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pH Dependence of actin self-assembly
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ABSTRACT Fluorescence enhance-
ment and fluorescence photobleaching
recovery have been utilized to examine
actin self-assembly over the pH range
6.6-8.0. The kinetics of assembly are
faster and the critical concentrations
are lower at lower pH. Filament diffu-
sion coefficients are not a function of

pH, indicating that average filament
lengths are not pH dependent. Al-
though critical actin concentrations are
a sensitive function of the concentra-
tions of various cations in the medium,
the relative pH dependences of critical
concentrations are similar for all combi-
nations of cations employed. The pH

dependence of actin self-assembly is
sufficiently great that it should be taken
into account when comparing data
from different reports and when relating
in vitro measurements to cytoplasmic
mechanisms.

INTRODUCTION

Actin self-assembly, originally characterized in research
on muscle proteins, is now a subject of vigorous investiga-
tion in the field of cytoplasmic motility (Pollard, 1981;
Korn, 1982; Oosawa, 1983). When salts are added to the
medium, G-actin monomers spontaneously assemble to
form F-actin filaments as a result of the association of
cations with several sites on the actin molecule (Barany et
al., 1962; Martonosi et al., 1964; Strzelecka-Golaszewska
etal., 1978). It is presumed that these sites are negatively
charged, and thus it may be inferred that a change in pH
could alter the assembly process. Although an implicit
recognition of the pH dependence of actin self-assembly
may be commonplace, there have been no modern investi-
gations in which pH has been an independent variable.
The normal control values for pH in recent actin assembly
experiments are 7.5, 7.8, and 8.0; and comparisons among
different reports generally ignore the differences in the
pH of the medium (Selden et al., 1986; Drenckhahn and
Pollard, 1986; Carlier et al., 1986; Keiser et al., 1986;
Janmey et al., 1986; Zaner and Hartwig, 1988). In the
context of cytoplasmic motility, the pH dependence of
actin assembly is most interesting over the range of pH
encountered in the cytoplasm. Recent advances in the
development of optical probes and fluorescence ratio
imaging microscopy have permitted accurate determina-
tions of cytoplasmic pH and pH distribution (Nuccitelli
and Deamer, 1982; Chaillet et al., 1986; Musgrove et al.,
1986, Bright et al., 1987). Excluding the acidic vesicles,
the range of pH in cytoplasm is generally bounded by
~6.5-8.0, and there is an emerging interest in the issue of
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whether the control of pH may be an important compo-
nent of cytoplasmic regulatory mechanisms (Busa, 1986;
Moolenaar, 1986, Frelin et al., 1988).

We report here a characterization of actin self-
assembly as a function of pH over the range 6.6-8.0,
using several different combinations of cations for induc-
tion. Assembly has been characterized by the enhance-
ment of fluorescence of pyrene-labeled actin and by
fluorescence photobleaching recovery (FPR) using fluo-
rescein-labeled actin. Both methods were used to measure
the kinetics of actin assembly: the former method was
used to measure actin critical concentrations, and the
latter method was used to measure the diffusion coeffi-
cients of actin filaments. For all cation concentrations
studied, the results establish a substantial pH dependence
of actin self assembly over the cytoplasmic pH range.

MATERIALS AND METHODS

Actin was isolated from commercial acetone powder of rabbit muscle
(Pel-Freeze Biologicals, Rogers, AR) using a slight modification of the
method of Pardee and Spudich (1982), as described previously (Pan and
Ware, 1988). The final purification was accomplished by size exclusion
chromatography using Sephadex G-150. The central fraction was
maintained by dialysis against the appropriate G buffer at 4°C and used
for experiments within 3 d of column purification. The concentration of
G-actin was determined by absorbance at 290 nm using an extinction
coefficient of 0.62 mg™' ml cm™'. Actin was labeled with fluorescein or
pyrene using procedures that have been described previously (Pan and
Ware, 1988). In both cases the concentration of labeled actin was
determined by the method of Hartree (1972) using unlabeled G actin as
a standard. For fluorescein label the extent of labeling was determined
from the absorbance of the solution of labeled actin at 495 nm, using an
extinction coefficient of 6.0 x 10* cm™' M~". For pyrene the extent of
labeling was determined using an extinction coefficient for the label of
2.2 x 10*cm~! M~! at 344 nm. Solutions of labeled and unlabeled actin
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were mixed in proportions that resulted in a final label percentage
of ~10%, which was maintained constant for all experiments.

Three G-actin buffers were utilized in these experiments. They are
designated as follows: G1 (2 mM Tris, 0.2 mM CaCl,, 0.2 mM ATP, 0.5
mM DTT, 0.02% NaN,), G2 (5 mM Tris, 0.1 mM CaCl,, 0.5 mM ATP,
0.1 mM DTT, 0.02% NaN,), G3 (5 mM Tris, 0.1 mM MgCl,, 0.5 mM
ATP, 0.1 mM DTT, 0.02% NaN;,). All buffers were prepared to have
pH = 8.0 at 20°C. Distilled, deionized water was used throughout. The
pH of each buffer was adjusted to the selected value by addition of HCL.
All solution pH values were measured using a digital pH meter (model
601; Orion Scientific Instruments Corp., Pleasantville, NY) with a
calibrated glass combination electrode. For the preparation of Mg-actin
buffer, G3 was used throughout the actin preparation and column
purification.

Pyrene-labeled actin increases in fluorescence yield upon transforma-
tion from globular to filamentous state, so the measurement of fluores-
cence intensity from an actin solution in assembly medium can be used
to follow the progress of filament formation (Kouyama and Mihashi,
1981). For these experiments a small aliquot of the assembly salt was
added to 2 ml of action solution in a fluorescence cuvette, the solution
was mixed rapidly, and the cuvette was placed in a fluorescence
spectrophotometer (model 650-10S; Perkin-Elmer Corp., Norwalk,
CT). Fluorescence intensity was monitored at 388 nm (4-nm slit width)
using 368-nm (2-nm slit width) illumination. Illumination was intermit-
tent (typical duty cycle 3%) to minimize bleaching of the fluorophore.
For quantitative comparisons of assembly kinetics, we determined the
kinetic halftimes, defined as the time for the pyrene fluorescence signal
to reach one-half of its eventual maximum value. As expected, halftimes
were found to be a function of actin concentration, with a quasi-
first-order dependence. For presentation of data from a wide variety of
conditions (Table 1), half-times were corrected to a single concentration
using the first-order approximation. This correction was never greater
than 50%.

Critical concentrations of actin were also determined using the
fluorescence yield increase of pyrene-labeled actin (Tobacman et al.,
1983). Solutions of F-actin were sonicated at 50 W for 5 s and then
diluted into the medium for which the critical concentration was to be
determined. After 2 h the fluorescence intensity was determined as
above for solutions over a range of actin concentrations. Plots of
fluorescence intensity versus actin concentration were fitted by least-
squares to two lines, the abscissa intercept of which is reported as the
critical concentration.

Fluorescence photobleaching recovery (FPR) was also used to quan-
tify the state of actin assembly as well as to determine the translational
diffusion coefficients of actin filaments. The instrumentation and meth-
odology have been described previously (Lanni et al., 1981; Lanni and

Ware, 1982, 1984; Ware, 1984). Briefly, a trace quantity of fluorescein-
labeled actin was incorporated with native actin. Polymerization was
initiated by the addition of salt(s) to actin in buffer G1, and the sample
was loaded into a microcuvette and placed onto the stage of a fluores-
cence microscope. For each measurement a striped pattern was photo-
bleached into the specimen, and the contrast of the pattern was
monitored as a function of time using a modulation detection scheme
(Lanni and Ware, 1982). The decay in the amplitude of the modulation
reflects the fading of the contrast of the pattern in the specimen as
bleached and unbleached species randomize their positions by diffusion.
From the FPR data we determined the relative proportion of rapidly and
slowly diffusing actin (G-actin and F-actin, respectively), and the
diffusion coefficients of the actin filaments. Successive measurements,
always taken from different spatial regions in the specimen, may be
recorded about once per minute, permitting kinetic resolution of the
parameters determined. In the experiments presented here, data taken
using a K vector (2«r/L where L is the period of the pattern in the
specimen plane) of 841 cm™' were fit by least squares to a single
exponential (with fixed time constant appropriate for G-actin) plus a
straight line to determine the proportion of immobile actin (from the
relative amplitude of the straight line). Data taken using a K vector of
2,127 cm™', 4,254 cm™!, or 6,381 cm™' were fit to a single exponential
plus a constant, with the time constant of the exponential interpreted to
be DK?, where D is the average filament diffusion coefficient.

RESULTS

Kinetics of actin assembly were followed both by FPR
and by pyrene-actin fluorescence enhancement. Sample
data for both methods are shown in Fig. 1. For equivalent
solution conditions the pyrene technique generally
showed more rapid kinetics than the FPR method. The
criteria for assembly are quite different: the pyrene
technique reports an actin protomer conformational
change that is thought to accompany assembly (Kouyama
and Mihashi, 1981), whereas the FPR criterion is the
hydrodynamic distinction between monomers and fila-
ments (Lanni et al., 1981; Lanni and Ware, 1984). An
analysis of the pyrene method in comparison to sedimen-
tation assays has shown that the fluorescence signal is not
exactly proportional to the incorporation of the monomers
into filaments, but there was no indication of a substantial
time lag (Grazi, 1985). We suspect that a significant
component of the difference in time scale of the two
signals may be a reduced rate of incorporation of fluores-
cein-labeled actin into the filament (Simon et al., 1988).
The differences were greater at pH 8.0 than at pH 6.6,
which we interpret to be a result of the titration of
fluorescein to the anionic form. Nevertheless, both tech-
niques demonstrate clearly and to approximately the
same degree that actin assembly is substantially acceler-
ated at lower pH. Data at the shortest times, available
primarily from the pyrene assay, indicate that the more
rapid kinetics at lower pH are attributable both to a
reduced lag time and to a sharper slope in the elongation
phase of assembly.

TABLE 1 Kinetic half-times (min) of actin assembly
Cation pH 6.6 pH7.4 pH 8.0
0.5 mM Mg*? 4.1 56.0 310.0
0.75 mM Mg*? 1.3 16.0 60.0
1 mM Mg*? 2.7 6.9 19.0
1.25 mM Mg*? 1.0 5.8 11.0
1.5 mM Mg*? 1.3 4.5 8.8
2 mM Mg*? 1.0 3.8 49
2 mM Ca*? 3.2 13.0 23.0
3 mM Ca*? 33 13.2 16.0
4 mM Ca*? 2.8 5.7 20.7
5mM Ca*? 1.2 3.2 15.3
100 mM K+ 10.4 23.0 36.0
100 mM K* (0.1 mM Mg*?) 0.13 1.9 3.5
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FIGURE1 Sample data for actin assembly kinetics monitored by (a)
FPR at the pH values of media shown. Actin concentration was 20.6 uM
with 10.5% fluorescein labeled. 100 mM KCI was used to assemble the
actin in buffer G1 and by (b) pyrene actin fluorescence enhancement at
the pH values of media shown. Actin concentration was 7.62 uM with
10.8% pyrene labeled. 100 mM KCl was used to assemble the actin in
buffer G2.

The kinetics of actin assembly are dramatically sensi-
tive to the identity and concentration of the cations used
to induce assembly. We have consequently examined the
effects of pH on assembly kinetics for a variety of
commonly employed ionic conditions. For most of these
measurements the pyrene assay was deemed superior
because of its better kinetic resolution, particularly for
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FIGURE2 FPR trace for calculating the diffusion coefficient of fila-
mentous actin. The trace was taken 7 h after addition of 100 mM KCl.
The AC modulation envelope intensity in normalized units, which
represents the contrast of the photobleached pattern, is plotted versus
sampling time in seconds. The FPR data were fitted to a single
exponential by least-squares method, and the fitted curve is shown.

performed at 20°C, and the halftimes shown correspond
to a total actin concentration of 14 uM. The initial buffer
(before addition of assembly salts) was buffer G2, except
for the final entry, for which buffer G3 was used for the
actin preparation and column filtration in order to pre-
pare actin on which the tightly bound cation was Mg*?
instead of Ca*2 The absolute magnitudes of the kinetic
half times in Table 1 were reproducible to within about
+20% for the same sample of actin. Measurements using
different preparations of actin differed by as much as a
factor of 2 or more, but the relative trends with pH scaled
about the same for all samples.

Filament diffusion coefficients were determined using
FPR. A high K vector was selected so that the modulation
decay from the relatively slowly diffusing filaments could
be measured on a convenient time scale. A sample FPR
trace is shown in Fig. 2. Data such as this were fitted by
least-squares criterion to a single exponential with time
constant given by DK’ Filament diffusion coefficients
determined in this way for several ionic conditions and pH
values are presented in Table 2. No systemic variation in
filament diffusion coefficients with pH was observed.

TABLE 2 Diffusion coefficients of actin filaments
(10 cm?s7Y)

the early stages of assembly. In order to make convenient Cation pH66 pH70 pH74 pH77 pHS.O
quantitative comparisons of assembly kinetics, we report
the kinetic halftimes, i.e., the time for the pyrene fluores- 100 mM K* 2.8 3.0 3.4 3.0 4.3
cence signal to reach one-half of its eventual maximum 1 mM Mg 11 4.4 6.4 33 4.8

. . . e 100 mM K+
value. These kinetic halftimes for all of the conditions I mMMg*? 4.4 36 31
studied are shown in Table 1. All measurements were
Wang et al. pH Dependence of Actin Self-Assembly 295



A third parameter that may be used to quantify actin
assembly is the critical concentration, i.e., the concentra-
tion of G-actin that remains unassembled in quasi-
equilibrium with actin filaments. We have determined
critical concentrations of actin under several different
ionic conditions for pH 6.6, 7.4, and 8.0 using the pyrene
fluorescence enhancement method described in the previ-
ous section. A typical plot of fluorescence versus concen-
tration is shown in Fig. 3. In the example shown the slope
of the line for filamentous actin is more than 12-fold
greater than the slope for G-actin, making a determina-
tion of the intercept quite straightforward and precise.
However, we have found that the ratio of these slopes is
dependent both on the ionic conditions and on pH; for
some conditions, particularly lower values of Mg*?, the
slope differences were not great enough to permit a
reliable determination. In general we rejected data for
which the ratio of slopes was less than 2. The critical
concentrations that we were able to determine using this
method are tabulated in Table 3. Again there is a clear
and consistent trend, with lower critical concentrations at
lower values of pH.

DISCUSSION

Over the range of conditions studied, increased acidity
accelerates the kinetics of actin assembly and reduces the
critical concentration. Both of these effects are present for
all combinations of cations used in these experiments, but
quantitative comparison reveals some dependence on the
cations employed in the assembly medium. From pH 6.6

Fluorescence Intensity

0 0.2 0.4 0.6 0.8 1 1.2

Actin concentration (uM)

FIGURE 3 Sample data for determination of actin critical concentra-
tion. Fluorescence intensity from the pyrene label is plotted as a function
of actin concentration. The data were fitted by least-squares criteria to
two lines as shown. The abscissa intercept is the critical concentration.
Solution conditions for these data were pH 7.40, buffer G3 + 1 mM
MgCl,.

TABLE 3 Actin critical concentrations (uM)

Cation pH 6.6 pH7.4 pH 8.0

1 mM Mg*? 0.15 0.54 0.72
1.25 mM Mg*? 0.11 0.36 0.49
4 mM Ca*? 0.19 0.32 0.32
5 mM Mg*2 0.17 0.19 0.26
100 mM K*

1 mM Mg*? 0.081 0.10 0.22
100 mM K*

2 mM Mg*? 0.070 0.10 0.11
100 mM K* 0.36 0.44 0.62
100 mM K* (0.1 mM Mg*?) 0.17 0.20 0.24

to 8.0 kinetic halftimes (Table 1) increased by as much as
a factor of 75 (0.5 mM Mg™*?) to as little as a factor of 3
(100 mM K*). When Mg*? was used as the assembly ion,
the relative increase of kinetic halftimes was reduced as
the Mg*? concentration was increased. This effect was
not observed for assembly with Ca*?, for which the kinetic
halftime increased somewhat more with pH at the higher
ion concentrations. When assembly was induced by 100
mM K*, assembly kinetics were an order of magnitude
more rapid and the kinetic halftime dependence was an
order of magnitude greater when Mg*? was the tightly
bound cation than when Ca*? was the tightly bound
cation. The important distinction between Ca—actin and
Mg-actin is well known, and the kinetic effects at a single
pH (7.8) have been characterized in a recent report
(Selden et al., 1986).

From pH 6.6 to 8.0 the critical concentration of actin
increased by as much as a factor of 5 and as little as a
factor of 1.5. Again the greatest effect was seen when
Mg*? was used as the assembly ion, and the effect was
greater for 1.0 mM Mg*? than for 1.25 mM Mg*2 For
the conditions most closely resembling cytoplasmic condi-
tions, the increase in critical concentration was a factor of
2.7 for (100 mM KCl, 1 mM MgCl,) and a factor of 1.6
for (100 mM KCl, 0.2 mM MgCl,). Changes in critical
concentration of this magnitude could affect actin
assembly and disassembly to a significant degree. More-
over, the presence of profilin or other G-actin-binding
proteins in cytoplasm may greatly amplify the effects of
small changes in the actin critical concentration on the
concentration of F-actin (Tobacman and Korn, 1982).

Several of the critical concentration values in Table 3
may be compared with literature values. At pH 8.0, three
sets of ionic conditions match conditions employed by
Tobacman and Korn (1983) when introducing the
method we have employed. Their values (with ours in
parentheses) were 0.58 (0.72) for 1 mM MgCl,, 0.76
(0.62) for 100 mM KCl + 0.1 mM CaCl,, and 0.21
(0.22) for 100 mM KCl + 1 mM MgCl,. The agreement
appears to be quite close. Our values also agree well with
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a previous report from this group (Pan and Ware, 1988),
except for the values for 4 mM Ca*? and 5 mM Ca*?,
which are about a factor of two lower in the present study.
Selden et al. (1986) have measured critical concentra-
tions for Mg-actin and Ca-actin at pH 7.8 using a
polymerization plateau method and an initial rate meth-
od, both based on pyrene-labeled actin, but employing a
different methodology. To the degree that direct compari-
sons can be made, their values appear to be lower than
ours by a factor of 2-3. It is important to bear in mind
that the critical concentration of actin has several defini-
tions, both theoretically and experimentally. It has been
shown to depend on the number concentration of actin
filaments (Pantaloni et al., 1984), and it is the experience
in our lab and elsewhere that it may depend on the
preparation method and the age of the sample. From
repeated measurements on all samples we find that the
values in Table 3 are reproducible over all variables to
within +20%. Thus the relative trends with pH, which we
are emphasizing in this report, are much larger than the
experimental uncertainties.

The actin filament diffusion coefficients measured in
an FPR experiment may be subject to several experimen-
tal artifacts, including photochemical reactions from the
bleaching process. A detailed analysis of these effects has
been published recently (Simon et al., 1988). However,
we are confident that D,,, is a reliable, at least semiquan-
titative, index of relative filament length. In data not
shown, we have verified that the D,,, decrease monotoni-
cally over three orders of magnitude as assembly proceeds
and that their steady-state value is reproducible to within
a factor of 2 or 3. We have also verified that mechanical
shearing and various chemical and biochemical filament
shortening agents have the appropriate effects on Dy,
with a nearly linear dose dependence over about three
orders of magnitude. The diffusion coefficients in Table 2
are within the range of reproducibility and thus do not
show any measurable effect of pH or ion content on
filament length. Some readers may find it surprising that
conditions that favor more rapid assembly do not result in
shorter filaments, but we have repeatedly found that
kinetic effects and filament shortening effects are separa-
ble (Mozo-Villarias and Ware, 1984; Walling et al,,
1988). Steady-state filament lengths are determined by a
combination of factors that include the nucleation rate,
cleavage rate, and annealing rate as well as rates of
monomer association and dissociation. The lack of pH
dependence of filament lengths has no unambiguous
interpretation without further investigation.

The molecular interpretation of the pH dependence of
actin assembly is presumed to be related to the titration of
an anionic group(s) over this pH range. The fact that the
pH dependence of critical concentrations and kinetic
halftimes are affected for all combinations of assembling

cations makes it seem likely that the sites involved are
low-affinity sites with little specificity. Comparison of the
quantitative data may support a special role for Mg*? in
interacting with these sites. It is known that Mg**induces
a conformational change in G-actin (Frieden, 1982), and
our observation that the pyrene fluorescence enhance-
ment is sensitive to the level of Mg*? present provides
further evidence for that effect. Ultimate understanding
of the conformational pH dependence will probably
require an atomic resolution structure of G-actin and
further spectroscopic characterizations of the individual
titratable groups on the actin surface.

The immediate implications of our results are most
important for the comparison of actin assembly measure-
ments and the relation of measured parameters to cyto-
plasmic mechanisms. The pH is routinely controlled in
actin experiments, but is rarely varied, and no standard
value has been imposed. Comparisons of measured
parameters generally do not include any corrections for
pH dependences, and the application of measured param-
eters to cytoplasmic regulatory mechanisms generally do
not consider the pH dependence or the variability of
cytoplasmic pH. Our data show that the pH dependence
of the assembly kinetics and critical concentrations of
actin in a variety of media is sufficiently great that it
should not be neglected. These considerations will become
even more complex when combined with the pH depen-
dence of cytoplasmic actin regulatory proteins.

Note added in proof: Following the submission of this manuscript, a
report has appeared from another group on this same topic (Zimmerle,
C. T., and C. Frieden. 1988. Effect of pH on the mechanism of actin
polymerization. Biochemistry. 27:7766-7772). To the degree that direct
comparisons can be made, we see no discrepancies between these two
studies.
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