs. 13 and 18) provide a simple
approach to defining the partition behavior of molecules in
a porous membrane. These two equations only require two
fundamental parameters to fully describe the partitioning
of solutes in membranes: v° and v'. Since v° is well defined
for many membrane systems,6 v is the only unknown
variable in Eqs. 13 and 18 so that a mean effective value
can be evaluated (using rigorous statistical methods
already developed [4]) from elution volume data, size
selectivity curves, Ferguson plots, or partition data. Under
ideal conditions, v' will increase in proportion to v° or g,
however, in reality v, will be affected by membrane-
molecule interactions7 or even changes in the geometry of
the volume-excluding element that may occur with gel

5In size-exclusion chromatography, the interaction of anionic polyelectro-
lyte with anionic chromatographic packing frequently results in peaks
eluting earlier than expected (lower apparent Kay, see Eq. B5) so that the
molecular weight is overestimated. For cationic polyelectrolytes, depend-
ing on the extent of adsorption, Ka. may be quite large so that elution
volumes are very large, sometimes greater than the bed volume (28). If rp
and ve are kept constant, vr and therefore K., will appear to vary with
environmental factors such as ionic strength, pH, ions, and solvent used.
The effect of charge on partition behavior could be assessed by using
several molecules of different charge but very similar flexibility and
hydrodynamic radius (possibly by different degrees of charge modifica-
tion of a single protein).

6Several different methodologies can be used to evaluate confidently ve°.
The vt°may be estimated by p,g or more rigorously from structural studies
(i.e., x-ray diffraction, electron microscopy). It also may be defined
functionally by using a series of very small probes (relative to the scaling
factor of the volume excluding element, i.e., rf for fibrous gels, rp for
cylindrical pores) which do not interact with the membrane (i.e., without
charge). Such probe molecules may be treated as a point molecules so that
vt° may be calculated easily from a simplified Eq. 13 or 18 (vr - v).
Several small probes of similar size should be tested, all resulting in the
same v.' if no membrane-molecule interactions exist.

7Many other factors may effect the observed effective vr. Obviously, any
changes in the scaling terms defining the membrane exclusion volume
(i.e., r, and L for fibrous gels) with gel concentration or environmental
conditions will alter v.. The degree of hydration which may change both
with gel concentration and environmental conditions may significantly
alter v'. Adsorption of other molecules to the membrane could increase vr.
In addition, fluid flow may alter hydrodynamically the preferred orienta-
tion of the molecule relative to the membrane so that the apparent vr
changes. All of these considerations are important in truly understanding
the partition behavior of molecules in porous membranes and can be
systematically evaluated using Eqs. 13 and 18 with one unknown variable
De.
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concentration (20, 21, 27), pH, or ionic conditions (28).
Ideally several molecular probes of similar size are needed
to systematically evaluate possible interactions between
the permeating molecule and the excluding membrane. As
discussed earlier, if a probe interacts with the volume
exclusion element, the apparent v' will differ from the
other noninteracting test probes. Using this type of
approach any membrane partition system can be evaluated
so that any observed changes in vr will be the first
indications of more complex interactions necessitating both
very systematic functional and structural characterization
of v° and v'. By using v as the dependent variable, the
effects on molecular partition behavior, gel chromatogra-
phy, and gel electrophoresis of important factors such as
charge, degree of hydration, degree of gel cross-linking,
pH, and ion concentration can be tested and analyzed
systematically.

APPENDIX

A. Specific Membrane Geometries

Cylindrical Pore Membrane Model. For a membrane with
cylindrical pores of uniform radius rc and for spherical molecules of radius
rp, Eq. 13 becomes

t= V°(1 _02= Vr, ,BC1; 4 = 0, , 1, (Al)

where , rp/rc and vc° is the volume of the cylindrical pore(s) per unit
total volume and equals ncHr't with nc being the number of pores per unit
total volume, with radius rc and t being the membrane thickness. Eq. Al
agrees with past results for this simple membrane geometry (16). If the
volume exclusion of this membrane is not uniform but is random, Eq. 18 is
used to get

$1r = exp (vo - 1) exp (#2 - 2f). (A2)

If the distribution of pore sizes is known, Eq. Fl (see footnote 4) results
in

$ = E vo(r)(l - rp/r)2 or f -

vc° (r)(l - rp/r)2 dr, (A3)
r-rmin rmifl

where rmm, is the minimum pore radius and e4(r) equals nIIr2t with nc
being the number of pores with radius r per unit total volume. For an
assembly of cylindrical pores with a continuous distribution of radii, the
integral term should be used. Otherwise for pores with a discrete
distribution of radii the summation term is appropriate.

Planar Membrane Model. For a regularly ordered network
of planes, Eq. 13 (v: 0; Vr - srm) results in

r=1 -srm, rm C l/s; tr =0, rm 2 1/s, (A4)
where s is the mean surface area of the planes per unit volume and rm is
defined by Eq. 22 and in this case represents the mean external radius of
the molecule which for spherical molecules equals r. For an isotropic
network of random planes, one gets

It = exp (-srm). (AS)

Both Eqs. A4 and A5 agree with past results (16) with rm being the crucial
dimension.

Fiber Matrix Model with Nonuniform Distribution of Fiber
Radii. For a regularly structured network of fibers with a discrete
distribution of radii (see Eq. Fl):

(A6)a f rd s f r (r)(r/irxb
r-rmi.

and for a randomly structured fiber matrixc with a distribution of fibver
radii:

c = exp [r ,,V(r)] exp j-m v°(r) [1 - (rm/r)21}, (A7)
r-r.j. r-rmj.

where v, is defined by r and each summation is over the range of fiber
radii (minimum to maximum radius). If the distribution of radii is
continuous, an integral solution may replace the summation solution.

B. Application to Gel Filtration and
Electrophoresis

Original Functions from the OG Theory and its Exten-
sions. To describe the effects to gel sieving on the mobility of a particle
through a gel (,u), the reduction factor by which particles are slowed by
sieving during gel filtration or electrophoresis is usually assumed to be the
probability that a randomly positioned and oriented particle intersects
with the volume exclusion element of the membrane (2-4). This factor is
equivalent to the partition function (3, 4) so that

A=- A 0 c s 0exp (-KRg), (BI)

where ;&0 represents the free electrophoretic mobility of particle at 0% gel
concentration and the retardation coefficient (KR) is either empirically
derived or described by an extension of the OG theory, which defines $
as

(5 = exp [-vo°(l + rp/rf)2] = exp [-II L(rf + r2)] (B2)

so that

KR = Ve(I + rp/rf)2/g = II L(r' + r2)/g
= P. (1 + rp/rf)2. (B3)

Ferguson plots classically define this coefficient which describes the
restriction of the electrophoretic mobility of the molecule via the expres-
sion

lOg (Ap) = log (IAO) - KRg, (B4)

where in this case KR - -ln ($)/[gln (10)]. This theory predicts a
simple linear relation between the log (mobility ratio) and the gel
concentration for all gel concentrations and types of fibrous gels. The
retardation coefficient is constant.
The separation mechanism of size-exclusion chromatography is based

on the differential permeation of molecules into and out of porous beads
packing into a chromatographic column. Laurent and Killander applied
the Ogston model to gel filtration by assuming that the filtration
coefficient K,, equals to the partition function and is related to the elution
volume (Vd) by the equation

K =0
r VII- VO
s VT- VO' (B5)

where V5 is the void volume of the gel column and VT is the total volume.

Functions from the Present Theory. The partition expres-
sion given by Eq. 18 defines molecular mobility in gel electrophoresis via
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Eq. B1, elution volumes in gel chromatography via Eq. B5, and the
retardation coefficient as

KR = V°[(1 +rp/rf)2 - vC]/[g(1-vo)], (B6)

which can be used with Eq. B4 (divide Eq. B6 by ln (10)) to define
Ferguson plots.

C. Comparison to OG Theory

The relative change in the partition functions derived by this new theory
(Eq. 25) and the OG theory (Eq. B2) is simply

_D_OG_ exp (ve)2(2f+f2) (C1)

wheref= rp/rr. The relative change in the KR predicted by both theories is
(Eqs. B3 and B6)

KR - KRO vo[1-(1 +alrf)2]
KRO (ve-1)(1 +a/rf)2(

When the rp/rf is >> 1, then Eq. C2 reduces to

(KR - KRO)/KRO = VO/(1 - ve). (C3)
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