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ABSTRACT The curvature elastic mod-
ulus (bending stiffness) of stearoyl-
oleoyl phosphatidylcholine (SOPC) bi-
layer membrane is determined from
membrane tether formation experi-
ments. R. E. Waugh and R. M. Hoch-
muth 1987. Biophys. J. 52:391-400)
have shown that the radius of a bilayer
cylinder (tether) is inversely related to
the force supported along its axis. The
coefficient that relates the axial force
on the tether to the tether radius is the
membrane bending stiffness. Thus, the
bending stiffness can be calculated
directly from measurements of the
tether radius as a function of force.

Giant (1 0-50-,um diam) thin-walled
vesicles were aspirated into a micropi-
pette and a tether was pulled out of the
surface by gravitational forces on small
glass beads that had adhered to the
vesicle surface. Because the vesicle
keeps constant surface area and vol-
ume, formation of the tether requires
displacement of material from the pro-
jection of the vesicle in the pipette.
Tethers can be made to grow longer or

shorter or to maintain equilibrium by
adjusting the aspiration pressure in the
micropipette at constant tether force.
The ratio of the change in the length of
the tether to the change in the pro-

jection length is proportional to the
ratio of the pipette radius to the tether
radius. Thus, knowing the density and
diameter of the glass beads and mea-
suring the displacement of the pro-
jection as a function of tether length,
independent determinations of the
force on the tether and the tether
radius were obtained., The bending
stiffness for an SOPC bilayer obtained
from these data is -2.0 x 10-12 dyn
cm, for tether radii in the range of
20-100 nm. An equilibrium relationship
between pressure and tether force is
derived which closely matches experi-
mental observation.

INTRODUCTION

The phospholipid bilayer is a major constituent of vir-
tually all biological membranes. Many biological pro-
cesses require changes in the geometry of the cell surface
and so can be affected by the intrinsic deformability of
the membrane. Thus, the bending stiffness of the mem-
brane plays a role in processes involving changes in
membrane curvature, e.g., exocytosis (secretion), endocy-
tosis, membrane fusion, cell division, and membrane
remodeling during red cell maturation. Understanding
the mechanical properties of bilayers and how they resist
deformation will help us better understand such biological
processes at a fundamental level.

Because biomembranes are very thin, the curvature
elastic modulus is small, and it is difficult to measure
experimentally. Several groups have estimated the curva-
ture modulus by measuring the frequency of thermally
driven fluctuations of the membrane contour. Servuss et
al. (1976) and Schneider et al. (1984), using slightly
different analytical approaches, each arrived at a value
for the modulus in the range 1.0-2.5 x 1IO-2 dyn cm (erg)
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for the curvature elastic modulus of egg lecithin bilayers.
More recently, Duwe et al. (1987) obtained a value of
1.1 x 10-12 dyn cm for dimyristoyl phosphatidylcholine
(DMPC) bilayers above the phase transition (260C). (In
a previous article from the same laboratory [Engelhardt
et al., 1985] a smaller value was reported. The small value
resulted from an error in calculation that was corrected in
the later work.) The difference between these values may
be attributable to differences in the bilayer composition
(see Discussion), but it should also be recognized that the
calculated value is sensitive to the different theoretical
models used to obtain the modulus from experimental
observations. This might account for disagreement among
values of the bending modulus reported for the erythro-
cyte membrane. Brochard and Lennon (1975) analyzed
the "flicker" of the red blood cell. surface and estimated a

value of 3.0 x 10-'3 dyn cm for that membrane. Using a

distinctly different approach, Evans (1983) has estimated
the bending stiffness of the red blood cell membrane from
micropipet aspiration experiments. He finds a value of
-1.8x1-12 dyn cm.

In the present report we describe a new approach for
measuring the bending stiffness of biological membranes
at high curvatures. The technique involves the formation
of cylindrical membrane strands (tethers) from large
vesicular membranes. Recent theoretical work by Waugh
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and Hochmuth (1987) indicates that the membrane
bending stiffness B relates the axial force on the tetherft
to its equilibrium radius R,:

f=2irBft= R. (1)
Rt

(This result is not unique to the thick liquid shell model
used by Waugh and Hochmuth, 1987. An identical
relationship can be obtained using an energy-variational
analysis of a thin cylindrical membrane with negligible
surface shear rigidity, constant surface area, and finite
curvature elasticity.) Thus, measurements of the force on

the tether and the tether radius allow direct calculation of
the membrane bending stiffness via Eq 1.

Tethers were first observed to be formed from red blood
cells attached to a glass surface and subjected to fluid
shear forces (Hochmuth et al., 1973). The tethers them-
selves were essentially invisible and the tether radii were

unknown in those studies because the tether diameter
(- 100 nm) is too small to be resolved optically. Subse-
quently, Hochmuth et al. (1982) developed a new method
for forming tethers from vesicular membranes (or eryth-
rocytes) held in micropipets. Recognizing that the surface
area and volume of the cell are conserved, they were able
to calculate the radius of the tether by measuring the
decrease in the length of the projection of the cell in the
pipet for a given increase in the tether length (see
Materials and Methods). Unfortunately, the force on the
tether in those studies could not be measured, and had to
be calculated based on assumptions about the equilibrium
relationship between the tether force and the membrane
force resultants on the body of the cell. (The present
results indicate that these calculations were in error by
approximately a factor of 2.0; see Discussion.) In the
experiments described here tethers are formed by the
negative buoyancy force of glass beads attached to the
surface of phospholipid vesicles held in a micropipet. The
density and diameter of the bead can be measured, and
the radius of the tether can be determined by the method
of Hochmuth and Evans (1982). The simultaneous and
independent determinations of tether force and tether
radius allow the direct calculation of the membrane
bending stiffness via Eq. 1. Our results confirm that there
is an inverse relation between tether radius and the force
acting on the tether and indicate a value for the bending
stiffness of SOPC bilayers of -2.0 x 1012 dyn cm.

MATERIALS AND METHODS

Preparation of vesicles
Vesicles were made by the modified method of Reeves and Dowben
(1969) courtesy of David Needham (Duke University). SOPC (stea-
royl-oleoyl-phosphatidylcholine) was dissolved in chloroform-methanol

(2:1) at a concentration of 10 mg/ml. 30 ;1 of the SOPC solution was

spread on a Teflon disk at the bottom of a 50-ml beaker. The beaker was
placed in a desicator and evacuated for 2-3 h to remove solvent. The
beaker was exposed to a gentle stream of water-saturated nitrogen for
20-30 min. Then, 8 ml of 100 mM sucrose solution was added and the
lipid was left to stand overnight undisturbed at room temperature. The
vesicles appeared as a white cloud near the Teflon surface. This
suspension could be stored in a refrigerator for up to 1 wk.
At the time of the experiment, a small quantity of this suspension was

dispersed into a glucose solution (100 mM) to make a working suspen-
sion. (The difference in refractive index between the glucose and sucrose
solutions facilitated visualization of the vesicles by modulation contrast
optics.)

Preparation of pipets
Pipets were made using a vertical pipet puller and a microforge. Needles
with long tips were made from capillary tubing with a pipet puller. Then,
the tips were broken off using the microforge to form pipets with inside
diameters between 8.0 and 12.0 ,um. Pipets were stored in small test
tubes filled with filtered (0.2-p.m pore size) glucose solution (100 mM).
The tips of the pipets filled by capillary action. Before use, the
remainder of the pipet was filled with glucose solution from the back
with a 31-gauge needle.

Microchamber and microscope
The microchamber in which the experiments were performed was

constructed of a plastic plate with a U-shaped cutout, a Teflon gasket,
and two glass coverslips (Fig. 1). The chamber was mounted on a

horizontal microscope (modified; Carl Zeiss Inc., Thornwood, NY),
connected to two fluid reservoirs and filled with glucose solution (100
mM). The reservoir heights could be adjusted so that the velocity and
direction of flow in the chamber could be controlled. (Experiments were

performed with the fluid velocity set to zero.) The micropipet was

mounted in a micromanipulator mounted above the chamber and the tip
of the pipet was inserted into the open side of the "U." The microscope
image was passed through a beam-splitter to two television cameras, one

which provided a high magnification image for observing the length of
the vesicle projecton in the pipet, and one that provided a low magnifica-
tion image for observing the length of the tether. The images of the two
cameras were mixed into a single split-screen image that could be
displayed on a monitor and recorded on video tape for subsequent
analysis. The pressure in the micropipet was controlled by adjusting the
height of a water-filled reservoir connected to the back of the pipet. Zero
pressure was determined by observing the flow of small particles at the
tip of the pipet. Changes in pressure relative to zero were monitored with
a pressure transducer (DP103; Validyne Engineering Corp., North-
ridge, CA) and the output of the transducer was incorporated into the
recorded video picture.

Calibration of bead density
Glass beads with diameters between 10 and 30 p.m were obtained from
Polysciences, Inc. (Warrington, PA). The beads were found to adhere to
the vesicles spontaneously, and no additional treatment of the beads was

required. The density of the beads was determined from their settling
velocity. Individual beads were picked up with a micropipet and dropped
down the center of the rectangular channel. The drop was recorded on

video tape, and the velocity of the bead and its diameter were measured
from the recordings. The results are shown in Fig. 2. The solid curve is a
single parameter least squares regression to the data assuming the
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following relationship between settling velocity, v, and bead diameter,
Db:

g(PB Pf) D2
L/-9 (2)

where PB and pf are the densities of the bead and fluid, respectively, A is
the viscosity of the fluid, and g is the acceleration of gravity. All of the
parameters are known except the bead density, which is determined
from the measurements. For individual measurements on 37 beads we

obtained an average density of 2.38 g/cm3 with a standard deviation of
0.16 g/cm3. The value obtained by least-squares regression to all of the
data was 2.39 g/cm3. Using this value for the bead density, the force on

the tether (at equilibrium in a still fluid) was calculated according to

4

fb -irR'bg(PB Pf), (3)

FIGURE I Schematic of the chamber used in the experiments. The
chamber consisted of four layers in a sandwich-from left to right:
Coverglass, plastic "frame," Teflon gasket, coverglass. A "U"-shaped
cutout in the plastic frame served as a reservoir for vesicles and fluid and
allowed introduction of the pipet from above. Port A was connected to a
larger reservoir to maintain a constant fluid level in the chamber. The
gasket was cut out to form a rectangular channel beneath the "U"
between the frame and the coverglass. Vesicle-bead pairs were manipu-
lated into the rectangular channel where the experiments were per-
formed. Port B was connected through the plastic frame to the end of the
rectangular channel and to a separate reservoir on a micrometer-
positioned platform. The height of reservoir B could be adjusted to
control the rate of flow in the channel.
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where Rb is the bead radius.

Procedure for measurement
Before introducing the vesicles, the chamber was filled with a solution
containing 1 mg/ml BSA to reduce the charge on the glass surface.
After rinsing, the chamber was filled with glucose solution and a few
drops of the vesicle solution were introduced. Glass beads were put into
the chamber and allowed to settle to the bottom of the "U." A vesicle
was aspirated into the pipet, forming a spherical portion outside the
pipet and a projection within the pipet (Fig. 3).
To form a tether the vesicle was placed in contact with a glass bead

and allowed to stick to it, thus forming a vesicle-bead pair. The
vesicle-bead pair was positioned in the rectangular channel at a

measured distance from the glass slide and at a predetermined depth
(- 1.5 mm below the entrance to the channel) midway between the sides
of the channel formed by the gasket. The aspiration pressure in the pipet
was reduced until the bead fell away from the vesicle, forming a tether
between the bead and the body of the vesicle. Then the pressure was

increased and adjusted to stop the bead movement and establish
equilibrium. Reducing the magnitude of the aspiration pressure caused
the bead to move away from the vesicle drawing more material into the
tether. Increasing the aspiration pressure caused the bead to move

toward the vesicle as material was drawn from the tether back onto the
body of the vesicle. The exchange of material between the vesicle and
the tether was evidenced by the change in the length of the vesicle
projection into the pipet. As the tether grew, the length of the projection
decreased, and vice versa.

4.00 6.00 12.0 16.0 20.0 24.0 26.0 32.0

Bead Diameter (,um)

FIGURE 3 Schematic of tether formation. The vesicle was held in a

micropipet (right) and tethered to a glass bead (left). The dimensions
are labeled in the figure: pipet radius, Rp; projection length, Lp; vesicle
radius, R,; tether length, L4; tether radius, R,; and bead radius, Rb.

Curvature Modulus from Tether Formation 511

FIGURE 2 Settling velocity as a function of diameter for glass beads.
Stars represent measurements on individual beads. The solid line is a
one-parameter least-squares regression to the data according to Eq. 2.
The value for the bead density from the regression is 2.39 g/cm3.
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Calculations of tether radius
Hochmuth and Evans (1982) have introduced a relationship between
tether radius, R,, and the ratio of the change in projection length, Lp, to
the corresponding change in tether length L4:

Rt = I1-:R PR dLp) (4)

where Rp is the pipet radius and R, is the vesicle radius. All of the
parameters on the right side of Eq. 4 are measurable, so the tether radius
can be calculated from the data. The radius calculated via Eq. 4
represents a "mean-mass" radius of the tether. It is approximately equal
to the radius of the mid-surface of the membrane.

Compressibility measurements
Compressibility measurements were performed on some vesicles before
attachment to glass beads. The vesicle was aspirated into a micropipet
and the projection was measured as a function of the pipet pressure.

Thus, a series of data pairs of Pp and Lp were generated.
The isotropic membrane force resultant can be calculated from the

applied pressure (Evans et al., 1976):

T APR2 R(1 I

2 RV'
(5)

where AP is the difference between ambient pressure and the pressure

within the pipet. The corresponding fractional change in vesicle area

(a AA/AO) was Icalculated from the change in the length of the
projection, AL = Lp- L, The unstressed area, AO, is given by

AO= 47rR2+ 27rLpRp-7rR2. (6)

The change in area for a given change in projection length was

calculated assuming that the vesicle volume was constant:

AA = ir[2R ALP + (8R3- 6ALpR2)2/13 -4R2]. (7)

(The assumption of constant volume is valid cause of the low permeabil-
ity of the bilayer membrane to water [Evans and Needham, 1987].)
The expansivity modulus of the membrane K relates the isotropic

force resultant to the fractional change in membrane area a (Evans et
al., 1976):

T = Ka. (8)

FIGURE 4 Photographs from a television monitor showing tether for-
mation. A split-screen image shows both high and low magnification
views. The vesicle is held in a micropipet (right). Arrows indicate the
position of the glass bead and the edge of the projection into the pipet
(bar, 30.0 ,m). (A) Equilibrium at small tether length. The pressure in
the pipet is adjusted to maintain constant tether length (B) Equilibrium
at long tether length. If the aspiration pressure is reduced, the tether
increases in length at constant velocity until the aspiration pressure is
increased to re-establish equilibrium at some new tether length. (C) If
the apiration pressure is increased, the tether grows shorter. The
pressure is adjusted to re-establish equilibrium at an intermediate tether
length.
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The modulus was calculated by linear regression to the data. Care was
taken that the projection lengths before and after the measurement were

the same, to ensure that no additional area was incorporated into the
surface (by fusion of small vesicles to the large vesicle) during the
measurement.

RESULTS

Measurements were performed on a total of 24 tethers.
Fig. 4 shows the process of tether formation. When the
pipet suction was decreased, the bead began to separate
from the vesicle (Fig. 4 a) and the tether formed between
the body of the vesicle and the bead. Fig. 4 b and c shows
the bead at equilibrium for different tether lengths.
Occasionally, when the tether radius was large enough, a

shadow of the tether could be seen on the monitor, but, in
general, it was not visible because the radius was too
small.
The tether length could be increased or decreased

under constant force simply by adjusting the aspiration
pressure in the pipet. Typically, once the vesicle-bead
pair was formed, several "pulls" and "recoveries" were

performed. The relationship between the projection
length, Lp, and the tether length, L, was linear. Fig. 5
shows measurements of Lp as a function of L4 for three
successive pulls and recoveries for a single vesicle-bead
pair. Although all of the data fall in a narrow range,

uncertainty in the determination of the slope, dLp/dL1,
accounted for much of the scatter in our calculated values
for R,. For the three data sets shown in Fig. 5, the
calculated tether radii ranged from 16.5 to 28.5 nm. The
uncertainty was primarily due to difficulty in measuring
the length of the projection in the pipet. Despite these
measurement uncertainties, the calculated values for the
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FIGURE 5 Length of the projection of the vesicle into the pipet as a
function of the tether length. Circles and open and solid squares
represent measurements for three successive pulls-and-recovery on the
same tether. The data for the successive pulls fall in a narrow range.
Solid lines are linear regressions to the three data sets. The tether radii
determined from these data were 24.5, 28.5, and 16.5 nm.

membrane material properties fell in a narrow range (see
Table 1). Over 80% of the values for B were between 1.0
and 3.0 x 10-12 dyn cm. The weighted mean for all the
data was 2.0 x 10-12 dyn cm and the median was 1.9 x
10-12 dyn cm. The results of the present study are
consistent with the theoretical expectations for an inverse
relationship between tether force and tether radius (Eq.
1). The data are summarized in Fig. 6. Error bars indicate
standard deviations for multiple measurements on the
same tether at the same force. The solid curve was
determined by least squares regression according to Eq. 1,
with ft as the independent variable. The value of B
determined by the regression was 1.8 x 10-12 dyn cm.

Area expansivity measurements were performed on
seven of the vesicles used in the tether experiments. The
values for the moduli K are listed in Table 2 with the
corresponding vesicle number. These values are consistent
with other measurements of SOPC membrane area
expansivity modulus performed in our laboratory as well
as values reported in the literature (Evans and Needham,
1987). Although the values are scattered, there is no clear
evidence that there were populations of vesicles with
different lamellarity, and there was no correlation
between the variability in bending stiffness and the corre-
sponding value of K.

TABLE 1 Summary of tether formation data

Tether
number f Rt B T fth/fmaf

,udyn nm 102 dyn cm dyn/cm
1 5.94 18.9 1.79 0.26 1.03
2 2.68 51.4 2.19 0.12 1.98
3 4.17 22.9 1.52 0.26 0.59
4 5.49 12.8 1.11 0.80 0.62
5 4.76 26.5 2.01 0.16 1.07
6 6.34 32.1 3.23 0.16 1.00
7 7.00 23.2 2.55 0.18 0.87
8 2.91 25.3 1.17 0.23 0.63
9 3.48 29.1 1.61 0.42 2.71
10 3.82 27.4 1.66 0.23 1.53
1 1 6.10 33.3 3.23 0.41 1.90
12 3.72 28.7 1.70 0.52 3.02
13 2.43 69.5 2.69 0.029 1.03
14 2.45 54.4 2.12 0.016 0.72
15 7.15 20.4 2.32 0.139 0.75
16 2.67 39.1 1.56 0.076 1.25
17 1.94 23.3 0.72 0.21 1.95
18* 2.11 53.1 1.79 0.049 1.27
19* 2.00 77.1 2.45 0.019 0.93
20* 1.15 81.7 1.50 0.015 1.13
21* 1.50 91.1 2.18 0.017 1.15
22 7.78 38.5 4.77 0.28 1.39
23 4.06 26.7 1.73 0.074 0.81
24 2.54 47.9 1.93 0.046 1.05

*Tethers 18 through 21 were pulled successively from the same vesicle
using different glass beads.
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TABLE 2 Area expansivity modulus

Vesicle
number B K

10-12 dyn cm dyn/cm
1 1.79 179
2 2.19 341
5 2.01 314
6 3.23 156
9 1.61 113
10 1.66 537
11 3.23 170

DISCUSSION

Bending stiffness of phospholipid
bilayer
Our results are in good agreement with determinations of
the membrane bending stiffness of egg lecithin bilayers
from thermal fluctuations. Servuss et al. (1976) obtained
B = 2.0-2.6 x 10-12 ergs, and Schneider et al. (1984)
obtained a value of 1.0-2.0 x 10-12 ergs. Duwe et al.
(1987) obtained a somewhat lower value for DMPC
bilayers (1.1 x 10-12 ergs). The difference between
Duwe's results and others are probably due to the
different lipids used in the different studies. Waugh and
Hochmuth (1987) and Evans and Skalak (1979) suggest
that the bending stiffness of a membrane should depend

100.
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Force (,udyn)

FIGURE 6 Tether radius as a function of the applied force. Stars
represent mean values for extension and recovery of a single tether.
Error bars represent standard deviations for multiple measurements on
the same tether at the same force. The tether radii were calculated via
Eq. 4 and the force was calculated according to Eq. 3. The solid line is a
one-parameter least-squares regression to the data according to Eq. 1.
The value of the membrane bending stiffness determined by the
regression is 1.8 x 10-12 dyn cm.

on its expansivity modulus times the square of its thick-
ness:

B - Kh2. (9)

The expansivity modulus for DMPC (in the liquid state)
is reported to be 75% of the modulus for SOPC (Evans
and Needham, 1987). Furthermore, DMPC has shorter
hydrocarbon chains (14 versus 18 carbons) and so forms a

thinner membrane. Thus, we expect DMPC membranes
to have a bending modulus -44% as large as that for
SOPC membranes. With these considerations in mind, it
appears that the data presently available are in excellent
agreement.

Vesicle-tether equilibrium
Experimental observations show that a tether can be
maintained at a constant length under an axial force by
adjusting the aspiration pressure in the micropipet. This
pressure is independent of the tether length. Understand-
ing the conditions needed to establish equilibrium
between the tether force and the pressure within the
vesicle is important both for understanding the basic
mechanics of tether formation as well as for establishing a

basis for studying the resistance of cell membranes to loss
of bilayer surface.

In previous mechanical analyses of membrane tether
formation (Waugh, 1982; Hochmuth and Evans, 1982)
the membrane was treated as a thin shell with negligible
bending stiffness. This treatment together with the obser-
vation that phospholipid membranes have negligible sur-

face shear rigidity leads to the prediction that the mem-
brane force resultants are isotropic and constant over the
surface of the vesicle. This in turn leads to a predicted
relationship between the tether force, ft, and the differ-
ence between the pressure inside the vesicle, Pv, and the
pressure in the bathing fluid, PO (Waugh, 1982):

ft = Xr (P,, - P.) RRt. (10)

Because this approach neglects membrane bending stiff-
ness it fails to account for changes in the membrane force
resultants in the vicinity of the tether that result from the
membrane curvature elasticity. As a result, it leads to a

major discontinuity in the membrane force resultants at
the vesicle-tether junction (Waugh and Hochmuth,
1987). To remove this discontinuity, a more detailed
mechanical analysis of the tether formation region (one
which takes into account the finite thickness of the
membrane) would be needed. Waugh and Hochmuth
(1987) have solved this problem for the cylindrical tether,
but direct solution of the equations of equilibrium for the
internal membrane stresses on the vesicle surface in the
vicinity of the tether is a formidable problem. Therefore,
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to obtain an equilibrium relationship among the external
forces on the vesicle we have resorted to an energy
variational approach. This approach is detailed in the
Appendix. It leads to the following result:

ft a X (P,- PO) RRt +-r (11)

Rt
Note that the first term on the right-hand side of the
equation is the thin membrane solution and the second
term accounts for an additional force needed to bend the
membrane into the high curvature of the tether. (The
natural state of the membrane is assumed to be flat. A
slightly different expression would be obtained if the
membrane were allowed to have a natural or "sponta-
neous" curvature.) The experimental results are in good
agreement with Eq. 11. Fig. 7 shows a histogram of the
ratio of the theoretical versus the measured force. The
median value is 1.06.

Bending stiffness of the red cell
membrane
The revised equation for tether equilibrium (Eq. 1 1) can
be used to re-evaluate the data on red cell tethers
described by Waugh and Hochmuth (1987). Recall that
only the tether radius and the aspiration pressure are

25.0
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FIGURE 7 Histogram of the ratio of the theoretical force to the
measured force. Separate determinations were made for each pull and
each recovery. The theoretical force was calculated from Eq. 11. The
value for R, was measured directly and R, was calculated via Eq. 4. P,
was calculated from the applied pressure difference, Pp - P., from force
balance P, - P. (Pp - P0)/(R/Rp - 1.0). The value for B was
determined independently for each measured value off, and correspond-
ing value of R, via Eq. 1. The measured force was obtained from Eq. 3.
The median value for the ratio was 1.06.

known in those experiments, and that the force must be
calculated from the pressure difference across the mem-
brane. Previously, the equilibrium relationship for a thin
membrane (Eq. 10) was used, and a value for B of 0.85 x
1012 dyn cm was obtained from the red cell tether data.
Using the revised equilibrium equation (Eq. 11) com-
bined with the relationship between force and tether
radius (Eq. 1) a new relationship between force and
pressure is obtained:

t=2ir(P,, - PO)R,Rt. (12)

Thus, the thin membrane theory (Eq. 10) is in error by
approximately a factor of 2.0. (Note that Eq. 12 presumes
that the natural curvature of the membrane is zero, i.e.,
flat.) Applying this result (Eq. 12) to the red cell tether
data results in a value for the bending stiffness that is
larger than the original estimate by a factor of 2.0:
B =ftRt/27r = 1.7 x 10-12 dyn cm. This result is in
excellent agreement with the value obtained by Evans
(1983) from micropipet aspiration studies
(B = 1.8 x 10-12 dyn cm). Waugh and Hochmuth (1987)
also derived expressions relating the bending stiffness to
the membrane area expansivity. Based on their underesti-
mate of B, a value for the membrane expansivity modulus
of 250 dyn/cm was calculated. Using the revised estimate
of B based on Eq. 12, a value of 500 dyn/cm is obtained,
which is in better agreement with the literature value of
450 dyn/cm (Evans and Waugh, 1977).

CONCLUSIONS

A new approach for determining the bending stiffness of
biological membranes is presented. The results yield a
value for the membrane bending stiffness of SOPC
bilayers of -2.0 x 102 dyn cm. The results also verify a
revised equation of equilibrium relating the tether force to
the pipet aspiration pressure. Applying the revised equi-
librium equation to measurements of tether formation
from erythrocytes yields a value of 1.7 x 1 -12 dyn cm for
that membrane, in good agreement with the value previ-

5.00 4.00 ously determined by Evans (1983).

APPENDIX

Variational approach to
vesicle-tether equilibrium
To obtain the relationship among the external forces on a tethered
vesicle at equilibrium, we considered the variation in free energy for an
arbitrary displacement of the tether length under a constant force (see
Fig. Al). The system is approximated as a spherical vesicle (radius R,),
a cylindrical projection in the pipette with a hemispherical cap (radius
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SLt IL

FIGURE Al Illustrations of the virtual displacements of the vesicle
dimensions for obtaining an equilibrium relationship between tether
force and pressure by a variational approach. Variations in projection
length, Lp, tether length, Lt, and vesicle radius, Rv, are illustrated by
dashed lines. The displacements in the figure are shown in the positive
sense.

Rp, length Lp) and a cylindrical tether (length Lt, radius Rt). The radius
of the tether is functionally related to the force on the tether (Eq. 1 ) and
so is assumed to remain constant during the variation. The vesicle
radius, the length of the projection in the pipette, and the tether length
are free to vary. The pipette is taken to be stationary. The major
assumptions are: (a) the fluid within and surrounding the vesicle is
incompressible; (b) the area of the membrane is fixed; (c) the membrane
has zero surface shear rigidity; and (d) the membrane stores energy
elastically when it bends. The change in free energy with bending is
assumed to take the form (Evans and Skalak, 1979):

AF/Ao == B (C, + C2)2/2, (Al)

where C, and C2 are the change in the principal curvatures relative to the
unstressed state. Thus the change in free energy due to elastic deforma-
tion of the system for the virtual displacement is simply the energy
required to bend the membrane as it moves from the vesicle surface into
the tether. The total variation in free energy for a virtual displacement
of the vesicle dimensions is

F= (PV- Po) (W/+ RB2 (t) + (PV-/Pp) (Vp

+ ft (6Lt + 26RJ -2 B bA)(21rRtL,), (A2)

where V, is the volume of the sphere, Vp is the volume within the pipette,
and AC is the difference in the total membrane curvature between the
vesicle body and the tether. Because Re >Rg we approtu imate AC as
l.O/R, In terms of the vesicle dimensions, Eq. A2 can be written (for
Lp , Rp):
8F=(PV-P.) (47rRV2+R +R rR42 6L) + (P-)Pp) (rR26Lp)

Jf. (t6 +2R-RB)2R bL,. (A2)2 Rt

The variation is subject to the additional constraints that the total
surface area and volume are constant:

= A =8) R6RR +2irRt64)+2rRp-Lp = O, (A4)
and

6V 47rR,26R, + iRpR6Lp + iRtR 6 = 0. (A5)

The approximation symbol indicates that the change in the overlap of
the sphere (radius Rv) with the pipet cylinder has been neglected. Eqs.
A3, A4, and A5 can be solved to eliminate 6R, and bLp, and an

expression in terms of 6L4 is obtained:

ir(P - P.)RVRt 7rB 1bF= -+Rt
_ ft 64t, (A6)

where terms of order Rt/Rv have been neglected compared to 1.0. At
equilibrium the variation in energy must be zero, and we obtain

f =r(P - Pp)RvRt irB (A7)

Rv_ 1.0 Rt

The first term can be re-expressed (approximately) in terms of P, - P.,
the transmembrane pressure difference:

irB
ft - 7 (P,-PO) RvRt + -R* (A8)Rt

Note that the first term represents the thin membrane solution and the
second term gives the additional contribution due to the bending
stiffness of the membrane.
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