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Without assuming any constraints on behavior, we derive the policy that maximizes overall
reward rate on two variable-interval paradigms. The first paradigm is concurrent variable
time-variable time with changeover delay. It is shown that for nearly all parameter values,
a switch to the schedule with the longer interval should be followed immediately by a
switch back to the schedule with the shorter interval. The matching law does not hold at
the optimum and does not uniquely specify the obtained reward rate. The second paradigm
is discrete trial concurrent variable interval-variable interval. For given schedule param-
eters, the optimal policy involves a cycle of a fixed number of choices of the schedule with
the shorter interval followed by one choice of the schedule with the longer interval.
Molecular maximization sometimes results in optimal behavior.
Key words: optimization, matching, immediate maximization, reward rate, variable-

interval schedule

INTRODUCTION
An animal working on a fixed-interval sched-

ule gets a reward for the first response it makes
after a time equal to the schedule interval has
elapsed since the last reward. A variable-inter-
val schedule is based on a similar principle, but
the interval that must elapse is not fixed but
is a random variable. On a variable-interval
schedule of mean T min (VI T min), the aver-
age interval that must elapse is T min. From
this definition, it can be seen that the longer
an animal faced with a VI schedule waits after
receiving a reward, the more likely it is that a
response will be rewarded.

In concurrent VI VI experiments (conc VI
VI), the animal can make responses on one of
two independent VI schedules. A changeover
delay (COD) is often imposed when a switch is
made from one schedule to another. There are
various ways of implementing the COD (see,
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e.g., Catania, 1966), but the basic idea is that
once the animal has switched schedules, the
COD must elapse before a reward can be ob-
tained. We discuss the COD further below.

Because the schedules are independent, time
spent on one schedule counts as time elapsed
on the other. Thus, the longer the animal has
been on one schedule, the more likely it is that
a reward has been set up on the other one, and
so it pays the animal to alternate between the
schedules. Herrnstein (1961) found that the
pattern of alternation resulted in the following
relationship between responses and rewards:

P1_ R
P1+P27 R1+ R2

(1)

where
Pi is the total number of responses (pecks)

made on schedule i (i = 1,2),
Ri is the total number of rewards obtained

from schedule i.

This relationship, known as the matching
law, (Baum, 1974; de Villiers, 1977; Herrnstein,
1970) has turned out to be a very fruitful gen-
eralization about operant behavior. It can be
rearranged to yield

P1_ R1
P2 R2

and this form has been generalized to
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P21 (R2)k2
(2)

where k1 and k2 are constants (Baum, 1974;
Staddon, 1968). Matching to relative times has
also been found (Baum & Rachlin, 1969; Ca-
tania, 1966). Equation 3 expresses this rela-
tionship in a way that will be required later
in our discussion:

T1 R

T2 R2 (3)

where Ti is the total time spent on schedule i.

Ethologists distinguish between causal and
functional accounts of behavior (see, e.g.,
Hinde, 1970; Tinbergen, 1951; Toates, 1980).
Causal accounts, which correspond to molecu-
lar analysis in operant terms, seek mechanisms
that will produce the observed behavior. There
have been several attempts to understand the
matching law in this way (Herrnstein, 1979;
McDowell & Kessel, 1979; Myerson & Miezin,
1980; Staddon, 1977). Functional accounts, on

the other hand, try to explain behavior in
terms of its contribution to an animal's ability
to survive and reproduce. There have been
many attempts to formulate such accounts as

optimality principles (see, e.g., Maynard Smith,
1978; McFarland, 1977; Oster & Wilson, 1978).
One optimality principle that is especially rele-
vant to this paper is that of maximizing rate of
energetic gain. The resulting theory, known as

optimal foraging theory, is reviewed by Krebs
(1978). When possible types of behavior do not
differ significantly in their energetic costs, and
all items of food have the same energetic value,
the criterion of maximizing the rate at which
energy is gained can be replaced by that of
maximizing the rate at which food items are

obtained. This is the approach we take to the
conc VI VI paradigm. The activity that maxi-
mizes the reward rate is obtained, and it is
shown that it does not involve matching in the
form of Equation 3. The analysis used differs
from previous models of conc VI VI perfor-
mance in that the COD is included and con-

straints on the form of the solution are avoided.
We also analyze a discrete trial VI procedure
and show that maximizing the immediate
probability of reward does not maximize over-
all reward rate. Each model is preceded by a

review of the relevant theoretical issues.

CONTINUOUS-TIME CONC
VI VI SCHEDULES

Previous Work and Our Approach
The first attempts to find the optimal behav-

ior (Rachlin, 1978; Staddon & Motheral, 1979)
involved similar approaches and came to the
conclusion that matching holds when reward
rate is maximized. Both approaches can be
summarized as follows. For any VI schedule
there is an associated schedule function which
specifies the reward rate obtained from a given
response rate. The conc VI VI paradigm is then
represented by adding the two schedule func-
tions to give an expression for the overall re-
ward rate as a function of the response rate on
each schedule. Standard maximization tech-
niques, subject to a constraint on total response
rate, or to a response cost, then yield matching.
A problem with this approach, as Staddon and
Motheral (1979) admit, is that it implicitly al-
lows responses to occur on both schedules
simultaneously.
Heyman (1979a) objects to the approach of

Staddon and Motheral (1978), on the grounds
that it ignores the two ways in which rewards
may be obtained on a conc VI VI schedule-viz.,
by switching to the schedule from the other
schedule or by working on the schedule. Al-
though Staddon and Motheral (1979) have ar-
gued that their model implicitly represents
switching, they admit that it does not give a
precise account of conc VI VI schedules. (In
any case, it is argued below that the random
responding assumed by Staddon and Motheral
is not in itself optimal).
The model presented by Heyman and Luce

(1979a, b) contains explicit terms for the two
ways an animal can get rewards on each sched-
ule. It is assumed that the rate of responding
on a schedule is so high that there is no delay
between a reward being set up and obtained.
Thus, in contrast to the models of Rachlin
(1978) and Staddon and Motheral (1978) the
fundamental variable is not the response rate.
Instead it is the probability of leaving a sched-
ule. To elaborate, Heyman and Luce take the
constant probability of a switch from one
schedule to another, as found by Heyman
(1979b; see also Myerson & Miezin, 1980) as a
constraint on possible strategies. The problem
therefore reduces to finding the probability of
leaving each schedule that maximizes the re-
ward rate. Like Staddon and Motheral (1978),

368



MAXIMIZING REWARD RATE

Heyman and Luce do not incorporate the
COD, and so if no constraint is introduced, the
optimal solution is to switch infinitely often.
A constraint is provided by the parameter I,
which reflects the mean time between switches.
In their Figure 3, Heyman and Luce (1979
a) plot expected reward rate against propor-
tion of time on the better schedule for various
values of I. Except for the degenerate case
when I = 0 (which corresponds to switching
infinitely often), the optimal proportion of
time on the better schedule does not match
the proportion of programmed reward rates.
Without comparing the optimal proportion of
time with the proportion of obtained rates,
Heyman and Luce (1979a, b) conclude that
matching does not maximize reward rate.
(Houston [Note 1] shows that the proportion
of obtained rates is quite close to p, which sup-
ports the claim made by Rachlin [1979] that
matching to obtained rates will hold in the
Heyman-Luce formulation.)
Our main objection to the model of Heyman

and Luce (1979a) is that the exponential
pattern of switching times that they impose as
a constraint is not in itself optimal (see below
and Appendix 1). It is true that they also refer
to a fixed-time model (p. 138), but despite the
fact that we have not seen a detailed account
of it, we claim that without a COD it will re-
quire a constraint like the parameter I to avoid
zero stay times (i.e., switching infinitely often).
We do not object to the idea of a maximum
rate of switching as a constraint on behavior;
what is not clear from the model of Heyman
and Luce is why this maximum rate is not al-
ways attained. We also question the idea of
keeping I constant in the model because it is
observed to be constant in some circumstances.

In contrast to Heyman and Luce (1979a, b),
we do not take any aspect of an animal's be-
havior as a constraint. We are therefore able
to derive the maximum rate obtainable and
evaluate actual performance against this value.
A complete account of optimal behavior on

conc VI VI would specify both the stay times
and the interresponse intervals on each sched-
ule. To simplify this problem, we consider the
VI paradigm in which the animal does not
have to make responses-the rewards on the
chosen schedule are delivered when set up
(e.g., Brownstein & Pliskoff, 1968). This is
really a concurrent variable time-variable time
(VT VT) procedure. We derive the behavior

that maximizes reward rate on such schedules
for all possible VTs and CODs and show that
it does not involve matching in the form of
Equation (3), but that a form of biased match-
ing (Baum, 1974) does hold. The performance
of various matching policies is also presented.

The Model
We consider an animal faced with two con-

current VT schedules which we refer to as
Schedule 1 and Schedule 2. We use i = 1,2 to
denote these schedules and assume that Sched-
ule i has a constant probability X, of setting up
a reward per unit time, i.e., X, is the mean re-
ward rate on schedule i. The probability that
a reward has not been set up on schedule i by
time t is e-Xit, and the average time between
rewards on schedule i (i.e., the schedule inter-
val) is 1/XA. (Note that this implies a negative
exponential distribution of intervals between
rewards being set up on a schedule. Baum and
Rachlin (1969) used such a distribution, but
Brownstein and Pliskoff (1968) used a uniform
distribution of intervals.) When the first re-
ward on the schedule that is not delivering re-
wards becomes due ("set up"), this stops the
timer for the schedule and the reward is held
until the schedule comes into operation. When
the animal switches to schedule i it experiences
a COD of duration rj before any rewards can
be received. The animal has to decide when to
switch from one schedule to the other. The
measures we use are illustrated in Figure 1. For
example, at Point A the animal switches to
Schedule 2. After the COD of duration T2, the
animal spends a time a2 on the schedule before
switching back at Point C. The time t2 between
a switch from Schedule 1 and a switch from
Schedule 2 is thus r2 + a2. The times a, and a2
will be referred to as the stay times.
To clarify the difference between ai and ti,

the model will now be described in the context
of experimental procedures. Baum and Rach-
lin (1969) required pigeons to choose a sched-
ule by standing on one or the other side of a
chamber. When the bird stood on the left side,
a red light shone, and the associated VT sched-
ule delivered rewards. A move to the right side
resulted in a green light coming on after a
COD of 4.25 sec. The other VT schedule then
delivered its rewards when they became set up.
A white light shone during the COD. In terms
of Figure 1, a switch occurs at Point A and the
white light is on for the duration T2. The white
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light is replaced by the green light at Point B,
and Schedule 2 is now able to deliver rewards.
A switch back to Schedule 1 is initiated at
Point C, so Schedule 2 has been able to deliver
rewards for a time a2. Baum and Rachlin
(1969) summed the stay times for each sched-
ule, but the usual procedure is to start measur-
ing the time on a schedule from the decision
to switch, that is to measure t, rather than ai.
For example, in the procedure used by Brown-
stein and Pliskoff (1968), a blue light shines
and Schedule 1 is in operation until the ani-
mal operates the changeover key at Point A.
The light immediately changes to amber, but
the schedule cannot deliver any rewards until
the COD T'2 has elapsed. Thus the light is blue
for time t, and amber for time t2. Brownstein
and Pliskoff measured the total time during
the session for which the light was blue and the
total time for which it was amber.
Our model applies to both procedures, but

the one used by Baum and Rachlin (1969) has
some conceptual advantages. One is that the
COD is signaled-the model assumes that the
animal knows the value of the COD, so, at
least in theory, it seems reasonable to indicate
its magnitude. The other is use of the times a1
and a2 rather than t1 and t2. The former are
really the times on a schedule, in that they are
the times during which a schedule can deliver
rewards. The variables t1 and t2 are the times
between switches to and from Schedules 1 and
2 respectively and so will be called interswitch
times. As t, = ai + Ta, either measure can be
used. Note that we have ignored the time taken
to eat the rewards. This is equivalent to stop-
ping the timers when a reward is obtained.

In most experiments r1 is equal to r2 (Plis-
koff, 1971, is an exception), but it turns out
that no extra effort is required to find the opti-
mal behavior when the CODs are not equal.
As has been said above, it is assumed that the

animal knows the parameters of the problem
(i.e., X1, X2, x1i, and r2) and so does not have to
acquire information about them as it goes
along (The problem of acquiring information
on variable-ratio schedules is discussed by
Krebs, Kacelnik, and Taylor [1978], see also
McNamara and Houston [1980]). In addition,
because the probability of a reward being set
up on a schedule is constant, obtaining a re-
ward provides the animal with no further in-
formation about future rewards, and hence
the optimal stay time does not depend on

whether a reward has been obtained. Further-
more, the optimal behavior requires a fixed
rather than varying stay time on each schedule.
In fact, it can be shown (see Appendix 1) that
replacing a variable stay time by its mean value
increases the reward rate. The argument also
applies to the case considered by Heyman and
Luce (1979), so that their optimum, which in-
volves varying stay times, is not the best that
can be attained.
The above arguments show that the optimal

policy must take one of the following two
forms:

I. Never Switch; i.e., always stay on the sched-
ule with the higher reward rate.
II. Stay for times a, and a2 on Schedules 1 and
2 respectively, where a1 and a2 are nonnegative
constants.

The mean reward rate for a policy in Class
II can now be derived. Considering Schedule 1
first, rewards can be obtained in two ways: (i)
by returning to the schedule (Point D in Fig-
ure 1)-this will be called collecting. (ii) by
waiting for a time a, on the schedule-i.e., by
staying. Let p, be the probability of collecting
a reward at Point D. From the figure it can be
seen that a time a2 + T1 + T2 has elapsed since
the animal was last on Schedule 1. It follows
from the definition of X1 that the probability
of no reward is

ea s (ao+ r + T2)

and so

P = 1 - e Xl(a2+Tl+T2) (4)
The animal then stays for a time a, on Sched-

ule 1, for which the expected reward is X1al.
Repeating the argument for Schedule 2 gives
the following expression for the mean reward
on the cycle shown in Figure 1:

P1+p2 +Xlal+X2a2
where

P2 = 1 -e- 2(a,+ +2). (5)
The total duration of the cycle is a, + a2 +

T1 + T2, so that if R(al,a2) is the mean reward
rate for stay times a, and a2, then

(a,+a2+-1+r2)R=pi+p2+Xlal+X2a2. (6)

The notation can be simplified as follows.
First, note that the CODs enter the equation
for R (Equation 6) only by way of Equations 4
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Schedule I

Al

D

Schedule 2

A i _
Fig. 1. Illustration of stay times and CODs for a typical cycle. The diagram refers to the, steady state attained

after a single switch has been made.
a, is the stay time on schedule. i.

T, is the COD for a switch to schedule i.
t, = at + ,

and 5, in which they always appear as ri + r2.

This means that for given X1 and X2, the opti-
mal behavior depends on just the sum of the
CODs. Thus any problem with unequal CODs
is equivalent to one with each COD having the
value r, where 2r = Ti + T2. Secondly, it in-
volves no loss of generality to suppose X1 A X2

and rescale the mean reward rates by setting
Xi = 1. The rate on Schedule 2 becomes X1/X2,
which will be called X. This procedure amounts
to using the mean interval on the better sched-
ule as the unit of time, so r must be rescaled
accordingly. The optimal behavior for all in-
tervals and CODs can now be found, but it is
convenient to think of Schedule 1 as a VI 1-min
and Schedule 2 as a VI 1/X min.
We now consider the problem of maximizing

the reward rate R. If the optimal values of the
stay times a, and a2 are both greater than zero,
then a necessary (but not sufficient) condition

for them to maximize R is that OR/0a, and
OR/Oa2 be zero. Rewriting Equation 6 in the
modified notation yields
(a + a2 + 2'r)R = Pi +P2 + a + a2X

= 2-e-X(a,+2T) - e-(a2+2r)
+ a, + a9A

(7)
Thus,

(a, + a2 + 2T) + R = 1 + Xe-X(a+2r)
Oa,

(8)

(a, + a2+ R
=

+ e-(a2+2).
(9)

Setting OR/10a = OR/Oa2 = 0 in Equations 8
and 9 gives

R = 1 + Xe-X(a +27) A + e-(a2+2T). (10)

Time

I

-4
a2

CrI

t2

tl

a,
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Equation 10 can be rewritten as

R = +X-p2=+ -p1 (11)
which implies that

Xp2 = PI (12)
(XlPl = X2P2)-

Equation 12 is a relationship between the
programmed reward rates and the probabilities
of collecting a reward on returning to a sched-
ule. If the common value of Xp2 and P, is de-
noted by A, then Equation 11 can be written as

R==+X-A. (13)

As 1 + X is the maximum possible reward rate
(obtainable when X = 0), A is the rewards per
unit time that are lost through having to spend
time switching. The optimal policy minimizes
the value of A. To get some idea of the range
of the reward rate, note that a rate of 1 can
always be obtained just by staying on the better
schedule.

Equations 12 and 13 do not guarantee a solu-
tion; i.e., they may require a, or a2 to be nega-
tive. It is therefore necessary to investigate the
optimal policies in more detail. To this end
the policies which involve switching (i.e., poli-
cies in Class II), will be subdivided on the basis
of whether they involve staying on a schedule
or switching back immediately:
II Use both schedules.
hIa "Stay-Stay". Stay for a positive time on
both schedules; i.e., a, > O,a2 > 0.
JIb "Stay-Switch." Stay for a positive time on
Schedule 1, but only collect on Schedule 2-
switch back to Schedule 1 without staying; i.e.,
a, > O,a2 = 0.
Ilc "Switch-Stay." a, = O,a2 > 0.
Ild "Switch-Switch." a, = O,a2 = 0.

It will be shown that the last two forms are
never optimal.

Two equals VIs
We introduce the detailed analysis by con-

sidering the case X = 1, i.e., the two schedules
are equal. The only parameter now is r, but it
is expressed in terms of the schedule interval
and must be scaled to convert it to seconds. For
example r = .1 for two VIs of I min is a COD
of 6 secs, but for two VIs of 3 min it is a COD
of 18 secs.

It is obvious that when T is greater than one,

it is never worth switching, so attention is con-
fined to 0 < r < 1. The equality of the sched-
ules means that the optimal stay times will also
be equal. This common value will be called a.
Using f(a) to denote the reward rate as a func-
tion of a, Equation 7 implies

(a +T)f(a)=a + 1 - e-(a+2r) (14)
The optimal value of a can be found by the

standard procedure of differentiating Equation
14 with respect to a and equating df(a)/da to
zero. In Appendix 2 it is shown that this pro-
cedure results in a unique positive optimal
value a*, i.e.,

(a) the equation df(a) = has a unique solu-equaionda
tion, a = a*, for a ! 0.
(b) a* > 0.
(c) f(a*) = max f(a).

a0O
(d) f(a*) > 1.

This shows that a policy of the type Stay-Stay
is optimal when the two VIs are equal. Appen-
dix 2 shows that a* is the solution to the fol-
lowing equation:

(r + a* + l)e-(a*+2r) = 1 -T (15)

We list some values of a* in Table 1, from
which it can be seen that a* is very small for
small CODs. In fact, for small x, an expansion
in terms of powers of T (see Appendix 2) shows
that

a# - 3 2

As r increases so does the waiting time a* and
as TIl, a* tends to infinity. However, the rate
at which a* tends to infinity is slow

rt1.

Finally, forr X 1, it is not worth switching at
all.

Because the optimal stay times are equal on
equal VIs, matching holds at the optimum. It

Table 1
The optimal value of the stay time when the schedule
intervals are equal.

T .0124 .0248 .0492 .0967 .1425 .1867 .2702
a* .0001 .0004 .0017 .0067 .0150 .0266 .0596

X .3472 .4828 .5952 .7606 .8640 .9254 .99935
a .1055 .2344 .4095 .8789 1.4720 2.1493 7.6013
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Table 2

Reward rate R as a function of the stay time a on each
schedule when the schedule intervals are equal.

x = .1867 TX.5952 T = .864
a R a R a R

.01 1.6699 .1 1.1865 .05 .9639

.0266 1.6703 .4095 1.2019 .2 .9911

.04 1.6701 .7 1.1959 .6 1.0263

.08 1.6668 1.0 1.1836 1.0 1.0338

.10 1.6642 1.3 1.1699 1.472 1.0412

.50 1.5763 2.0 1.1401 1.8 1.0400
1.00 1.4719 2.5 1.1227 2.4 1.0367
2.00 1.3293 3.0 1.1084 2.8 1.0342
5.00 1.1559 4.0 1.0869 5.0 1.0230

must be emphasised, however, that matching
holds for all equal stay times on equal sched-
ules, so the matching at the optimum is trivial.
This illustrates that the matching relation does
not suffice to determine the stay times, a point
to which we will return later.
Matching at a suboptimal value of a does

not result in a great drop in reward rate, as can
be seen from Table 2.

Unequal Schedules:
Division of Parameter Space
Any conc VI VI experiment is completely

characterized by the parameters X and T, and
so can be represented as a point in the parame-
ter space shown in Figure 2. In this section it is
proved that the parameter space is divided into
three regions such that in each region a differ-
ent form of policy is optimal.
We first show that policies of Types Ilc and

Ild are never optimal. Appendix 3 establishes
that if 0 <X < 1 and one of the Class II poli-
cies is optimal, then the optimal stay times a1*
and a2* satisfy

a,* > a2. (16)

Equation 16 means that policies of the form
Switch-Stay and Switch-Switch cannot be opti-
mal for 0 < X < 1. Since these forms are also
not optimal when X = 1, it follows that they
cannot be optimal for any X or T> 0. The only
possible forms of optimal policy are therefore
Never Switch, Stay-Stay, and Stay-Switch. We
will establish that the parameter space is di-
vided between these policies as shown in Figure
2. Above the solid line, X is too big for switch-
ing to be profitable and so the optimal policy
is to stay on the better schedule (Class I). Below
the solid line one of the Class II policies, either

Stay-Stay or Stay-Switch, is optimal. We show
that for most of this region, including the area
usually investigated in experiments, Stay-
Switch is optimal, i.e., the animal should visit
the worse schedule just to collect rewards that
may be there, but should then switch straight
back to the better schedule. This region is to
the left of the broken line in Figure 2. To the
right of this line Stay-Stay is optimal, i.e., the
animal waits for a time greater than zero on
each schedule.
The I v.I1 Boundary. Consider X to be fixed.

Suppose that for some X- the optimal behavior
is of the form Stay-Stay. Now increase r. As the
optimal reward rate, R*, falls the time spent
on the good schedule per cycle will increase,

until, as r tends to some value T(X),R* will fall
to 1, a1* will increase to infinity, and the opti-
mal behavior will flip from Stay-Stay to Never
Switch. We know that for X = 1 this happens
when r = 1. We will find the transition point
for X A 1. Full details can be found in Appen-
dix 4.
To do this we solve the equation

OR (a,*,a2*) = 0
Oa,

and

Ra2 (al*,a2*) = 0

for a,* and a2*, and let a1* tend to infinity.
Eliminating a2# yields the following relation-
ship between r and X:

r(X) = (I /2k)(I +X+ (1-X)log(l -X))X >X,
(17)

(We show below that this is valid for X greater
than a value X, which will be derived.)
The corresponding value for a2* is

a2-=-(1 /A)(1 + X + log( - )) (18)
Now the analysis will hold if the behavior is

of the form Stay-Stay. But this requires a2* > 0.
Thus we require

1 +X + log(l -X) < 0,
which is true if and only if X > XA, where

Ac = .841405.

The corresponding r value is
' = .920703.
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1 Never Switch

Stay - Switch

Say -

IStay

I

.51

E
0

.33 .5 WC 1

Fig. 2. The parameter space for all possible conc VT VT schedules. The space is divided into three regions.
Above the solid line, it is never optimal to switch to the worse schedule. Below this line both schedules are
visited, but in the Stay-Switch region rewards are collected from the worse schedule but no time is spent waiting
on this schedule-the optimal policy involves switching back to the better schedule immediately. In the Stay-Stay
region the animal waits on both schedules. The point E is a typical experiment. If the unit of time is 1 min, it
represents a conc 1-min 3-min with a .5 sec COD. X. .84, T.o .92.

For X A- X, the analysis indicates that a2# = 0

as T tends to T(X), - the value at which a
change to Never Switch occurs. Thus for X AX
we should be looking for a Never Switch vs.
Stay-Switch boundary rather than a Never
Switch vs. Stay-Stay boundary. We find this by
setting

O9R (aj*,O) = 0,Oa,

and letting a,* -e oo. This gives r(X) = i* for all

The Stay-Stay vs. Stay-Switch Boundary. We
will now investigate the values of X and T for
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which the optimal policy undergoes a transi-

tion of form from a2* = 0 to a2* > 0. We solve
the equations

-R (al,O) = 0,

OR (al,O) = 0.

This leads to a relationship between T and X

which we denote by r = r(X) (See Appendix 5
for details). Let

+ e-2r(X)-1

then

S(1 -logS) =2-2T- -

Note that this equation only has a solution for
cX, since we require SO 0 and 2 2r-e-2

= 0 T = Some values of T(X) are given
in Table 3.

Unequal Schedules: The
Optimal Stay Times

In the Stay-Stay region,
OR

= = 0, so we

can use Equation 10, together with Equation
7, to find a,* and a2*. The resulting equations
(see Appendix 6) are transcendental, which is
to say they have no algebraic solution. They
were therefore solved to a specified degree of
accuracy using a standard computer library
package (NAG library routine C05AAA),
which was also used to find the boundary be-
tween the Stay-Stay and Stay-Switch regions

Table 3

The boundary between Stay-Stay and Stay-Switch re-

gions.

.06 .9812

.08 .9744

.10 .9683

.15 .9537

.20 .9399

.30 .9147

.40 .8927

.50 .8739

.60 .8585

.70 .8478

.80 .8396

.90 .8394

and the optimal stay times in the Stay-Switch
region.
Some examples of the optimal stay times a1,

and a2* for various values of X and T are given
in Table 4. It can be seen that, for any value
of X, both a1* and a2* increase as T is increased.

Stay-Stay policies are only optimal when X

is quite close to 1, in fact probably too close for
the two schedules to be readily distinguished
as different by an animal. We therefore con-

centrate on the Stay-Switch region. Equation
10 can no longer be used because we cannot
assume that OR/0a2 = 0. Although we have
lost this condition, we also have one less un-

known, so we put OR/10a = 0 in Equation 8
and rewrite Equation 7 with a2 = 0. This
yields:

R = 1 + Xe-X(a,+2)

and

(a1 + 2T)R = 2 - e-X(a,+22)- e-2,r+ a,
Requiring both these equations to hold defines
the optimal value of a,, written a,*. Putting

y =X(al* + 2i)
and eliminating R from the two equations
gives

(y + l)e-1 = 2-2xr e-2T (19)
If we take Equation 19 to be a functional re-

Table 4

The optimal behavior for various Stay-Stay policies.
The first column gives X, with the ratio of X1 to X2 in
brackets. The next three columns give the COD and
the optimal stay times. The last three columns are the
ratio of stay times, reward rates, and interswitch times
respectively. If matching is to hold at the optimal solu-
tion, tl*/t2 must equal R1*/R2*

T a,* a2* a,* la2* RL*/R2* tl*/t2*
.90 .50 .426 .051 8.227 1.399 1.679
(1.1111) .80 1.681 .317 5.295 2.054 2.210
.925 .50 .384 .102 3.760 1.288 1.468
(1.0811) .70 .941 .309 3.047 1.503 1.627

.80 1.535 .472 3.241 1.743 1.835

.90 3.119 .667 4.671 2.510 2.564
.95 .30 .115 .031 3.636 1.115 1.251
(1.0526) .50 .341 .153 2.230 1.184 1.288

.70 .851 .420 2.024 1.318 1.384

.90 2.662 .954 2.792 1.902 1.436
.975 .30 .095 .054 1.770 1.056 1.117
(1.0256) .50 .299 .205 1.461 1.089 1.134

.70 .758 .539 1.408 1.150 1.177

.90 2.224 1.317 1.688 1.404 1.409
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lationship defining y('r) in terms of x, then the
optimal stay time becomes

al,= y(r) -2 (20)

From Equation 10 it can be seen that the
corresponding value of R is

R* = 1 + xe-YT) (21)

The probability of receiving a reward after
switching to Schedule 2 is

1 -e-X(a,*+2r) = 1- e-vi.

From Equation 19, it follows that y depends
only on r, and hence on optimal Stay-Switch
policies, the probability of receiving a reward
from Schedule 2 is independent of X. Because
no time is spent on Schedule 2, the decision to
switch to it just depends on the probability of
a reward being set up and not on the reward
rate X on the schedule.

Before concentrating on behavior in the
Stay-Switch region and its relation to experi-
mental results, we illustrate the transition
from Stay-Switch to Stay-Stay that occurs for
X, < X < 1 as r increases. As Table 5 shows,
when r is below r(X) (- .365 in this case) the
optimal policy is of the form Stay-Switch, a2*
is therefore zero, and a1* increases with increas-

ing T. Once T is above x(X), the optimal policy
involves staying on both schedules. As T in-
creases, both a,* and a2* increase, but as r

tends to r(X), a1, tends to infinity and a2* tends

to a finite limit. For X> r(X), the optimal pol-

Table 5

The optimal values of al, a2, and R for X = .9. When
T is less than .365, the optimal policy is Stay-Switch,
i.e., a, = 0.

.05

.15

.20

.30

.36

.38

.40

.45

.65

.75

.85

.90

.92

a,

.0130

.0523

.0800

.1553

.2167

.2404

.2660

.3387

.8240
1.3005
2.2791
3.5714
5.1989

0
0
0
0
0
.0041
.0101
.0285
.1564
.2580
.3790
.4335
.4468

1.8130
1.6554
1.5843
1.4561
1.3874
1.3658
1.3448
1.2952
1.1331
1.0724
1.0251
1.0071
1.0016

icy is Never Switch; all the time is spent on
Schedule 1.
The remainder of this section is devoted to

VIs with 0 < X < X, and 0 < r < r,. Stay-
Switch is optimal for the whole of this region,
so a2* = 0 and t2* = T. Table 6 gives some
values of a1, and R*, obtained from Equations
19 to 21. The interswitch time tj* is given by
a,* + r. Figure 3 shows that tj* increases with
increasing T for a given value of X, and de-
creases with increasing X for a given value of
r. As we said earlier, experiments measure the
sum of all values of t, over a session, so it is not
obvious how close animals come to our predic-
tions. It is clear that animals are suboptimal
in adopting varying stay times, but apart from
Heyman (1979b), no one has given detailed ac-
counts of this variability. It is therefore hard
to evaluate this aspect of behavior. One way to
compare the model and the data would be to
estimate the mean value of t, from the total
time on a schedule and the number of switches,
when such information is given. It seems more
straightforward, however, to compare the
switching rates directly. Another measure of
interest is the reward rate on each schedule.
To facilitate the discussion the following no-
tation will be used:

S = the switching rate (changeover per min)
Ri = the reward rate on schedule i

The model makes 2 switches in a time a1* + 2x,
so the optimal switching rate, S*, is given by
the following equation:

Table 6

Optimal stay times a, (upper half) and optimal re-
wards per unit time R1* (lower half) for various values
of T and X. If the unit of time is a minute, X ranges
from .5 sec. to 24 secs.

X
xr .125 .25 .3333 .5 .6666

.0083

.0166

.0333

.0833

.2

.4

.0083

.0166

.0333

.0833

.2

.4

.115

.233

.471
1.206
3.056
6.876

1.123
1.121
1.117
1.105
1.081
1.048

.049

.099

.202

.520
1.328
3.038

1.246
1.242
1.234
1.211
1.162
1.096

.033

.067

.135

.348

.896
2.078

1.328
1.322
1.312
1.281
1.216
1.128

.016

.033

.068

.177

.464
1.119

1.492
1.484
1.467
1.421
1.325
1.192

.008

.017

.034

.091

.248

.639

1.656
1.645
1.623
1.562
1.433
1.255
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S* 2
S = a*+2r2(22)

The optimal values of R1 and R2 are given
by the number of rewards from a schedule per
cycle divided by the duration of a cycle i.e.,

a,* + 2i- (23)

and

1 - eX (al* +2T)R2 a*+= (24)

If, for the moment, we follow Heyman and
Luce (1979) in assuming that responses cost
nothing, we can draw on data from VI as well
as VT schedules. De Villiers (1977) says that
two generalizations can be made about switch-
ing rates: (i) for fixed schedule rates, animals
switch less frequently as the COD is increased,
and (ii) for fixed COD animals switch less fre-
quently as R1/R2 departs from unity. Both
these features are seen in the behavior of S*.

(i) S* vs. T for constant X. It can be seen from
Table 6 and Figure 3 that for a given value of
X, a,* increases as r increases. It therefore fol-
lows from Equation 22 that S* decreases as

r increases. The dependence of S* on r for

X = is shown in Figure 4. We have taken the

time unit to be a minute, so that the predic-
tions can be compared with data from the conc
1-min 3-min experiments of Brownstein and
Pliskoff (1968), and Todorov (1971). (The lat-
ter experiment involved VI rather than VT
schedules, and all the lights were extinguished
when a switch was made). The experiments
show the required decrease in switching rate,
but in general the observed rates are less than
the optimal rate.
The optimal stay times, and hence the opti-

mal switching rate, depends on the sum of the
CODs, so if the sum is kept constant, S* will
not change. None of the conditions used by
Pliskoff (1971) can be used to test this point,
because the COD sum for each condition is
different. It should be the case, however, that
S* decreases with T, + r2, and the data show
this trend. Pliskoff used two equal VIs through-
out his experiment. The optimal behavior on

equal VIs requires equal stay times, regardless
of whether T1 is equal to T2. Pliskoff found,
however that when T1 and r2 were different, the
switching depended on the magnitude of Ti tO

be experienced on the switch, i.e., behavior
seems to be influenced by short-term factors.

(ii) S* vs. R1l*/R2* for constant r. Table 7
shows as R1*/R2* increases, S* decreases. This
sort of relationship has been found by Herrn-
stein (1961) and Brownstein and Pliskoff
(1968), but to be precise they kept the absolute
value of the COD fixed, so T varies with the
value of the better schedule. For example,
Herrnstein (1961) used a COD of 1.5 sec with
VIs of 3-min 3-min, 2.25-min 4.5-min, and 1.8-
min 9-min, for which T takes the value .0083,
.0111, and .0139 respectively. The variation in
r is so small that it is reasonable to take it to
be constant in such cases.
Table 7 also shows that R1*/R2* is virtually

the same as 1 /X, which means that the ratio of
obtained reward rates equals the ratio of pro-
grammed rates. This equality only holds for
small r, as can be seen from Table 8, which
gives a detailed account of optimal perfor-
mance on conc VT 1-min VT 3-min schedules.
It can be seen from the table that as the COD
increases so does the ratio of obtained rein-
forcements. This trend has been found by Alli-
son and Lloyd (1971) and Shull and Pliskoff
(1967).
The above examples show that some of the

general trends found in conc VI experiments
are also found if the optimal policy is followed.
But before any summary of the relationship
between data and the model can be made, the
tendency to match the ratio of reward rates to
the ratio of total times on each schedule re-
quires analysis. This deserves a section to itself.
The matching lawv. The standard form of

time-based matching is given by Equation 3.
One problem with this equation is that the
total times T1 and T2 do not uniquely specify
the absolute value of the stay times, but it is
these absolute times that determine the reward

Table 7
The dependence of S* (optimal number of switches per
min) on R1*/R2* (the ratio of obtained reward rates on
the optimal policy) for a COD of .3 sec. Note that for a
COD as small as this, the ratio of obtained rates is very
close to the ratio of programmed rates (i.e., 1/X).

1/A tlX/t2X R,*IR2* S*

1.5 1.84 1.50 140.72
2.0 2.79 2.00 105.54
3.0 4.69 3.01 85.38
4.0 6.58 4.01 60.79
8.0 14.16 8.03 26.38
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Fig. 3. The optimal interswitch time on the better schedule, t1*, in secs as a function of the COD in secs for three
values of X. The lines are actually very slightly curved but have been drawn as straight for convenience.
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Fig. 4. The switching rate, S, in switches per min as a function of the COD in secs on a VT 1-min VT 3-min

schedule. The line shows the optimal value of S; the symbols are data from the following experiments:
Filled squares-Brownstein and Pliskoff (1968) Bird 787
Unfilled squares-Brownstein and Pliskoff (1968) Bird 6494
Circles-Todorov (1971) Bird P13
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Table 8

The optimal value of the stay time, reward rate, ratio
of rewards, ratio of interswitch times, and the switching
rate as a function of COD on a VT 1-min VT 3-min.

COD S*
(sec.) a,*(sec) R* R1*/R2* t1*/t2* (min-1)

.5 1.966 1.328 3.016 4.948 40.51
1.0 4.000 1.322 3.034 5.016 20.03
1.5 6.074 1.317 3.051 5.049 13.23
2.0 8.104 1.312 3.069 5.056 9.92
2.5 10.192 1.306 3.087 5.084 7.90
3.0 12.311 1.301 3.105 5.104 6.55
5.0 20.889 1.281 3.181 5.179 3.88
9.0 39.083 1.243 3.351 5.343 2.50
18.0 86.362 1.169 3.833 5.798 1.99
30.0 171.313 1.092 4.821 6.710 .60
45.0 369.290 1.026 7.518 9.206 .29

rate (see Equation 10). For any policy with
fixed stay times,

Ti = ni(ai + T) = niti

Where ni is the number of times the animal
visits Schedule i. For experiments of reasonable
length, it can be assumed that n1/n2 = 1, and
hence

T1 t1
T2 t2

For the policies we consider, Equation 3
therefore becomes

t1 R1 (5t, R2 (25)

In contrast to the optimality analysis, which
specifies t1 and to for any value of X and r,
Equation 25 links these times to the obtained
reward rates. As a result, the matching law does
not specify the behavior that will be observed
for given values of the schedule parameters.

Before presenting the main results of this
section, which concern matching in the Stay-
Switch region, we claim on the basis of the
results given in Table 4 that matching does not
hold for optimal policies in the Stay-Stay re-
gion. Matching requires that the last two col-
umns of this table be equal, which is not the
case. Furthermore, R1*/R2* does not match
ai*/a2* or J/X.
In the Stay-Switch region it is possible to

prove that matching cannot be optimal. If
matching is always optimal, then Equations 23
to 25 imply that

a,*+ T a*+ I-e-2T
T l-e-1' (26)Ir 1e-v

It is shown in Appendix 7 that Equation 26
implies that y depends on X, which contradicts
Equation 19. Therefore Equation 26 cannot
hold, and matching cannot be optimal.
This result raises two further questions

about matching in the Stay-Switch region: (i)
Does any more general form of matching hold?
(ii) How much does it cost to match?
(i) Is a general form of matching optimal?
The first question has a simple answer. In

the Stay-Switch region, the optimal behavior
results in a generalized form of matching
(Baum, 1974) as long as Xr is kept constant. The
exact form is given by the following equation:

a,* ±T k() R ±() (27)

where k('r) and c(r) are constant for given val-
ues of r (see Appendix 7 for details). Equation
27 follows immediately from Equations 23 and
24 and the fact that the quantity y(r) = X(al*
+ 2Xr) depends only on r and not on X. Varying

X then results in straight lines when a1 ± T-r
is plotted against the ratio of obtained rewards,
as Figure 5 shows.
Equation 27 differs from the generalized

matching equation proposed by Baum (1974)
(Equation 2 above) in having a constant term
c(r). The term k(r) corresponds to Baum's bias
parameter (k1 in Equation 2). This has an in-
teresting theoretical implication. Baum (1974)
claims that bias reflects an unaccounted factor
that alters an animal's preference between the
schedules. His reason is that when R1 =R2,
matching (Equation 3) requires that t1 =t2
so that k specifies how much the time alloca-
tion ratio deviates from unity. Baum (1974)
interprets k as depending on uncontrolled dif-
ferences in the two schedules, but our analysis
challenges this view. In effect, we have shown
that an animal should choose to allocate its
time in such a way that a generalized matching
equation holds. An implication is that bias can
occur without there being any hidden asym-
metry in the schedules-note that R1 and R2
are obtained reward rates. This is not to deny
that animals do show preferences, but these are
revealed by cases when the programmed rates
are meant to be equal on the two schedules.
Such preferences may be very marked (one bird
studied by Baum and Rachlin (1969) spent five
times as much time on one schedule as on the
other when both were VI 2-min) but are out-
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Fig. 5. The form of biased matching given by Equation 27. The upper line is for r = .05, the lower line is for

T = .3. The lines are traced out by varying X, some values of which are given in the figure. The lines cannot be
contipued indefinitely to the left because the optimal policy changes to Stay-Stay.

side the scope of our discussion. What we wish
to draw attention to is that it is only the match-
ing law that requires k to be seen as a prefer-
ence. Outside the framework of matching,
equality of the obtained rates on unequal
schedules does not require equality of times
spent.

(ii) How much does it cost to match? There
is no simple answer to this question, because
matching does not specify the stay times. This
is obviously true in the trivial case of equal

schedules, when all equal stay times result in
matching, but it also holds for unequal sched-
ules. We justify this claim by rewriting the
matching law in terms of the stay times:

a, + - al 1-e-(2+2r)
a2 + T - Xa2 + 1 - e-X(al+2r)

(28)

Equation 28 has two unknowns, a, and a2,
so the stay times for a given X and X are not
uniquely determined by the matching law.
There is, in fact, an infinite set of stay times
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Fig. 6. Matching when X = .3333 for two values of T. The lower half shows the matching value of al (from
Equation 28) as a function of a2. The optimal value of a1 for each value of T is shown offset at the extreme left.
The upper half shows the reward resulting from matching to a given value of a2. The optimal reward rate for each
value of r is shown by the stars. (The upper lines are drawn as straight but are actually very slightly curved.)
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that comply with the matching law. We have
investigated some of these stay times in the re-
gion of the optimal solution. A set of values of
a2 was chosen, and Equation 28 was used to
obtain the value of a, that gave matching.
Some results can be seen in Figure 6, which
shows that when a2 is at its optimal value of
zero, matching performs quite well. As a2 in-
creases, however, the reward rate obtained
from matching decreases. As an extreme ex-
ample, on a conc VI 1-min VI 2-min with a
3-sec COD, matching holds when al 19 min
and a2 = 1.75 min, but the reward rate (1.042
rewards/min) is not much above what could be
obtained from staying on the better schedule.
The optimal stay times would give an extra
24.6 rewards per hour.

Generality and Summary

Our model provides an accurate representa-
tion of the reward rate resulting from fixed
stay times on conc VT VT schedules which
have a negative exponential distribution of in-
tervals, as described by Fleshler and Hoffman
(1962). It was suggested above that the model
can also be applied to VI schedules if it is as-
sumed that the animal's rate of responding is
high enough for it to obtain all the rewards as
soon as they are set up. This assumption, made
by Heyman and Luce (1979a), is tempting, but
does not take any account of the possible ener-
getic costs of making responses. Heyman and
Luce (1979a) p. 138 present arguments for ig-
noring response costs, but it can be claimed that
they oversimplify the issue. For example, Mc-
Sweeney (1977) shows that there is a significant
(albeit small) change in overall response rate
with overall reward and discusses some draw-
backs with previous investigations. Further-
more, response rates on each schedule are not
equal, and vary with time since the changeover
(Silberberg & Fantino, 1970).
There is a sense in which the evidence we

have cited is beside the point, in that the argu-
ment used by Heyman and Luce (1979) can be
opposed on purely theoretical grounds. To say
that there are no response costs because ani-
mals behave as if there were none is to assume
that animals are behaving optimally. This is
implicitly an inverse optimality procedure
(McFarland, 1977); i.e., it infers the optimality
criterion from the observed behavior. But if
behavior is not optimal, then the inference will

not yield correct results (see Houston, 1980 for
a general discussion).
The results of this section can now be sum-

marized against the background of previous
work. Our model is the first to incorporate the
COD and to avoid any assumptions about the
form of behavior. We derive the behavior (i.e.,
stay time on each schedule) that maximizes re-
ward rate for all possible values of the two VI s
and the COD.
The way the form of the optimal policy de-

pends on X and X- is shown in Figure 2. The
results can be summarized as follows:

1) If 0 < X - Xc, then for 0 < T< r-, Stay-
Switch is optimal; i.e., the animal switches to
the worse schedule to collect rewards, but
spends no time there. The time spent on Sched-
ule 1 increases as r increases. As X tends to -,
from below, the time spent on the better sched-
ule tends to infinity, until when - reaches T.,
the optimal policy changes its form to remain-
ing on the better arm forever.
Note that the point of transition from Stay-

Switch to Never Switch does not depend on X
provided X - X,c. The poorer schedule is chosen
because, having waited sufficiently long on
Schedule 1, a reward will almost certainly be
received after a switch to Schedule 2. But X is
so small that it is not worth waiting on this
schedule.
2) When Xc < X < 1, then for - small (0 < X

< x(X)) the optimal policy is Stay-Switch. But
as X increases past r(X), although nothing dra-
matic happens to a,*, it becomes worth waiting
on Schedule 2. As r increases further, both a1*

and a2* increase until as X t XT (X), we have
a, e- oo and a2* tends to some positive but

finite limit. For r > Xr (X) the optimal behavior
is Never Switch.

3) For X = 1, (X) = 0, and hence for 0 < r < T
(1) = 1 one waits on both schedules for a posi-
tive time.

All experiments of which we are aware fall
in the region 0 < X < Xe, 0 < r < rc. In this
region matching in the form of Equation 3 is
not in general optimal, but matching is close
to the optimum if the stay time on the poorer
schedule is close to zero. Provided T is kept
constant, a form of biased matching holds
when behavior is optimal.
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DISCRETE TRIAL CONC VI VI

Immediate and Overall Maximization
All the optimality analysis discussed so far is

concerned with the behavior over the whole of
the experimental session. In the literature on
operant behavior, such a view is referred to as
"molar", to distinguish it from "molecular"
analysis, which is concerned with moment-to-
moment decisions. Shimp (1969) claimed that
momentary maximization of the probability of
reward on VI schedules would result in match-
ing. We believe that Shimp's use of the term
'optimal' in this context has led to an unwar-
ranted opposition between molar (i.e., global)
and molecular (i.e., immediate or momentary)
maximization. We have pointed out elsewhere
(McNamara & Houston, 1980) that immediate
maximization fails to produce the global opti-
mal policy for exploiting two unknown vari-
able ratio schedules. (This is equivalent to
what is known in decision theory as the two-
arm bandit problem.) The relationship be-
tween immediate and global maximizing can-
not be investigated in the continuous time
model of the previous section because the COD
means that the immediate probability of reward
is zero when a switch is made. This section,
therefore, considers a discrete trial variant of
the conc VI VI paradigm and shows that im-
mediate maximizing does not always maximize
reward rate. The results obtained agree with
those of Staddon, Hinson, and Kram (1981),
who investigate a wide range of discrete choice
paradigms.

The Form of the Optimal Policy
We now consider a completely different form

of VI problem in which the animal is presented
with a simultaneous choice between two keys
at regular intervals in time. Associated with
each key is a VI schedule that runs during
trials and intertrial intervals. The schedule as-
sociated with a given key stops running when
a reward is set up and the reward is held until
a response is made on that key. In practice (e.g.,
Nevin, 1969) the trial is indicated by illuminat-
ing both keylights. A response to either key
turns off both lights for the intertrial interval
and a reward is delivered if one had been set
up for the chosen key. In the terminology of
Staddon et al. (1981) this is dual assignment
with hold.
To represent this procedure we take the time

between successive trials to be the unit of time,
so trials occur at times t = 0, 1, 2. .... . Let
Ti be the time between the collection of a re-
ward from Key i and the next reward being set
up. Ti is exponentially distributed with mean
1 /AX. Without loss of generality, we assume
X- X2. The earliest time at which a reward
can be collected from Key i is Ni, where Ni is
the smallest integer that is greater than or
equal to Ti. It can be seen that

Prob (Ni > k) = e-Xk = q,k, say,
where qi= e-X and pi= 1 - qi.

(pi is the probability of a reward being set up_
on Key i between successive trials on this key).
Thus Ni has a geometric distribution with pa-
rameter Pi, i.e.,

Prob (N,= n) = piq'l-1 n = 1,2,3,...

Because the delay between trials occurs
whether or not the animal switches between
keys, the policy of always choosing the same
key (which is analogous to the policy Never
Switch in Section 2) will not be optimal unless
either

Pi =
or

P2 = 0
These cases will be ignored as trivial. We

assume that the optimal policy has the form:

(A) Choose Key 1 for n1 trials (n1- 1).
(B) Choose Key 2 for n2 trials (n2 _ 1).
(C) Return to (A).

An expression for the mean reward rate
R(n1,n2) under such a policy can be obtained
by considering the two ways in which a reward
can be set up on a key: when the animal re-
turns to the key after choosing the other key or
during the choices on the key. For Key 1 the
animal returns to it after n2 responses to Key 2.
The probability of no reward for the first re-
sponse on Key 1 is therefore qln2+l, so the prob-
ability of a reward is 1 - qjl2+l. The expected
reward for the remaining (n1- 1) responses on
Key 1 is pl(n1 - 1). Applying the same argu-
ment to Key 2 gives the following equation:

(n1 + n2) R (nl,n2) = Pl (n - 1) + (1 -qln2+
+ p2(n2 -1) + (1 -q2n+

which can be rearranged to give:
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R (nl,n2) =
1 q1(n -1) + q2(n2-1) + ql2+1 + q2n1+1'

nl + n2
(29)

The optimal policy for this problem is to
choose n1 and n2 such that R (nl, n2), given by
Equation 29, is maximized. Staddon et al.
(1981) conjecture on the basis of their simula-
tions that the optimal policy requires making
only one trial on the poorer schedule before
switching back to the better schedule. We
prove this conjecture in Appendix 8; i.e., we
establish that, for <P2 Pl < 1, the optimal
policy (nl*,n2*) always has ni2* = 1. It is first
shown that any policy with n2 s 2 can be im-
proved upon. To do so we consider two cycles
of a policy (nl,n2), i.e., a total of 2n, + 2n2
choices. It is then demonstrated that a series
of choices of length n1 + 2n2 can be replaced
by a series of the same length that ends in the
same state but has a higher expected reward
rate than the original series. Having proved
that n2* must be less than 2, we show that n2*
cannot be equal to zero, from which it follows
that n2* = 1.
The fact that n2* = 1 simplifies the problem,

in that n1* is the value of n1 that maximizes
R (n1, 1). Equivalently, n1* is the value of n,
that minimizes

1- R (n1, 1) = q1 (n1- 1) + q12 + q2ni+l
n1 + 1

Some values of n1* are given in Table 9.
The dependence of R on n1 is illustrated in
Figure 8 of Staddon et al. (1981).

Immediate Maximization
Shimp (1969) suggested that organisms

should behave optimally in the sense of always
making the choice that momentarily has the

greatest expected value. This principle is
known as immediate or molecular maximiza-
tion. In the case of the discrete VI problem we
are considering here, immediate maximization
predicts a fixed sequence of responses which in-
volves approximate matching to the pro-
grammed reinforcement rates (Shimp, 1969;
Staddon, 1980). We derive the matching rela-
tionship as follows. At the start, the choice is
between Pi and P2 and, by definition Pi > P2
so Key 1 is chosen. The animal will continue
to choose Key 1 until the probability of a re-
ward from Key 2 is at least as great as PI. Now
after n1 trials have been made on Key 1, the
probability of a reward on Key 2 is 1 - q2i+1.
The condition for a switch to Key 2 is

Pi 1 -q2el1+l
but

(30)

After one trial has been made on Key 2, the
probabilities of reward are 1 - q12 and P2 for
Keys 1 and 2, respectively. As 1 - q12 > 1 -q
= Pi > P2, the next trial will be made on Key
1. In other words, immediate maximization re-
quires that n2 = 1. An approximation for ni
can be obtained by considering equality to
hold in Equation 30. By definition, q, = eX.
Therefore

e-xl = e-x2(nl+l)
and hence

n1+ 1 =X1/X2
When equality holds in Equation 30, im-

mediate maximizing predicts indifference be-
tween the two keys. If, at this point, Key 1 is
chosen again instead of switching to Key 2,
then

Table 9
n (the optimal value of n,, first number) and n(im)
(the value of n, predicted by immediate maximization,
second number) for various values of q, and q2.

.9 28 21 20 15 15 11 11 8 8 6 6 4 4 3 2 2

.8 13 10 9 7 6 5 5 4 3 3 2 2 1 1

.7 8 6 5 4 4 3 3 2 2 1 1 1

.6 5 4 3 3 2 2 2 1 1 1

.5 3 3 2 2 1 1 1 1

.4 2 2 1 1 1 1

.3 2 1 1 1

.2 1 1
q1 .1 .2 .3 .4 .5 .6 .7 .8

ni = Xl/X2 (31)

and, as n2 = 1, Equation 31 can be written as

nl/n2 = X1/X2
which is a form of matching to the pro-
grammed rates of reinforcement. This relation-
ship only holds when X1/X2 is an integer and
Key 2 is chosen as soon as its probability of a
reward is equal to (instead of greater than) the
probability of Key 1.

It might be thought that when the immedi-
ate probability of reward is the same on each
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key, either choice of key will give the same re-
ward rate. The following example shows that
this is not always the case. Nevin (1969) pre-
sented pigeons with a VI 1-min on Key 1 and
a VI 3-min on Key 2. He used an intertrial in-
terval of 6 sec, and as this interval defines our
unit of time, we have

A1= .1
X2 = .033
q, = e- -= .9048, and
q2= e-.033 = .9673.

(Nevin actually used a uniform distribution
of eleven intervals ranging from 10 sec to 110
sec for the VI 1-min and nine intervals ranging
from 10 sec to 350 sec for the VI 3-min.) Im-
mediate maximization predicts that the first
and second responses should be made on Key
1. After these two choices, the probability of a
reward on Key 2 is 1 - q23 = Pl, so the prob-
abilities are equal. But, from Equation 29

R(2,1) = 1.23915, and
R(3,1) = 1.24146.

Thus the reward rates differ, even though
the immediate probabilities are the same. (In
this case the difference is too small to be notic-
able to the animal, but it suffices to make the
theoretical point.) For these values of q1 and
q2, the policy of matching to programmed
rates (i.e., n1 = 3, n2 = 1) is optimal. R(4,1) =
1.24098, so the reward rate does not vary much
with n1 around the optimum.

It is also possible to find cases in which im-
mediate maximizing is ambiguous but neither
sequence is optimal. For example, if q2 = *9
and q, = q25 = .59049, then the two immediate
maximizing sequences, (4,1) and (5,1), do worse
than both (6,1) and (7,1):

R(4,1) = .45787
R(5,1) = .45965
R(6,1) = .46008
R(7,1) = .45974

Once again all the policies are similar, but the
reward rate obtained from immediate maximi-
zation can be improved on by staying for
longer on the better arm. In fact it can be
shown (see Appendix 9) that nl* is equal to
or greater than n(im), where n(im) is the value
of n1 resulting from immediate maximization.
Table 9 shows that n* and n(im) are identical
when q2 is only slightly bigger than q1, but

n* > n(im) when q2 is much bigger than q1.
(See also Staddon et al. (1981), Figure 8.)
As Staddon et al. (1981) show, there are

problems for which immediate maximization
always results in the optimal reward rate, but
the discrete VI paradigm is not one of them.
It is possible, however, that immediate maxi-
mization could be used as a decision rule. For
many values of pi and P2, this results in opti-
mal behavior, and even when it does not the
reward rate is not much less than the optimum.
Immediate maximization is thus a rule of
thumb that approximates the optimal policy.

It must be stressed that both the optimal
policy and immediate maximization involve a
fixed sequence of choices, and that the se-
quence is always of the form: make n trials on
the better schedule followed by one trial on
the worse schedule then n on the better sched-
ule, etc. For some values of Pi and P2, (see
Table 9) the resulting value of n is the same,
i.e., n* = n(im), so the existence of a fixed
sequence, or (more realistically) sequential
dependencies, will not distinguish between
immediate maximization and optimization.
There is no consensus on how animals per-

form on the discrete VI paradigm we have dis-
cussed. Silberberg, Hamilton, Ziriax, and Casey
(1978) found some correspondence between the
predictions of immediate maximization and
the sequential probabilities they observed, but
some of the sequences that the birds produced
could not have occurred on the basis of imme-
diate maximization. In contrast to these re-
sults, Nevin (1979) reanalysed the data from
Nevin (1969) and found that choice often ran
counter to the predictions of immediate maxi-
mization.
Some differences between the procedures

used by Nevin (1969) and Silberberg et al.
(1978) are considered by Nevin (1979). From a
theoretical point of view, the fact that different
sorts of schedules were used is crucial. Our
analysis applies only to the constant probabil-
ity schedules based on Fleshler and Hoffman
(1962), which were used by Silberberg et al.
(1978). As Nevin (1969) points out, on the
schedule he used, a reward becomes more likely
as the number of consecutive unrewarded trials
on the schedule increases. The choices pre-
dicted by immediate maximization on such
schedules are, therefore, not those given by Sil-
berberg et al. (1978) and used by Nevin (1979).
A consideration of the intervals used by Nevin
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(1969) shows that it is possible for immediate
maximization to produce both a long run of
consecutive choices to the better schedule and
two consecutive choices to the worse schedule.
Both cases involve sequences of unrewarded
trials; immediate maximization requires a
switch of schedule following a reward. This
prediction is not borne out by Nevin's data-
see Nevin (1969) Table 2. Furthermore, there
seems to be no way for immediate maximiza-
tion to predict three or more consecutive
choices of the worse schedule, yet Nevin (1979)
found that such sequences occurred.

Matching
It has been shown that immediate maximiza-

tion results in approximate matching to the
programmed rates. We now consider matching
to obtained rates. If n2 = 1, as is required by
both optimality and immediate maximization,
then matching means that the following equa-
tion holds

-q,2+ pl(n-1) n (32)
1-q2n+1

For many values of Pi and P2' Equation 32
will not have an integer solution, so a continu-
ous approximation is adopted. If m is defined
as the value of n that solves Equation 32, it can
be shown that m > n(im). Introducing m and
rearranging Equation 32 yields

m(p1+ q2"+l-l) =p1 + q12-
which means that

qm -q12qMl=q- q2: (33)

If the value of m given by Equation 33 is to
be finite, then the following inequality must
hold

q1 > q2m+l
But the continuous approximation for im-

mediate maximization defines n(im) by the
equation

ql = q2n(im)+1
It therefore follows that

q2n(im)+1 > q2m+l

and hence

n(im) < m
Because m and n(im) have not been con-

strained to take only integer values, this re-
sult must not be applied indiscriminately.
There may be no simple relationship be-

tween immediate maximization and the ratio
of obtained rates since, as Staddon et al. (1981)
point out, the ratio of the obtained rates de-
pends on the absolute probabilities of reward,
whereas Equation 24 shows that n(im) is given
in terms of the ratio of X, to X2.
We have not obtained any analytic results

concerning matching and n*. Staddon et al.
(1981) show by simulation that when P, = .75
and P2 = .25 the optimal policy gives approxi-
mate matching over a wide range of n.

DISCUSSION
We have derived the behavior that maxi-

mizes reward rate on two VI paradigms, and
have shown that matching does not specify the
optimal policy. Now that the maximum possi-
ble reward rate for a given set of parameters is
known, the performance of animals under these
circumstances can be assessed. If VIs have some
resemblance to the food distributions that ani-
mals encounter in the wild, then we should
expect animals to perform well on them. Al-
though the conc VI VI procedure was devel-
oped as a convenient laboratory technique for
analyzing an animal's choices, it does indeed
have a natural analogue. Davies and Houston
(in press) suggest that the renewal of food items
on the territory of a pied wagtail (Motacilla
alba yarrellii Gould) can be represented by the
following equation

N(t) = K( -e- bt) (34)
where

N(t) = number of items at a point on the
territory

t = time since point was last visited
b, L = constant for a given day and territory.

Equation 34 is identical to the expected re-
ward on returning to a VI schedule after a time
t away from it, given that the value of a reward
is K. The VI paradigm can thus be identified
with the problem of exploiting two renewing
patches. The COD then becomes the time it
takes to travel between the patches. In the VT
paradigm, the animal can detect items as they
appear in the patch, whereas the standard VI
procedure requires attempts at prey capture to
be made without knowledge of whether a prey
item is present.

387



ALASDAIR I. HOUSTON and JOHN McNAMARA

The reason for switching from one patch (or
schedule) to the other is that the probability
of a food item being present in the other patch
increases with the time since the patch was last
visited. The reward rate in a patch does not
change with the time spent in it. In contrast,
the problem analyzed by Charnov (1976) in-
volves a reduction in capture rate as time in
the patch increases. Thus circumstances that
resemble VI schedules require switching be-
cause of renewal, while the circumstances con-
sidered by Charnov (1976) require switching
because of depletion. Further discussion of the
relationship between schedules and optimal
foraging theory can be found in Staddon
(1980).
The optimal policies we have obtained max-

imize the reward rate rather than the net rate
of energy intake. If the rate at which energy is
expended during switching is the same as the
rate while on a schedule, maximizing reward
rate is equivalent to maximizing net rate of
energy intake. This equivalence is likely to
hold for performance in a Skinner box, but not
for traveling between patches in the wild. In
general, if switching is energetically more
costly than staying, the stay times that maxi-
mize net rate of energy intake will be longer
than those that maximize reward rate.

Regardless of whether the empirical basis of
matching is molar or molecular, it is clear from
our analysis that the relative molar measures
in Equations 1 to 3 are insufficient for a char-
acterization of performance on VI schedules.
It is the absolute value of the stay times that
determines the reward rate, not their ratio.
(This point can also be seen in the model of
Heyman and Luce (1979), where the reward
rate depends not just on the proportion of time
on the better schedule, but on this proportion
and the switching rate, as indicated by I.) A
striking feature of the results is that for a given
concurrent procedure, the optimal value of
these absolute measures does not vary. To be
specific, optimal performance on a conc VT
VT schedule requires always waiting for a
time a,* on the better schedule and a time
ao* on the worse schedule. Adopting a range
of stay times with mean a1* and a2* reduces
the reward rate-see Appendix 1. Similarly, on
the discrete VI paradigm the optimal policy
involves repeating the sequence of n* trials on
the better schedule followed by one trial on the
worse schedule. It need hardly be said that ani-

mals do not show such regularity of behavior.
Similar discrepancies between theory and data
occur when optimal choice of prey items is in-
vestigated. Theory predicts all-or-nothing pref-
erences, whereas animals sometimes take items
they "ought" not to take (e.g., Krebs, Erichsen,
Webber, & Charnov, 1977; Lea, 1979). One
way to reconcile such results with optimality
theory is to suggest that animals are sampling
to take account of possible changes in their en-
vironment. We have discussed this idea and its
implications at length elsewhere (McNamara
& Houston, 1980). It amounts to saying that
although the experimenter knows that the pa-
rameters of the schedule will remain constant
during an experimental run, the animal does
not "know" this. We do not wish to claim that
this is the whole story. There will be limits to
the accuracy of performance that an animal is
capable of achieving. It is nevertheless impor-
tant not to overlook the fact that the animal
may not be "built" (by evolution) to perform
the task set it by a laboratory experiment. We
prefer to suggest that animals have relatively
simple decision rules that perform quite well
on problems similar to those the animal en-
counters in the wild (see Houston, 1980, for
some examples). Herrnstein and Vaughan
(1980) take the same view and discuss a rule
("melioration") which performs well on conc
VI VI but badly on conc VI VR. It is well
worth comparing various schedules in this way,
because on VI schedules the reward rate is not
very sensitive to changes in behavior. It would
be interesting to know if behavior is less vari-
able on schedules with sharper optima (c.f. the
range of variation hypotheses put forward by
Staddon, 1976).

Because of the insensitivity of reward rate on
VIs to changes in behavior, it is possible for a
policy which is quite different from the opti-
mal policy to perform well. For example, Fig-
ure 8 of Staddon et al. (1981) shows that in the
discrete VI procedure, reward rate is sometimes
virtually independent of n. The same effect
can be seen in the model of performance on in-
terdependent conc VIs proposed by Heyman
and Luce (1979). Although the optimal value
of the proportion of time on the better sched-
ule is often far from the matching value, their
Figure 4 suggests that the loss in reward rate as
a consequence of matching would be small.
We wish to emphasize that maximizing the

probability of reward for each response does
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not necessarily maximize overall reward rate.
Staddon (1968) pointed out the distinction, but
its importance seems to have been overlooked.
Like Staddon et al. (1981) we view immediate
maximizing as a decision rule rather than an
optimality principle in its own right. We have
shown that in the discrete VI procedure, imme-
diate maximizing is quite a good rule, and it
will always be good if the optimality criterion
is to maximize some discounted future reward
rate rather than the overall reward rate. Stad-
don et al. (1981) show that immediate maximi-
zation can be used as a rule in continuous time
procedures without a COD, and it is possible
that some modified momentary principle could
be used on schedules with a COD. In contrast,
matching does not specify behavior-it is pos-
sible to find a range of types of behavior that
result in matching for given schedule parame-
ters (see Figure 6). This suggests that matching
by itself cannot be determining behavior.

REFERENCE NOTE
1. Houston, A. I. Matching to obtained rates in the

model proposed by Heyman and Luce. Unpublished
manuscript.
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APPENDIX 1

VARIABLE STAY TIMES
In this appendix we allow the stay times to

be nonnegative random variables which we
denote by A1 and A2. Let R(A1,A2) denote the
corresponding mean reward rate. We will show
that the policy of using the random stay times
A, and A2 can be improved by replacing these
times by their mean values; i.e., we will show

R(A1,A2) < R(al,a2), (Al.1)
where

ai = E(Aj). (Al.2)
The mean reward per cycle using times A1

and A2 is given by

E(Reward/cycle)

= E[X1A1 + X2A2 + 1 - e-XI(A2+r+T2)
+ 1 - e-X2(Al+Tl+72)]

= X1al + X2a2 + 2 - E[e-xi(A2+rl+T2)
+ e-X2(Al+rl+r2)],

(Al.3)

and the mean time per cycle is given by

E[Time/cycle] = E[A1 + A2 + 'r1 + T2]
= a±+ a2 +T1+±2. (A1A4)

By a standard result in renewal theory (Johns
& Miller, 1963)

R(A1A2) - E[Reward/cycle]
E[Time/cycle]

Thus, by Equations Al.3 and Al.4

(a, + a2 + T1± 72)R(A1,A2)= Xlal+ X2a2+ 2
- E[e-X (A2 + T1+)
+ e-X2(Al+rl+r2)].

(A1.5)
Now by Jensen's inequality.

E[e-xi(A2+Tr+T2) + e-X2(Al+ 1+Tr2)]
> e-X(a2+rl+r2) + e-X2(a,+rl+r2)

(The inequality is strict provided A1 and A2
are not both constant.) Thus by Equation A1.5

(a, + a2 + T1 + T2)R(Ai,A2)
<X1a1 + X2a2 + 2 - e- i(a2+T7+T,)

- e-X2(a,+T1+r2);

but the right hand side of this equation equals
(a1 + a2 + T1 + T2)R(aj,a2), therefore R(A1DA2)
< R(al,a2) as required.

APPENDIX 2

THE CASE = 1,T < 1

Without loss of generality we restrict atten-
tion to the case when a, = a2. Let f(a) = R(a,a),
then by Equation 14

(a + r)f(a) = a + 1 - e-(a+2T) (A2.1)

and thus

(a + r)f'(a) + f(a) = 1 + e-(a+2r) (A2.2)

Equations A2.1 and A2.2 give f'(a) = 0 if and
only if

(T + a + l)e-(a+2T) = 1-T. (A2.3)
Now let

h(a) = (r + a + I)e6(a+2T).
Then

h'(a) = -(7 + a)e- (a+2r) < 0

and h(a) -e 0 as a -+ oo; thus Equation A2.3 has
a solution for a > 0 if and only if h(O) > 1 - r.

Furthermore Equation A2.3 can have at most
one solution for a O 0. We set

g(T) = h(O)-
T

+ 1 = (T+ l)e-2r + r- 1.
(A2.4)

Then g(O) =0 and

go(T) = 1 - (1 + 2r)e-2T > 0

since e2T> 1 + 2r for T> 0. Thus g(r) > 0 for
T> 0, and hence h(O) > 1 -X by Equation
A2.4. This shows that the Equation f(a) = 0
has a unique solution a* for a O 0 and that fur-
thermore a* > 0. Now by Equation A2.2

(a + T)f"(a) + 2f'(a) = - e-(a+2T).

Thus, f"(a*) < 0, and f has a local maximum
at a*. Since f has no other turning value for
a O 0, we have

f(a#) = max f(a).
a 0

Finally, note that by Equation A2.2
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f(a*) = 1 + e-(a*+2) > 1,

and hence it is always worth switching.
We have seen that a* satisfies Equation A2.3,

i.e.,

(r + a* + l)e-(a*+2r) = 1 - r. (A2.5)
We use this expression to find an approxima-
tion for a* for small r. Let x = a* + 2r, then
Equation A2.5 can be re-expressed as

x
1-T = (A2.6)

This equation shows that x is small for small r.
Expanding in powers of x gives (to second or-
der in x)

1 X2 X3 \I1-r - x x + 2 + 6

1 x+X2 _1

=t+2 6

x x2
1 - 2

2' 1-2
Thus

x2
a* = x - 2,r (A2.7)

It follows that a* is of order x2 and hence
x = 2r to first order of x. Putting this back into
Equation A2.7 gives

2fr2

for small 'r.

APPENDIX 3

THE OPTIMAL POLICY INVOLVES STAYING
LONGER ON THE BETTER ARM

We will show a1* > a2* in Region II pro-
vided 0 <X < 1.

We first established that OR (0,0) > 0. This
Oa,

will show that if a2* = 0, then a,* > 0. By
Equations 7 and 8 we have

OR4 -2 (0 0)
Oa,

= 2r + 2Xr e-2\T - 2 + e-2T + e-2XT
Let

f(A,) = 2x + 2Xr e-2Xr - 2 + e-2 + e-2XT.
Then f(X,0) = 0. Also

df (X,r) = 2(1 - 2X2re-2X- e-2r).

But e2Xr > 1 + 2Xr and e2T> 1 + 2'r, thus

OJ(A7.)>>41r(I X)(I A + 2Xr) > 0
Or' (I+ 2X'r)(Il+ 2r)

OR
since X < 1. Hence Oa, (0,o) f(X,T) > 0 for

T > 0 and 0 <X < 1.

It remains to consider the case when a2* > 0.
Now by Equations 8 and 9 we have

(a, + a2 + 2r) (OR -OR(a1+a2+ Oa, Oa2J
= 1 -e(a2+2T) - X(1 -e-(a,+2r)

Thus if X(a, + 2r) : a2 + 2r, then

-R (al,a2) > - (al,a2).

In particular, we see that if a2* > 0 and X(a1l +
2r) a2* + 2r, then

Oa (a*,a2* ) 0.

This contradicts the equation

aR (al* a2*) - 0.

Thus,

X(al* + 2r) > a2* + 2r;

and hence a,* > a,*, since X < 1.
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APPENDIX 4

I vs. II BouNDARY
Consider fixed X with 0 <X < 1. Suppose the

optimal policy is of the form Stay-Stay for some
r. As r is increased we expect the stay times to
increase until, for some critical value of r

which we denote by T (X), the optimal policy
involves staying an infinite time on the better
schedule: i.e., Never Switch. We will find the

critical value T(X).
In the Stay-Stay region we have -R (al*,a2*)Oa2
OR (aI ,a2*) = 0. This condition gives

R(al*,a2*) = 1 + Xe-X(al*+2T) (A4.1)

and

R(ai*,a2) = X + e-(a2*+2r). (A4.2)
We also have

(a,* + a2* + 2,r)R(al*,a2*)
= a1* + Xa2* + 2 -e-(a2*+2r)-e-X(al*+2)

(A4.3)

Now as rtr(X) we expect a,* e oo, thus by
Equation A4.1

R(al*,a2*) =1+o( ) . (A4.4)
Then by Equations A4.2 and A4.4

e-(a2*+2r)= X+o ( . (A4.5)
a,*I

Thus, as a,* -* oo, a2* tends to a finite limit

which we denote by a2. By Equation A4.5

a2(X) + 2T(X) + log (1 - X) = 0. (A4.6)
However, by Equations A4.4, A4.5, and A4.3
we have

a *(I- X) = 1 ±X - 2 + oa,
and hence

a2(X) (1- X) = 1 + X - 2r(X). (A4.7)
Solving Equations A4.6 and A4.7 gives

A 1

7(X) =A(I + A + (I1-A)log(l-(A4))
(A4.8)

and
A 1

a2(X)=- [1 +A+log(l -A]
(A4.9)

These equations hold provided the optimal
policy is of the form Stay-Stay for r just less
than r(X), and this holds provided a2(X) > 0.
By Equation A4.9 this holds if and only if

1 + A+ log(l - X) <0;
which in turn hold provided X > kX, where X,
is the unique solution (for 0 < X < 1) of the
equation

1 +X+log(l-X)=0.
A calculation shows

(A4.10)

xc = .841405.

The corresponding value for r,, r(X0) is

Tc = .920703.
For X -- X we have a2 0. We interpret this

to mean that there is a transition from Stay-
Switch to Never Switch as r increases. We again
denote the transition point by r(x).
In the Stay-Switch region we set OR (a, *,O) = 0;

this gives
R(a,*,0) = 1 + e-\X(al*+2r) (A4.11)

and

(a,* + 2r)R(a,*,O)
= a* + 2-e -2e-X(a,*+

By Equation A4.11

R(al*,0)= 1 +o I* I

and hence, by Equation A4.12

2T= 2a-te-t2t +( ( 1
a,

Takinog the limit as xTr(k) gives

(A4.12)

2 - 2'r(X) - e2r(X) = 0. (A4.13)
It can be verified, either by numerical calcula-
tion or by using Equations A4.8 and A4.10,
that Equation A4.13 has the solution r(X) = 'r.

Thus, T(X) = T, for all X such that 0< X A.X.
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APPENDIX 5

THE STAY-STAY VS. STAY-SWITCH BOUNDARY
We seek the point of transition from an opti-

mal solution with a2* = 0 to one with a2* > 0.
For given X let r(X) denote the value of r at
which this transition occurs. To find this value

we solve the equations - (al,a2*) =R (a1,*
a2*) = 0, together with the equation a2 = 0.
These equations give

S =e-X(a,*+2r) (A5.3)

Equation A5.1 then reduces to

R(a1*,O) = 1 + XS. (A5.4)

However, we also know that the rate R(a1*,O)
is given by

(a,* + 2T)R(al*,O)
= a,* + 2 -e-2-e-X(al*+27)

R(al*,O) = 1 + Xe-x(al*+2r) (A5.1)
and

R(a1*,O) = X + e-2r.
Define S = S(X) by

S(X)= X + e2T(X) - 1

x

then by Equations A5.1 and A5.2

(A5.2)

Substituting for R and e-X(a,*+2r) from Equa-
tions A5.4 and A5.3 then gives

X(a,* + 2r)S + S = 2 - 2-e

Finally, by Equation A5.3, X(a1L + 2X) =-log
S. Therefore

S(1-logS)= 2-2r-e-2T.

APPENDIX 6

OPTIMAL STAY TIMES IN

THE STAY-STAY REGION
In the Stay-Stay region the optimal stay

times are found by setting (al*,a2) =

(al*,ao*) = 0. These equations give

R(al*,a2*) = 1 + Xe-X(al*+2r) (A6.1)

and

R(ai*,a2*) = X + e-(a2*+2T). (A6.2)

It is convenient to use the variables pi where

Pi = 1 -e(aa+2)
and

P2 = 1 e- (al+2)

Then Equations A6.1 and A6.2 give

R(al*,a2*) = 1 + X - Pl (A6.3)

and

P1=XP2 (A6.4)
Now the rate R is also given by

(a,* + a2 + 2T)R(al*,a2*)
=a,* +a2*X+ P + P2.

Thus, by Equations A6.3 and A6.4

(1 -p2)X(a*1 + 2T) + (1 -P1)(a2* + 2r)
= 2rP1 - P. - P2

But X(al* + 2T) = log(l - P2) and (a2* + 2T)
= log(l -Pl), therefore

(1 -p1)log(1 -P) + (1 - P2)l1g(1 -P2)
= 2TrP-Pi-P2 (A6.7)

If we set Pl = XP2 in this equation we obtain
an equation for P2 alone. This can be solved
numerically by computer and hence pl,al*, and
a2* can be found.
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APPENDIX 7

MATCHING IN THE STAY-SWITCH REGION
We show that (a) matching is not in general

optimal in this region; and (b) that a form of
biased matching holds.
(a) If matching were optimal in the Stay-Switch
region, then we would have

a* +_iT a,* + 1- e-2T

T 1 - eX(ai*+2T)

Recall that y = (a,* + 2ir) is a function of r
alone and does not depend on X (see Equation
19). We can rewrite Equation A7.1 in terms of
y to give

y/X_ y/X-2T + 1 -e-2T
r 1-e-v

which can be rearranged as

ry(e-Te-+2 -yT -A
,(e-2r+ 2r- 1)-

(b) In the Stay-Switch region we have

R1* a,* + 1 -e-2T
R2 1-e-X(a,*+27)

which can be expressed as

(1 - eY) R1#= (a,* + T) + (1 -rT--

(A7. 1) and hence as

(A7.3)

where

k(T) = - e-

and

(A7.2)
e-2r + r- 1c(T) =-

However, the left hand side of this equation
depends on X but not X and the right hand side
depends on X but not r. Thus Equation A7.2
cannot hold in general, and hence matching is
not in general optimal in the Stay-Switch re-
gion.

Equation A7.3 can produce graphs that are
indistinguishable from straight lines when log
(a1* + T)/T is plotted against log R1*/R2*. For
example, with X = .0166 and a range of R1*/
R2* from 3 to 8, a linear regression gave a slope
of 1.12 and an intercept of .16 with r2 = .99.

APPENDIX 8

FoRM OF THE OPTIMAL POLICY
FOR THE DISCRETE MODEL

We show that n2 = 1 for the optimal policy.
Consider a policy with parameters n1 and n2

where n2 2. We will show that this policy can

be improved upon. Suppose a switch has just
been made to the second key. On this policy
the next 2n2 + n, trials involve n2 - 1 further
trials on Key 2, followed by n, trials on Key 1,
followed by n2 on Key 2, followed by a trial on
Key 1. The total expected reward M for these
2n2 + n1 trials is

M = n1 + 2n2 - [(n1 - l)q, + 2(n2 - l)q2
+ 2qln2+l + q2n1+1]

Now consider replacing this block of 2n2 +
n, trials by the following sequence. The first

n, trials are made on Key 1; thereafter trials
alternate between the two keys starting on Key

2 at the n1 + 1-th trial and ending on Key 1 at

the 2n2 + n1-th trial. Let M denote the total
expected reward for this block of trials. We
have

M = n1 + 2n2 -[(n1- l)qj + (n2 + l)q12
+ (n2 - l)q22 + q2I±+1].

Then

M-M = 2(n2- I)q2-(n2- I)q22 + 2qln2+1
- (n2 + l)q,2.

We show that M- M > 0. To this end let

f(x) = 2(n2 - I)q2- (n2 -l)q22 + 2xn2+1
- (n2 + l)x2.

Since 0 < q. q2 it is sufficient to establish
that f(x) > 0 for 0 < x q2. Now

ft(x)=2(n2+ l)(xn2-x) O for0 < x< 1.
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Hence f(x) f(q2) for O <x < q2 and thus it is
sufficient to establish that f(q2) > 0; i.e.,

2q2(q2'2- n2q2 + n2 - 1) > 0.

Let g(z)= ZZ2- n2z + n2 -1.
Then

g'(z) = n2z-n2 < 0 forO<z< I

and hence g(z) > g(l) = 0 for 0 < z < 1. Since
0 < q2 < 1 it follows that f(q2)= 2q2g(q2) > 0

This established that M > M.
Note that the final state at the end of these

two alternative blocks of 2n2 + n, trials is the
same. Thus any policy with n2 - 2 can be im-
proved upon and cannot be optimal. It is easy

to see that the policy with n2 = 0 cannot be
optimal either. The reward rate under this
policy is 1 - q1; but if we choose n1 so that

q2 l,+l < ql,

then

R(nj,l) =
q12 + (n -1)(1-ql) + 1-q2n'+l

n1 + 1

(n1 + )(1-ql)- q.
n1 + 1

It follows that the optimal policy must have
n2 = 1.

APPENDIX 9

IMMEDIATE MAXIMIZATION
AND OPTIMALITY

In this appendix it is proved that the opti-
mal policy involves making at least as many
trials on the better schedule before switching
as are made under immediate maximization.

Let n satisfy

1 - q2n+1 < 1 - ql.

It will be shown that this implies

R(n + 1,1) > R(n,l).

(A9.1)

(A9.2)

This can be used to show that n(im) c n*. To
see this suppose n < n(im). Since n(im) is the
first integer k for which 1-q2k+ 1- q we

must have 1 - q2fl+l < 1- q1. Then if Equa-
tion A9. 1 implies A9.2 we can deduce that
R(n + 1,1) > R(n,l), and hence n #& n*. This
will have shown that n =, n* for all n < n(im),
which implies n* n(im).
To establish that Equation A9. 1 implies

Equation A9.2 we proceed as follows. From
Equation 29 we have

(n + 1)(n + 2)[R(n + 1,1) - R(n,l)]
= q,2- 2q, + q2n+l(n + 2)- q2fl+2(n + 1)

= q2n+'((n + I)P2 + 1)- q (1+ pl)
The right hand side of this equation can be
rearranged to give

D -(q25+1-q1)((n + l)P2 + 1)(q2"(+l)-P) (A9.3)+ ql((n + I)P2 - PI)L (A.3

We will show that D > 0. First consider the
function f given by

f(x) = (I -x)4+1 - (I-(n + 1)x),
where n O 0. Then f(0) = 0 and

f'(x) = (n+ l)[1-(I -x)n].
Thus f'(x) > 0 for 1 > x > 0 and hence f(x)
> O for I > x >0. Setting x =p2gives

q2n+l> 1-(n + I)P2.
Rearranging and taking Pi from each side gives

(n + I)p2-Pl > q - q2ffl
Substituting this expression for (n + l)p2 -P
in Equation A9.3 gives

D > (q2+l - q1)((n + l)P2 + 1)
+ ql(q -q2n+1)

which gives

D > (q2fn+l- ql)[(n + l)P2 + PI].

Now, by Equation A9.1, we have q2fn+l -

> 0. Thus D > 0. This shows that Equation
A9.1 implies Equation A9.2.
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