Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Oct;242(1):49–60. doi: 10.1113/jphysiol.1974.sp010693

Long-term effect of ouabain and sodium pump inhibition on a neuronal membrane

A L F Gorman, M F Marmor
PMCID: PMC1330599  PMID: 4436828

Abstract

1. The long-term effects of ouabain on the membrane potential of the Anisodoris giant neurone (G cell) were examined in cells maintained for periods of up to 15 hr at 11-13° C.

2. In the presence of ouabain (5 × 10-4 M), the membrane potential depolarized to a constant level for 1-4 hr, then hyperpolarized for 5-7 hr after which it gradually depolarized again.

3. During the hyperpolarizing phase, after 6-8 hr in ouabain, [K]1 fell approximately 50%, [Na]1 increased 50-100% and the PNa/PK ratio decreased to 25% of its initial value.

4. After 8 hr in ouabain the membrane conductance increased two- to fourfold. This increase was independent of temperature and membrane rectification.

5. The K permeability (PK) was calculated from the constant field equation, and showed a fourfold increase after long-term treatment with ouabain. This rise in PK probably underlies the membrane hyperpolarization and the decrease in the PNa/PK ratio.

6. It is suggested that inhibition of the Na+ pump with ouabain causes a gradual rise in [Na]1 which secondarily leads to Ca2+ uptake, an increase in [Ca]1, and thereby an increase in PK.

Full text

PDF
49

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  4. Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dransfeld H., Greeff K., Hess D., Schorn A. Die Abhangigkeit der Ca-Aufnahme isolierter Mitochondrien des Herzmuskels von der Na+- und K+-Konzentration als mögliche Ursache der inotropen Digitaliswirkung. Experientia. 1967 May 15;23(5):375–377. doi: 10.1007/BF02144525. [DOI] [PubMed] [Google Scholar]
  6. GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
  7. Godfraind J. M., Kawamura H., Krnjević K., Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J Physiol. 1971 May;215(1):199–222. doi: 10.1113/jphysiol.1971.sp009465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman A. L., Marmor M. F. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. J Physiol. 1970 Nov;210(4):897–917. doi: 10.1113/jphysiol.1970.sp009248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorman A. L., Marmor M. F. Steady-state contribution of the sodium pump to the resting potential of a molluscan neurone. J Physiol. 1974 Oct;242(1):35–48. doi: 10.1113/jphysiol.1974.sp010692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gorman A. L., Marmor M. F. Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone. J Physiol. 1970 Nov;210(4):919–931. doi: 10.1113/jphysiol.1970.sp009249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gorman A. L., Mirolli M. The passive electrical properties of the membrane of a molluscan neurone. J Physiol. 1972 Dec;227(1):35–49. doi: 10.1113/jphysiol.1972.sp010018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krnjević K., Lisiewicz A. Injections of calcium ions into spinal motoneurones. J Physiol. 1972 Sep;225(2):363–390. doi: 10.1113/jphysiol.1972.sp009945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  15. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marmor M. F. The effects of temperature and ions on the current-voltage relation and electrical characteristics of a molluscan neurone. J Physiol. 1971 Nov;218(3):573–598. doi: 10.1113/jphysiol.1971.sp009634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marmor M. F. The independence of electrogenic sodium transport and membrane potential in a molluscan neurone. J Physiol. 1971 Nov;218(3):599–608. doi: 10.1113/jphysiol.1971.sp009635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meech R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493–499. doi: 10.1016/0300-9629(72)90128-4. [DOI] [PubMed] [Google Scholar]
  19. Mirolli M., Talbott S. R. The geometrical factors determining the electrotonic properties of a molluscan neurone. J Physiol. 1972 Dec;227(1):19–34. doi: 10.1113/jphysiol.1972.sp010017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Russell J. M., Brown A. M. Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion. J Gen Physiol. 1972 Nov;60(5):499–518. doi: 10.1085/jgp.60.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Russell J. M., Brown A. M. Active transport of potassium by the giant neuron of the aplysia abdominal ganglion. J Gen Physiol. 1972 Nov;60(5):519–533. doi: 10.1085/jgp.60.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Rossum G. D. Relation of intracellular Ca2+ to retention of K+ by liver slices. Nature. 1970 Feb 14;225(5233):638–639. doi: 10.1038/225638a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES