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ON THE EXPONENT IN THE "GENERALIZED"
MATCHING EQUATION
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A power function equation between ratios of behavior and ratios of reinforcement rates
has been called a generalized form of Herrnstein's (1961) matching law, even without a
formal relationship having been shown between the two equations. The present work uses
a functional relationship to prove that when ratios of reinforcement are not equivalent to
ratios of behavior, and the transform leading to this inequality is consistent for every pair
of reinforcement rates, the result is a power function relationship between response and
reinforcement ratios. The label "generalized matching equation" for the power function
equation is thus validated formally.
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Several recent theoretical articles have of-
fered derivations of a well known and em-
pirically validated description of choice behav-
ior known as the matching law (Herrnstein,
1979; McDowell, 1980; Myerson & Miezin,
1980; Rachlin, 1978; Staddon, 1977; Staddon
& Motheral, 1979). This relationship asserts
that organisms match the proportion of total
responses emitted (or of time allocated) for an
alternative to the proportion of total rein-
forcement obtained from that alternative:

B1 R1

or equivalently

B, B2- Bn (1
1 _2 n

where B is the measure of behavior allocation
and R is the measure of reinforcement rate.
Many authors (e.g., Baum, 1974, 1979; Davi-

son & Hunter, 1976; de Villiers, 1977; Staddon,
1977) have noted that behavior often deviates
from that predicted by Equation 1 in system-
atic ways. Often animals undermatch or re-
spond disproportionately less to schedules with
high payoff rates. These and other deviations

The author wishes to thank Neil Weiss, Peter Kil-
leen, and the members of the Glass Bead Group for
their many helpful comments and criticisms. Reprints
may be obtained from Craig M. Allen at the Depart-
ment of Psychology, Arizona State University, Tempe,
Arizona 85281.

are often captured by a power function form
referred to as a generalized matching equation
(e.g., Wearden, 1980),

(2)

where a and b are the parameters of a power
function (see Baum, 1974; Lander & Irwin,
1968; Staddon, 1968).
One might wonder why Equation 2 is re-

ferred to as a generalized matching equation.
It is more general in that it fits data much
better than Equation 1 in many circumstances,
and it reduces to Equation 1 with appropriate
parameter values. It is nonetheless incorrect
to call Equation 2 a generalization of Equation
1 for these reasons alone. There has been no
formal relationship shown between these equa-
tions, and were it not for the ability of the
second to fit data that the first cannot, one
would not suspect that Equation 2 was the
proper generalization of Equation 1.
The parameter b (of Equation 2) has been

suggested as a bias term to account for differ-
ential preferences that an organism might have
for one or more of the alternatives (Baum,
1974). Data from studies involving qualita-
tively different reinforcers support these no-
tions and suggest that biases are indeed multi-
plicative, and thus justify to some extent the
inclusion of this parameter as a preference
"fudge factor" (Miller, 1976). There have, how-
ever, been few satisfactory accounts for the
appearance of the exponent term, a (but see
Baum, 1979; Wearden, 1980).
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The present derivation demonstrates that
this exponent indeed arises quite naturally as
a true generalization of the matching law.

Consider Equation 1 in the form

Bi Ri ..
BJ RJ; v

where all B and R are positive. Suppose now
that the mechanism which determines the be-
havioral output for a given set of response rates
does not perfectly conform to the matching
relation, so that instead of the above equation

Bi f(Ri) V;isj (3)

describes behavior allocation ratios. The func-
tion f is any arbitrary function describing how
the ratio of responses might vary from the
ratio of reinforcement rates, but is the same
function for all possible pairs, i,j. Thus, if
some mechanism results in a deviation from
matching for a specific pair, i,j (e.g., due to
a response ceiling) this mechanism results in
a similar deviation for every other pair i,k;
j,k; etc. This function f might be any arbitrary
transform of the ratio: linear or nonlinear, but
it is the same for all pairs, i,j.
Given the above assumptions (which indeed

reflect a generalization of Equation 1) it can
be shown that f must be a power function.

Notice that

ByB_ * Bk
=(Rf )f

R i\jkBJBk B1 RV, Rj);v,,
and thus,

f R f
= l') f Rk ijk

Given that each rate parameter R is positive
(if R equals zero it will not be considered),
there exists some real, positive number c such
that Ri = cRk and a real, positive number d
such that Rk = dRl. This implies that R4 =
cdRj. (If the ratio of two R's is allowed to vary
continuously then c and d are positive con-
tinuous variables. In practice only a finite
number of values of these ratios are sampled,
but it is assumed here that all values could be
sampled, and if they were, the same f would
apply.) By substitution it is evident that

(CdRl?) - (CRk) f(dRi

or

f(cd) = f(c) * f(d). (4)
This result is a functional equation of Cauchy
that has a known solution for the most gen-
eral continuous case:

f(x) = XI,

the power function (a is the arbitrary param-
eter of this power function; see Appendix).'

In other words if the animal's behavior ra-
tios do not perfectly match reinforcement rate
ratios, but deviate consistently, then it fol-
lows from Equation 4 that the function (f)
of the product (cd) is equal to the product of
the separate functions (f(c) * f(d)). This sim-
ple result requires that f be a power function:

(cd)a = &* da;

no other function will do. (If f is the identity
function-in the event of perfect matching-
a is equal to one.)
Thus if behavior tends to follow the match-

ing law but varies from this relation in some
consistent way, then it follows that deviations
from this law must be captured by a power
function; and thus it is shown that the power
function equation is formally a generalization
of the matching law.
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APPENDIX
An elementary proof given in many intro-

ductory probability texts (e.g., Hoel, Port, &
Stone, 1971, p. 127) is that if

g(c+d) = g(c) * g(d) (1A)
then g(x) is an exponential function, el. (This
proof is important for proving the indepen-
dence property of the exponential distribu-
tion.) For application to probability distribu-
tion functions 0 < = g (x) < = 1, this requires
that a < = 0. If the upper bound on the func-
tion g(x) is eliminated, as in the present ap-
plication, a can be any real number.
Given the above relationship it is easy to

prove that if

f(c .d) = f(c) * f(d)
then f(x) must be the power function, xa.
PROOF:

Let

f(c d) = f(c) * f(d).
By substituting an equivalent form it can be
shown that

f(elnc * e1nd) = f(ehlc) f(elnd
or by simplifying that

f(elnC + Ind) = f(elnf) f(elnd)
Now let

h(x) = f(e$').
Thus

h(lnc + Ind) = h(lnc) * (Ind).

From Equation IA it is apparent that h(x)
is an exponential function, therefore

h(x) = f(e'O) = ea.

Finally, let

y = ex.

Substitution results in

f(y) = ya,

which proves that the function f must be a
power function.


