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SUMMARY

1. The minimum (or liminal) length of an excitable cable that must lie
above the inward current threshold in order to initiate propagation is
derived using a simple polynomial representation of the ionic current-
voltage relation.

2. This model is then used to obtain an approximate equation for the
liminal length that may easily be applied to excitable cells using experi-
mental measurements of the ionic current.

3. The equations are used to show that the liminal length in cardiac
Purkinje fibres is expected to be much smaller than in squid nerve. The
values calculated are similar to those obtained by Fozzard & Schoenberg
(1972) from strength-duration curves.

4. It is shown that the strength-duration curve for non-uniform excita-
tion is virtually independent of the resting membrane resistance. The
strength-duration time constant may not, therefore, be related to the
membrane time constant.

INTRODUCTION

Fozzard & Schoenberg (1972) have described experiments on the
strength-duration curves in cardiac Purkinje fibres and have analysed
their results using Rushton's (1937) concept of 'liminal length'. The pur-
pose of this paper is to analyse this parameter in terms of the current theory
of excitation.

Definitions
(units are expressed with respect to a unit length of fibre where appropriate)

V membrane potential expressed as a deviation from the resting potential VA
(mV).

VB threshold for uniform excitation (= voltage at which ionic current reverses
direction from outward to inward) (mV).

VC threshold for point excitation of cable (mV).



VD peak active voltage (mV).
iA ionic current flowing through membrane (IzA/cm).
c membrane capacitance (#F/cm).
x distance along fibre (cm).
xLL liminal length (cm).
ra axial resistance (0/cm).
rm resting membrane resistance (LI cm).
gr resting membrane conductance (= 1/rm) (mnho/cm).
A resting space constant = V(1/grr.) (cm).
AB 'active' space constant at threshold (defined in text) (cm).
X = x/A.
XLL = XL1JA
91 slope conductance near threshold (defined in text) (mho/cm).
Q charge on membrane.
QW steady-state charge on membrane.

THEORY

To excite a nerve or muscle cell by applying current uniformly to its
membrane it is sufficient to depolarize the membrane to the potential at
which the net ionic current changes sign from positive (outward) to
negative (inward).

Since
dV i(

the potential will then change spontaneously in a positive (depolarizing)
direction.
The situation in a cable structure excited at one point is more complex

than this since the membrane potential, and hence also the ionic current,
will vary with distance along the fibre. Flow of outward current at less
depolarized areas of membrane at a distance from the electrode may pre-
vent the inward current near the electrode from initiating a propagated
action potential. The condition for excitation is then that the sum of ionic
current flow over the cable as a whole should become inward, i.e. that

j'iidx < 0. (2)

In order for this to occur, the area of membrane supplying inward
current must be large enough to allow

Jiidx> iiidx, (3)
X1 X~~~~~~~1

where xl is the distance at which the ionic current changes from inward to
outward (see Fig. 1). For a given cable, there will be a minimum length
for which this condition holds. When the length of cable supplying inward
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LIMINAL LENGTH FOR EXCITATION 575
current is equal to this length, the cable is at threshold. This is the length
that Rushton defined as the 'liminal length', XLL. We then have

ii dx ii dx. (4)
XLL L

The purpose of this paper is to relate XLL to the ionic current-voltage
relation of the excitable cell membrane and, hence, to parameters that may
be measured using voltage clamp techniques.

___---.----- vc
V~~~~~~~V

+

x

Si d\
XLL l1i dxjdILiLx L

Fig. 1. Diagram illustrating variations in voltage and current with distance
in a cable at the steady-state threshold. V0 is the threshold voltage at
X = 0. VB is the voltage at which the ionic current reverses direction. xLL
is the length of cable for which the voltage exceeds VB. At threshold, the
hatched areas are equal.

We will first consider a fibre whose membrane obeys a simple ionic
current-voltage relation given by the polynomial

Pi=KV-V2+ (2 ) (6)
This relation resembles that observed experimentally in excitable cells
and is plotted in Fig. 2. To relate the potential axis to the mV scale usually
used in work on excitable cells we may arbitrarily set each unit on the
voltage axis equal to 20 mV. The threshold for uniform excitation then
lies at 23 mV (VB = 1-171). The threshold for cable excitation Vc may be
shown to be at about 36 mV by using the equation

SVC VA

VBijdV= ii dV (6)
19 PHY 226



(cf. Noble & Hall, 1963, Fig. 6 and equations 7-9). This equation defines
V0 in terms of ii ( V) only. Although Vc is the cable threshold, no other infor-
mation on the cable properties is required.

Equation (5) may be used together with the cable equation

1 d2V = ii = I V-V2+ V 3

(7)

k2 3 4 5 6

I

-1

-5

-6

-7

Fig. 2. Current-voltage relation given by eqn. (5). VA is the resting poten-
tial, V. is the uniform voltage threshold, V, is the cable voltage threshold
(see Fig. 1) and VD is the height of the 'action potential' generated by the
system. The relation intersecting the voltage axis at V0 is the cable input
current-voltage relation obtained from eqn. (5) by plotting values pro-

portional to J( f idV). The hatched areas shown on the uniform

current-voltage relation are equal. Each unit on V axis is 20 mV.

to give analytical solutions for the spatial spread of voltage and current
(see Jack, Noble & Tsien, 1973, chap. 12). Eqn. (7) may also be readily
solved using numerical integration techniques. Fig. 3 shows solutions
obtained for various values of voltages applied at the point x = 0. The
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LIMINAL LENGTH FOR EXCITATION 577

threshold is reached when V'o = 36 mV (1.8 units of V). The length of
cable whose potential lies above VB and therefore supplies inward current
is 1-5 space constants. The space constant is readily obtained by con-
sidering the linear form of (7) when V is small. We then obtain

Kd2V V (8)ra dX2

and A = J(K/ra). K is therefore the resting resistance. In the remainder
of this treatment, the liminal length will be expressed in dimensionless
co-ordinates and, following Fozzard & Schoenberg, we will use the symbol
XLL (= XLL/A). In the present case we may write XLL = 1.5.

15Q _
5 ----------- ~-------VD

Vc (=cable threshold)

VB (=uniform threshold)

I -- aU aL I
0 0*5 1.0 1-5 2-0 25 3*0 3.5 40 4-5 5-0

X
Fig. 3. Variation in voltage with distance computed from eqn. (7) for
various values of V at x = 0 and x = oo. Below Vx 0 = V. there are two
solutions for each value of V. 0. Above V0 there is only one solution for
each value of V,,0. The curve starting at V. and decaying towards VA is
similar to that plotted in Fig. 1. The point at which V. occurs is the
liminal length XLL.

To show more clearly what determines XLL we consider a simplication
of eqn. (5) shown in Fig. 4. The is (V) relations near the resting potential and
near the uniform voltage threshold, VB, are represented by linear segments.
Let gr = 1/K and g1 = (di i/dVB) then

=-K(I-2VB + IVBI)1
19-2
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Since VB = 1*171

D. NOBLE

0*828
91 - K =-0-828gr

Now consider solutions for the cable equation

1 d2V
r.(~-= 1(V-VB) = g1AV,

05

I 0

-0*5

-1 0

(9)

V

Fig. 4. Linear approximations for eqn. (5) in the region of VA to Vc. The
line given by slope gr is used to represent resting membrane to calculate
resting space constant A = V(1lgrra). The lines given by (gl)vB and
(91) VB toVC are used to calculate active 'space constants' AB = V(- l/g1r.).

where AV is the voltage expressed as a deflexion from VB. Since gq is
negative, the general solution is best written in the form

AV = Asin(x^(-gjra))+Bcos(x>(-gjra))
AV = A sin (XA/AB) +Bcos (XA/AB),

where AB = 1/J( -g ra). Since, at threshold, (dV/dX)0 = 0, A = O so that

AV = (VC-VB) COS (XAIAB)

or
(10)

(1Oa)

(11)



LIMINAL LENGTH FOR EXCITATION 579

Thus we obtain oscillatory solutions for A V, the cycle period being equal
to 27TAB/A. In the present case AB/A = 1/1(0.828) so that the period is
2Ir/J(0-828) = 6-886.
Now provided that the linear segment with slope gq is a good approxi-

mation to the current-voltage relation for voltages just above the uniform
threshold, VB, the first quarter cycle of a solution starting from the voltage

40 - V.--- ---- --- ---- --- ---- --_._Eqn. (10)

30 - < N%__ __ __ BgV to_ __C__

- - -- - - - - - - - - - -

E 20 gt =<i/
Eqn. (7)

0 1 XLL 2 3 4 5
X

Fig. 5. Comparisons between solutions given by the linear eqn. (10) and
that given by the non-linear eqn. (7). The best approximation to the non-
linear solution in the region 0 < X < XZL is given by using (g1)vB to vo to
calculate A..

V, will be the same as the corresponding solution of eqn. (7). This is illu-
strated in Fig. 5. Since the length of the cable between Vc and VB is XLL we
may write

XLL = 6-886 =1*7214

which is only a little longer than the value Of XLL obtained by solving the
non-linear eqn. (7). The deviation is in the right direction since the current-
voltage relation becomes steeper than the slope g, when Vc is approached.
A better linear approximation of the relation between VB and VI would
therefore require a slope larger than gl. In fact, as shown in Fig. 4, the best
slope is about 1-2 rather than 0-828. We then obtain

XLL = 7r/2J(1.2) = 1-43

which is closer to the result obtained using eqn. (7).
Thus, in general, we may write

XLL2AB/A = r) (12)

and to obtain a good approximate estimate of XLL we simply require the
resting conductance and the slope of the best-fitting linear segment for
voltages between VB and VC.



In the case of squid nerve, the appropriate information for calculating
XLL may be obtained from the current-voltage relation measured by
Hodgkin, Huxley & Katz (1952, Fig. 10). This is reproduced in Fig. 6. To
a first approximation g1 = - 4gr. Hence we obtain

(XLL)squid = 24 0-77

which may be compared with the value of 0.55 obtained by Fozzard &
Schoenberg using linear cable equations to compute the strength-duration
curve.

10

gr

-40 -30 -20 -10 o VB 20 30
mV ,o ' mV

An0

0i'O/

-20

Fig. 6. Ionic current voltage relation of squid nerve obtained by Hodgkin,
Huxley & Katz (1952). The points are replotted from Fig. 10 of Hodgkin
et al. V0 was calculated as the voltage at which the hatched areas are
equal. The value of gL in this case is about 4 times larger than g,.

It is more difficult to obtain a reliable estimate of XLL for the Purkinje
fibre. Mobley & Page (1972) have obtained microscopic estimates of the
membrane surface area in Purkinje fibres and by combining these with
Weidmann's (1952) measurements of the cable constants, they obtained
1 gzF/cm2 for the specific membrane capacitance and 20,000 D/cm2 for the
specific membrane resistance, i.e. 0 05 mmho/cm2 for the specific mem-
brane conductance. These values compare with 1 ,tF/cm2 and 700Q/cm2
for squid nerve. The value of g, for Purkinje fibres cannot yet be obtained
directly since voltage-clamp measurements of the sodium current in
cardiac muscle are unreliable (see Beeler & Reuter, 1970). However, it is
known that the maximum rate of depolarization during the action poten-
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LIMINAL LENGTH FOR EXCITATION
tial is similar to that in squid nerve, i.e. of the order of 500 V/sec (see
Hodgkin & Huxley, 1952; Weidmann, 1955). Since the specific capacitances
are similar (when the cable Cm of 12 /ZF/cm2 is corrected for membrane
surface area as done by Mobley & Page), eqn. (1) requires that the peak
values of 'Na should be similar. The best assumption we can make at pre-
sent, therefore, is that g1 is also similar to that in the squid. The major
difference between the two membranes would then lie in the values of 9r,
which for the Purkinje fibre is only 0-035 of that in squid nerve. Hence

(XLL)Purkinje fibre = /J(0035) = 0 15

which is within the range of values 0- 1-0 2 obtained by Fozzard & Schoen-
berg (1972).

These calculations show that Fozzard & Schoenberg's estimates for XLL
are similar to those that may be obtained from the information available
on the values of gr and g, for squid nerve and Purkinje fibre membranes.

VB - -

0 0-15 0-4 0-77 1-0 1-5 2-0 X 3 0
Fig. 7. Diagram illustrating threshold V(X) relations for cardiac Purkinje
fibre, frog skeletal muscle and squid nerve. The relations were drawn using
the liminal length values derived in the text and representing the curves
above VB as sinusoidal. The curves were then continued below VB to join
the linear cable solution V a exp ( - X). The threshold V(X) relation given
by eqn. (7) is also shown. For the sake of easing comparison, the uniform
threshold voltage (VB) is assumed to be the same in each case. The liminal
lengths used were 1-5 (eqn. (7)), 077 (squid nerve), 04 (skeletal muscle) and
015 (Purkinje fibre).

Exact agreement between the values of XLL derived here and those
obtained by Fozzard & Schoenberg would not be expected since they
obtain XLL from measurements of the strength-duration curve by
assuming that the fibre behaves as a linear cable until excitation occurs,
whereas the analysis given in the present paper derives XLL from the
relevant non-linear properties of the cell membrane or from a linear seg-
ment approximation of these non-linearities. It is therefore an important
question to ask why Fozzard & Schoenberg's linear equations work as well
as they appear to do.
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First of all, as Fozzard & Schoenberg have pointed out, there is a very
general reason for expecting a strong relationship between the shape and
time constant of the strength-duration curve and the liminal length for
excitation. This reason is based on the speed at which charge is applied to
different parts of a cable. Thus, charge is applied very rapidly to the mem-
brane close to the stimulating electrode but spreads more slowly to more
distant parts of the cable (Hodgkin & Rushton, 1946). If a large length of
cable must be brought to threshold we therefore expect a relatively long
time constant for excitation, whereas when the liminal length is short, a
much shorter length of cable must be brought to threshold and the time
constant for excitation will be must briefer.

This point is illustrated in Fig. 7 which compares the threshold steady-
state charge distribution for squid nerve and Purkinje fibres (using the
liminal length values calculated previously) and a cable obeying eqn. (7).
Using these diagrams we may define an adequate stimulus as one that
applies an amount of charge Q. where Qo is given by

QcO = C Vo.dx (13)

and V,, is the steady-state value of V at each x at threshold as plotted in
Fig. 7. Clearly the shorter the liminal length, the smaller the value of Q.
and, since the charge is then more concentrated near the electrode, the
faster will be the time constant of excitation.
Although such a stimulus will be adequate, it will generally be larger

than threshold. The reason for this is that the activation of sufficient in-
ward current for propagation may occur before the applied charge has had
time to redistribute on the cable towards the steady-state distribution.
Since, at all times before the steady-state the charge will be even more
concentrated on areas of the cable near the electrode than in Fig. 7, an
amount of charge smaller than QO, may be sufficient to cause excitation.
An alternative approach is to calculate the amount of charge necessary

at each stimulus strength to raise the liminal length of cable above the in-
ward current threshold. This approach may also tend to overestimate the
threshold charge (although to a smaller extent than does Q,,,) since, in
order to raise the voltage at the point XLL to VB, the voltage at X = 0
must be raised beyond Vc when the cable is linear. However, some of this
excess charge (i.e. in excess of that required on the liminal length of cable
at the non-linear steady-state threshold) will leak to more distant parts of
the cable before the inward current is activated. Whether this redistribu-
tion effect will be sufficient to fully account for the excess charge applied
on the cable between X = 0 and X = XLL will depend on how quickly
the sodium current is activated. For the present we will simply note that
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LIMINAL LENGTH FOR EXCITATION

the assumption that an amount of charge similar to the excess charge will
be redistributed during sodium activation is not implausible since the
time constants of charge redistribution (- raCxLL) and sodium activation
are similar in magnitude, i.e. < 1 msec.

If this assumption is made then the strength-duration curve may be
calculated as described by Fozzard & Schoenberg, i.e. by calculating the
times taken for various currents to depolarize the point XLL to the inward
current threshold (see Fozzard & Schoenberg (1972), Fig. 8). Using the
liminal lengths calculated above, it is also clear that, as Fozzard &
Schoenberg suggest, the substantial differences between squid nerve and
Purkinje fibre strength-duration curves may be accounted for largely by
the fact that the liminal length is very much shorter in Purkinje fibres.

The comparison between the time constant of charge redistribution and that for
sodium activation may require further explanation. We consider the charge on the
liminal length region to decay from the capacitance of that region (= cxLL) through
the axial resistance for the region (= rxLL) to flow to other less highly charged
parts of the cable. The time constant for this process will therefore be of the order
of r.c(xLL)2 which, in terms of absolute values for the intracellular resistivity, R,,
and membrane capacitance, Cm is equal to

2R1 Cm (XLL)2 (14)

a

where a is the fibre radius. Assuming values for R, and Cm of 100 fl cm and 12 /LF/cm2
for Purkinje fibres (Weidmann, 1952), xLL = 0-02 cm and a = 0 005 cm we obtain

7F= 100 x 12 x 10-6 x (0.02)2/0.005 see

= 1-2 x 104 see = 120 Pusec.
Similarly for squid nerve we may use Cm = 1 uF, Ri = 35 Ql cm, and a = 0-024 cm
(cf. Hodgkin & Huxley, 1952) which together with xLL = 0 3 cm gives

8rquid = 35 x 10-6 x (0.3)2/0.024 sec
= 140 x 10-6 see = 140 psec.

Thus, in both cases, the time constant for charge leakage from the liminal length
region is similar to the time constant of sodium activation (about 200 /tsec). It should
be noted that this comparison can only be approximate. Most of the capacitance of
the liminal length of cable discharges through a smaller resistance than raxLL before
leaving the liminal length region. On the other hand, the charge must also flow
through axial resistance beyond the point xLL. The quantity r7LCx'L therefore gives
only a fairly rough indication of the speed of charge decay from the liminal length
region. This process is not an exponential one and can only be given an approximate
time constant. Similarly, the sodium activation process is not exponential but
sigmoid. The time constant of the m variable is therefore only an approximate indi-
cation of the rate of sodium activation. These considerations make it difficult to give
a more exact analysis of charge redistribution and sodium activation without
resorting to full integrations of the cable and Hodgkin-Huxley equations.
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DISCUSSION

The major conclusions of this paper are (a) that Rushton's liminal
length parameter may be fairly simply derived from voltage-clamp
measurements of current-voltage relations in excitable cells and (b) that
the values derived in this way for squid nerve and cardiac Purkinje fibres
correspond fairly well with those derived from strength-duration curves
by Fozzard & Schoenberg. In general, therefore, the results support
Fozzard & Schoenberg's analysis and provide some justification for its
use. However, there are two difficulties in the analysis that call for further
discussion. These concern the effects of accommodation and the sodium
activation time.

Effects of accommodation
Fozzard & Schoenberg found that the best fit to the strength-duration

curve for long Purkinje fibres was obtained by allowing XLL to vary by a
factor of about 2-5 between short stimuli and long stimuli. As Fozzard
& Schoenberg suggest, this effect is likely to result from accommodation
since, as the stimulus duration is prolonged, g, will decrease due to partial
inactivation of the sodium conductance. XLL will therefore increase. The
question, therefore, is whether this effect may be expected to be larger
in the Purkinje fibre than in squid nerve and whether the magnitude of
the effect assumed by Fozzard & Schoenberg is consistent with experi-
mental data on the accommodation process.
The resting time constant, ric, in squid is about 0 7 msec compared to

20 msec for the Purkinje fibre. The voltage in response to a step depolarizing
current will, therefore, increase much more slowly in the Purkinje fibre than
in squid nerve. This fact is, of course, reflected in the very different time
constants obtained for the uniform strength-duration curves in the two
tissues (about 30 msec for Purkinje fibres, Fozzard & Schoenberg, Table 2;
and 3 msec for squid nerve), although this correlation should be treated
with caution since there is no very simple relation between the strength-
duration time constant and the membrane time constant (see Noble &
Stein, 1966). Nevertheless, we may expect that considerably more accom-
modation will occur during stimuli near rheobasic levels in the Purkinje
fibre than occurs in squid nerve and that a substantial increase in XLL
may occur at long durations. Fozzard & Schoenberg's analysis suggests
that XLL, increases by a factor of 2-5 which, according to eqn. (2), requires
91 to decrease by a factor of 6.

Is a decrease in g, of this order of magnitude consistent with what is
known about accommodation in Purkinje's fibres? As Fozzard & Schoen-
berg note, the potassium currents in Purkinje fibres activate far too slowly
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LIMINAL LENGTH FOR EXCITATION
to be involved here. We are therefore concerned solely with sodium inacti-
vation. A rheobasic current must depolarize the membrane from a resting
potential of about -80 mV to the sodium threshold of about -60 mV.
Weidmann's (1955) data on the sodium inactivation process (see his Fig.
3) show that in the steady state a fall in h of the order of 10 can occur
between these potentials. Moreover, the time constant for h is of the order
of a few msec (Weidmann, 1955) so that h could fall substantially towards
its steady-state value during a pulse lasting about 8 msec, i.e. about 2S-D
time constants, as required by Fozzard & Schoenberg's assumed relation
between XLL and duration of pulse (see their Fig. 12). The effect of accom-
modation therefore creates very little difficulty and Fozzard & Schoen-
berg's analysis is consistent with the experimental measurements of
accommodation in Purkinje fibres.

Effect of sodium activation time
The second difficulty is more serious. The analysis does not take explicit

account of the speed of inward current activation. Implicitly, it is assumed
that this process occurs at a rate that is slow enough to allow charge on the
liminal length region in excess of that required for excitation to redistribute
itself to regions of the cable beyond XLL. This assumption is clearly some-
what arbitrary although, as noted earlier in this paper, it is not implausible
to assume that the sodium activation rate is of the right order ofmagnitude
for the charge redistribution to occur before excitation occurs.

Unfortunately, there is no guarantee that the charge on the region
between X = 0 and X = XLL will in fact decay to the value of QOO for this
region. On the contrary, the fact that the strength-duration time constant
is a function of the sodium activation rate indicates that it is the exception
rather than the rule for this assumption to be observed at all accurately.
Thus, the strength-duration time constant is a function of temperature
(Cooley, Dodge & Cohen, 1965; Guttman, 1962, 1966), which changes the
rate of sodium activation while having little effect on the absolute magni-
tude of the sodium conductance (Hodgkin & Huxley, 1952). The liminal
length, as defined by eqn. 12, will therefore be relatively independent of
temperature. As a result, as temperature is increased, 9Na will activate too
rapidly to allow Q on the liminal length region to decay towards QO,. for this
region. Hence a smaller amount of charge will be adequate for excitation.
The only way in which this effect could be incorporated is to allow the
liminal length parameter used in Fozzard & Schoenberg's equations to be
a function of the sodium activation rate.

Fozzard & Schoenberg have in fact shown that the value for XLL computed for
squid nerve from charge and voltage thresholds decreases from 054 to 039 when
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the temperature is raised from 6-3 to 18.50. Using a Q10 of 3, this temperature change
corresponds to a fourfold increase in the rate of sodium activation so that excitation
may then occur well before the charge on the liminal length region has decayed
towards Q0. for that region. Unfortunately, it is not at all clear how this effect may
be quantified to allow an explicit relation between the effective value of XLL and
sodium activation rate to be derived. Clearly, the steady-state approach described
in the present paper does not readily allow time-dependent phenomena to be in-
cluded. This difficulty is less severe in Fozzard & Schoenberg's analysis inasmuch as
the effective value of XLL in their theory can be obtained from measured charge
and voltage thresholds, so that the relation between the effective XLL and sodium
activation rate might be determined empirically or numerically. The difficulty in this
case lies in providing any further explanation for the relation since Fozzard &
Schoenberg's theory does not explicitly include the non-linear properties of the
membrane on which XLI must depend.

This is a suitable point at which to emphasize a further difficulty in the
interpretation of strength-duration curves. This is that the strength-
duration time constant for non-uniform excitation bears virtually no
relation to the resting membrane time constant. The major determinants
are the values of g9a, the membrane capacitance, the axial resistance and
the rate of activation of qNa. Although the resting membrane conductance
appears in the equation for liminal length (see eqn. (12)), this is only because
XLL is expressed in dimensionless terms. If, instead, we write

XLL = AXLL 2-= (15)

2 =2J(-gjra)
it becomes clear that the absolute magnitude of the liminal length is inde-
pendent of the value of gr. Since strength-duration curves are normally
obtained using external electrodes that excite a fibre at one point, it is
clear that the results cannot be used to estimate the membrane time con-
stant, even approximately. As Fozzard & Schoenberg (1972) have shown,
the strength-duration time constant for uniform excitation is much closer
to the membrane time constant. Of course, the conditions required to
achieve uniform excitation are generally those required to estimate the
membrane time constant by more direct means.

Application of analysis to skeletal muscle
The large effect that cable properties may have on the time constant

of the strength-duration curve has been known for a long time. Davis
(1923) and Grundfest (1932) showed that, in skeletal muscle, the strength-
duration time constant is much shorter when the tissue is excited by a very
small current source than when it is excited by a large current source. A
much smaller difference was noted in the case of nerve. The analysis given
in the presentpaper and that given by Fozzard & Schoenberg indicates that
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LIMINAL LENGTH FOR EXCITATION

these results may be interpreted to mean that the liminal length for exci-
tation is shorter in skeletal muscle than in nerve. An estimate for nerve has
been given earlier in this paper. It is, therefore, of some interest to obtain
an estimate for skeletal muscle.

Adrian, Chandler & Hodgkin (1970, Fig. 8) have measured the ionic
current-voltage relation of frog skeletal muscle in the vicinity of the
sodium current threshold. From their results, it is clear that the ratio
-g1/qr is high. The best fitting linear segment between the uniform and
cable thresholds in this case is about 10-20 times steeper than the resting
conductance. Using eqn. (12) this gives a value for XLL which is between
0 35 and 0-5. These values are smaller than the estimate of 0 77 for squid
nerve given earlier in this paper, as required if the cable effects on the
strength-duration time constant are larger.

Comparison between liminal length theories
Finally, it is of some importance to compare the rather different

approaches to the problem of liminal length described in this paper and
in that of Fozzard & Schoenberg, and to show how they relate to each
other.
One way of doing this is to regard the two approaches as being different

simplications of the full cable equation

1 2V av
ra ,TXY =C-atFozzard & Schoenberg's analysis neglects the non-linear dependence of ii

on V and substitutes V/rm for ii to give the classical linear cable equation.
Excitation is then assumed to occur when a liminal length of nerve is
raised above a certain voltage. The linear cable equation is assumed to
apply up to that time. By contrast, the analysis given in the present paper
neglects the capacity current, c (aV/st). The cable is assumed to approach
threshold slowly enough to allow steady-state solutions to the non-linear
cable equation to apply. As noted earlier in the Discussion, this requires
the assumption that the opposing effects of sodium activation time and
charge redistribution time largely cancel each other.
These two simplications allow very different, although complementary,

accountsto be given. By neglecting non-linearities, Fozzard & Schoenberg's
analysis cannot obtain the liminal length as a function of the ionic current
flow. On the other hand, given a value for the liminal length, the analysis
allows the strength-duration curve to be predicted. Alternatively, the
liminal length may be derived from the strength-duration curve or from
the charge and voltage thresholds (see Appendices 1 and 2 of Fozzard &
Schoenberg's paper).
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By contrast, the analysis given in the present paper allows the liminal
length to be derived from the non-linear properties of ii (it should be noted
that, although the linear approximate eqn. (12) is given for XLL, the
analysis is based on the solution to the non-linear eqn. (7) (see Fig. 3)
which may be solved analytically for many i (V) relations, see Jack, Noble
& Tsien, 1973), but does not give an account of time-dependent pheno-
mena, unless the two approaches are 'married' by using liminal lengths
derived from steady-state non-linear theory to compute strength-duration
curves from transient linear theory.
At first sight, it may appear that Rushton's (1937) analysis avoids both

simplications since his equations include non-linearity in ii and time
dependent parameters such as dQ/dt. However, it is important to note that
the latter are assumed to play a negligible role in determining the net
current flow across the fibre. Thus, on page 215 of Rushton's paper we find
that the membrane resistance p lying in parallel with the membrane
capacitance is assumed to be negligibly small compared to a sheath resist-
ance R in series with it. In practice, therefore, the capacitance is shorted
by a large conductance and the cable equations used by Rushton approxi-
mate to steady-state equations in which the membrane resistance rm is
replaced by the, mathematically speaking, identical parameter R.
Rushton's approach is therefore similar to that adopted in the present
paper. The major difference lies in the fact that he assumed a step change
in membrane e.m.f. to underlie excitation so that the current-voltage
relation assumed does not accurately simulate the voltage-clamp results
obtained in excitable cells. The relation between Rushton's (1937) analysis
and that described here is discussed further in the Appendix.

I should like to thank Dr J. J. B. Jack for valuable discussions on the theory
presented in this paper, and Dr H. A. Fozzard and Dr M. Schoenberg for their com-
ments on the manuscript.

APPENDIX

Relation of equations to Rushton's equation for liminal length
Rushton's (1937) derivation of an equation for the liminal length for

excitation differs considerably from that given here. However, we may
show that the equations give approximately the same results when the
approach described in this paper is applied to Rushton's model.
Rushton assumed a current-voltage relation of the form shown in Fig. 8.

At the uniform threshold voltage VB, the membrane e.m.f. is assumed to
change abruptly from VA to VD. The conductance was assumed to remain
unchanged.
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Now

VA

iidV=- VB 2 = 2VA

f idV = (Vc-VB) ( E2E )-and

Since Vc is the cable threshold, these integrals must be equal. Hence

V2 = - VC2+ 2VCE-2VBE+VB2.

VA
+

I'

Fig. 8. Current-voltage diagram used in Rushton's (1937) model.

Solving for Vc we obtain

Vc = E-1(E2-2VBE).
Now consider the cable equation

I d2V

between the points Vc(at x = 0) and VB (at x = XLL).
Then

1 d2V= g(E-V)

or

The solution is

2d2VA2 --g(E+ V).dX2

V = (Vc-E)cosh(X)+E
= E-{1{(E2-2VBE)}cosh(X),

where X = x/A.
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When V = VB, X = XLL so that

VB = E-{V(E2 -2VBE)}cosh(XLL)
or C=hXL E-VB

corh(XLL) V(E2- 2VBE)

and we obtain

XLL= lI E -VB (E-VB)LV(E2-2VBE) 4(E(E-2VB) 1)]
When VB is small compared with E this simplifies to

XLL n.1 + E-)E-

Rushton's equation (see his eqn. (7)) is

XLL
A
In ( 2E )

where R is a sheath resistance, QB a threshold charge and T the membrane
time constant. In the steady state, Rushton's model allows RQBIT to be
equated to VB in the present treatment. Hence

XLL = XLL/A = In 1 - )

which also approximates to VBIE when VB is small.
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