
Gene Expression Programs in Response
to Hypoxia: Cell Type Specificity and
Prognostic Significance in Human Cancers
Jen-Tsan Chi

1,2[
, Zhen Wang

3[
, Dimitry S. A. Nuyten

4
, Edwin H. Rodriguez

1
, Marci E. Schaner

1
, Ali Salim

3,5
, Yun Wang

6,7
,

Gunnar B. Kristensen
6
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A B S T R A C T
Background

Inadequate oxygen (hypoxia) triggers a multifaceted cellular response that has important
roles in normal physiology and in many human diseases. A transcription factor, hypoxia-
inducible factor (HIF), plays a central role in the hypoxia response; its activity is regulated by the
oxygen-dependent degradation of the HIF-1a protein. Despite the ubiquity and importance of
hypoxia responses, little is known about the variation in the global transcriptional response to
hypoxia among different cell types or how this variation might relate to tissue- and cell-specific
diseases.

Methods and Findings

We analyzed the temporal changes in global transcript levels in response to hypoxia in
primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and
endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia
was greatest in the renal tubule cells. This heightened response was associated with a uniquely
high level of HIF-1a RNA in renal cells, and it could be diminished by reducing HIF-1a
expression via RNA interference. A gene-expression signature of the hypoxia response, derived
from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated
variation in several human cancers, and was a strong predictor of clinical outcomes in breast
and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast
cancers, we found that the prognostic information in the hypoxia signature was virtually
independent of that provided by the previously reported wound signature and more predictive
of outcomes than any of the clinical parameters in current use.

Conclusions

The transcriptional response to hypoxia varies among human cells. Some of this variation is
traceable to variation in expression of the HIF1A gene. A gene-expression signature of the
cellular response to hypoxia is associated with a significantly poorer prognosis in breast and
ovarian cancer.
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Introduction

Oxygen is essential for aerobic metabolism in all mamma-
lian cells. To maintain function and homeostasis, cells have to
be able to sense and respond to inadequate oxygen levels
(hypoxia). A family of transcription factors called hypoxia-
inducible factors (HIFs) plays a central role in orchestrating
the cellular response to hypoxia. HIF-1, the first member of
the family, is a heterodimeric protein consisting of a
constitutively expressed subunit, HIF-1b, and an oxygen-
sensitive inducible subunit, HIF-1a. HIF-1a protein is usually
degraded under normal oxygen concentrations (normoxia),
but in hypoxic conditions or in the presence of iron
chelators, the degradation rate decreases, and HIF-1a protein
accumulates and associates with HIF-1b to form a functional
transcription complex, triggering the transcription of a host
of hypoxia-inducible genes. Recent studies have shed light on
the mechanisms of hypoxia-driven stabilization of HIF-1a
protein. Under normal oxygen tension, HIF-1a protein is
hydroxylated on two proline residues by a family of oxygen-
dependent prolyl hydroxylases (PHD1–3), and the modified
HIF-1a becomes a substrate for polyubiquitination by a
protein complex containing von Hippel-Lindau proteins
(pVHL) and is thus targeted for degradation [1]. The
enzymatic activities of PHD proteins are sensitive to oxygen
availability. Under low-oxygen conditions, PHD proteins are
unable to modify the HIF-1a protein, keeping HIF-1a protein
unhydroxylated and allowing it to escape pVHL recognition
and subsequent degradation, resulting in the triggering of the
hypoxia responses [2].

HIF-1a protein stabilization, however, is not limited to
hypoxic conditions, and the so-called hypoxia responses can
occur even with an adequate oxygen supply. This oxygen
tension-independent hypoxia response can result from a wide
range of possible genetic alterations and signaling malfunc-
tions, including loss of VHL [3], p53 [4], or PTEN (a
phosphatidylinositol trisphosphate lipid phosphatase) [5]; or
activation of phosphatidylinositol 3-kinase/Akt [6] or Src
pathways [7]. Hypoxia-independent HIF-1a protein stabiliza-
tion is seen in patients with von Hippel-Lindau disease, a
genetic disease in which one copy of the VHL gene is either
inactivated or deleted. In these patients, when the remaining
normal copy of the VHL gene is lost or inactivated, the HIF
transcriptional complexes stay constitutively active, even
under normal oxygen concentrations, due to faulty, pVHL-
dependent degradation pathways. This dysregulated hypoxia
pathway is a key factor in the development of multiple
neoplasms in patients with von Hippel-Lindau disease [8].

Although hypoxia responses are thought to be evolutio-
narily conserved in all mammalian cells [9,10], not all cells
respond to hypoxia in an identical fashion during physio-
logical and pathological adaptations. Different cells of the
human body have diverse energy requirements, operate in
different microenvironments, and are normally exposed to
different ranges of oxygen concentration. For example,
bronchial epithelial cells are usually exposed to ambient
atmospheric levels of oxygen, while human chondrocytes are
trapped in a low-oxygen, avascular cartilage matrix and rely
on diffusion from adjacent tissues for oxygen. Cells also differ
in sensitivity to hypoxia; some cells can survive indefinitely in
anoxic environments; others die within minutes. Because of
their variable baseline situations and responses to hypoxia,

cells of different tissues react differently when their hypoxia
pathways are dysregulated. In von Hippel-Lindau disease, loss
of pVHL function frequently leads to tumors arising from
renal epithelial cells [8]. The molecular basis for the
preferential sensitivity of renal epithelial cells to the
oncogenic effects of the mutation in pVHL is unknown.
Genomic tools, including DNA microarrays, have enabled

the global gene expression programs of cells placed under
hypoxic stress to be studied systematically [10–14]. Although
the heterogeneity of the hypoxia response has been recog-
nized, there has been no systematic analysis of the extent and
nature of this heterogeneity. In this study, we used DNA
microarrays to examine the gene expression program in
response to hypoxia in several different primary cells. We
found significant variation in the hypoxia responses among
different cell types, and these variations were correlated to the
varying composition of hypoxia regulators in the different cell
types. The study of cell-specific responses to hypoxia could
lead to a better understanding of the regulation of oxygen
sensing and energy metabolism, and it may provide insights
into the basis of the anatomical specificity of diseases and
injuries in which hypoxia or the hypoxia response play a role.
Although hypoxia has been recognized as an important

determinant of clinical outcomes in human cancers [15], it has
been difficult to perform comprehensive and quantitative
analyses to define tumor phenotypes based on hypoxia
responses and to explore the relationship between tumor
hypoxia and genetic changes or clinical parameters in human
cancers. Several previous reports have identified links between
cancer outcomes and the level of HIF-1a protein or the
expression of one or two individual genes that are induced by
hypoxia, such as Carbonic Anhydrase IX [16–20]. In our own
previous studies, we found that gene expression signatures of
cell proliferation [21] and a wound response program [22]
obtained from well-defined cell culture settings could provide
a basis for recognizing the corresponding programs in human
cancer tissues. In the present study, we tested the idea that a
gene expression ‘‘signature’’ of the hypoxia response, derived
from our systematic analysis of the responses in cultured
primary epithelial cells, might serve as a molecular gauge to
assess the extent to which this physiological response is
activated in different human cancers, providing a new
perspective on previously reported systematic gene expression
datasets. We also devised an analytic framework to explore the
relationship between hypoxia signatures and other molecular
and clinical features in determining the clinical behaviors and
patient outcomes of several different human cancers.

Methods

Cell Culture
Human coronary artery endothelial cells (ECs), smooth

muscle cells (SMCs), human mammalian epithelial cells
(HMECs), and renal proximal tubule epithelial cells (RPTECs)
were purchased from Cambrex (East Rutherford, New Jersey,
United States), and cultured in specified medium as suggested
by manufacturer. To create hypoxic conditions, 70%–80%
confluent cells were placed in a tissue culture incubator with
2% O2 and 5% CO2 at 37 8C. To create anoxic conditions,
70%–80% confluent cells placed in an anaerobic chamber
(Sheldon, Cornelius, Oregon, United States) with less than
0.02% O2 and 5% CO2 at 37 8C.
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HIF-1a Quantitative Real-Time PCR
Total RNA was purified with Absolutely RNA microprep kit

(Stratagene, La Jolla, California, United States). Quantitative
real-time PCR was performed on an ABI PRISM 7900H
machine (Applied Biosystems, Foster City, California, United
States) with TaqMan reagents (Applied Biosystems). Primer
sequences used for HIF-1a were: 59 primer, 59-CTCACC
CAACGAAAAATTACAGAA-39; 39 primer, 59-ATTGAGTG
CAGGGTCAGCACTAC-39, and probe, FAM-CATTACC
CACCGCTGAAACGCCAA-TAMRA. TaqMan b-actin detec-
tion reagents (Applied Biosystems) were used as an internal
control for quantitation. Quantitative real-time PCR was
performed at 95 8C for 10 min followed by 40 cycles of
denaturing at 95 8C for 15 s and annealing/extending at 60 8C
for 1 min.

HIF-1a Immunoblotting
Cell lysates were prepared by adding RIPA buffer imme-

diately after hypoxia or anoxia. Total protein was quantitated
with the BCA Protein Assay Reagent Kit (Pierce, Rockford,
Illinois, United States) and equal amounts of protein loaded
in each lane of a 10% SDS-PAGE gel followed by transfer to a
PVDF membrane (Bio-Rad, Hercules, California, United
States) at 90 V for 2 h. After blocking with 5% nonfat milk
for 1 h at room temperature, the membrane was incubated
with monoclonal antibodies specific for HIF-1a (BD Bio-
sciences, San Jose, California, United States) overnight at 4 8C.
After washing, horseradish peroxidase-linked anti-mouse IgG
(Amersham Biosciences, Piscataway, New Jersey, United
States) was used as a secondary antibody, and incubated with
the membrane for 45 min at room temperature. Signal was
detected by ECL Western blotting detection reagents
(Amersham Biosciences).

HIF-1a Dicer RNA Interference
The following three sets of primers were used generate

fragments for HIF-1a Dicer RNA interference (RNAi) and
incorporatedT7promoter sequences:HIF-1a forwardprimer-1,
59-GCGTAATACGACTCACTATAGGGACACTGGTGGCTCA
CTACC-39; HIF-1a reverse primer-1, 59-GCGTAATACGACT
CACTATAGGGTCCAGGTTTAACAATTTCATAGGCC-39;
HIF-1a forward primer-2, 59-GCGTAATACGACTCACTAT
AGGGATGGTTCTCACAGATGATGGTGAC-39; HIF-1a re-
verse primer-2, 59-GCGTAATACGACTCACTATAGGGTT
GAGCGGCCTAAAAGTTCTTC-39; HIF-1a forward primer-3,
59-GCGTAATACGACTCACTATAGGGCCAAGAATTCTCAA
CCACAGTGC-39; and HIF-1a reverse primer-3, 59-GCGT
AATACGACTCACTATAGGGTCGGAAGGACTAGGTGTCTG
ATC-39.

Firefly luciferase (GL3) and Renilla luciferase (RL) were
used as controls. Sequences used were designed based upon
previous reports [23]. DNA fragments with T7 promoters
were generated by PCR and subjected to in vitro tran-
scription to produce dsRNAs (550 bp) using the MEGAscript
in vitro transcription kit (Ambion, Austin, Texas, United
States). dsRNAs were treated with DNase I, and incubated
with r-Dicer at 37 8C in 250 mM NaCl, 30 mMHEPES (pH 8.0),
0.05 mM EDTA, 2.5 mM MgCl2 overnight. Dicer-treated small
interfering RNA (d-siRNA) was purified using the Micro-to-
Midi Total RNA Purification System (Invitrogen) and trans-
fected into RPTECs by electroporation by using the Basic
Nucleofector Kit for primary mammalian epithelial cells and

Nucleofector Device according to the directions provided by
the manufacturer (Amaxa Biosystems, Gaithersburg, Mary-
land, United States). 24 h after transfection, the cells were
subjected to hypoxia and RNAs harvested 12 h later for
analysis.

cDNA Microarrays and Hybridization
We used human cDNA microarrays containing 42,000

elements that represent 27291 unique genes. Arrays were
produced at the Stanford Functional Genomic Facility. The
RNAs were purified by FastTrack (Invitrogen), and fluores-
cently labeled cDNAs were hybridized to the array in a two-
color comparative format, with the experimental samples
labeled with one fluorophore (Cy-5) and a reference pool of
mRNA labeled with a second fluorophore (Cy-3) [24].

Data Filtering and Analysis
Array images were scanned by using an Axon Scanner

4000B (Axon Instruments, Union City, California, United
States), and image analysis was performed by using Genepix
Pro version 3.0.6.89 (Axon Instruments). Data were expressed
as the log2 ratio of fluorescence intensities of the sample and
the reference, for each element on the array [24]. Data were
filtered to exclude elements that did not have at least a 2.5-
fold intensity/background ratio in at least 60% of the arrays.
The time course data from each cell type under hypoxia (2%)
and anoxia (0%) were normalized to the ambient air control
harvested at the same time, and the subset of elements that
varied from the baseline by at least 3-fold in at least four
samples was selected for further analysis. The data were
hierarchically clustered by using the cluster program [25], and
displayed by using TreeView [1]. The changes in gene
expression for each gene were evaluated at each time point
through zero transformation [26] by subtracting log2(red/
green) of the normoxia (;21% O2) measurement from the
corresponding log2(red/green) ratio at hypoxia (2% O2) or
anoxia (0% O2) at the same time points. The resulting values
represent log2(red hypoxia/red normoxia), or log2(red
anoxia/red normoxia) and so on, and indicate changes
associated with either hypoxia (2% O2) or anoxia (0% O2).
To identify genes with changes only one of the four cell types,
we used multi-class significance analysis of microarrays (SAM)
[27] to analyze variations of gene expression after zero-
transformation associated with ECs, SMCs, HMECs or
RPTECs. The cell type-specific gene list was selected to have
a false discovery rate (FDR) of 3.7 %, using 100 iterations. For
detailed procedures and complete data, please see Figure S1
and Tables S1 and S2.

Analysis of an Epithelial Hypoxia Signature in Human
Cancers
The epithelial hypoxia signature gene list consists of 253

unique image clones on the cDNA Stanford array by selecting
a gene cluster showing induction in the tested epithelial cells
(HMECs and RPTECs). For gene expression analysis of renal
cell carcinoma [28], breast cancers [29], and ovarian cancer,
the expression value of these clones was extracted and genes
were selected for further analysis for which the correspond-
ing array elements had fluorescent hybridization signals at
least 2.5-fold greater than the local background fluorescence.
We further restricted our analysis to genes for which
adequate data were obtained in at least 80% of experiments.
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The image clones in the epithelial hypoxia signature that
satisfied all the above criteria were used to stratify tumors in
different datasets based on their hypoxia response with
hierarchical clustering. For the analysis of breast cancer
samples of Netherlands Cancer Institute (NKI), 35 of 253
unique image clones could not be mapped to a Unigene
cluster. The 218 remaining clones were mapped to 168
unique Unigene clusters. The 168 Unigene cluster repre-
sented 180 unique sequences on the Rosetta/NKI oligo array.
Cross-checking gene names revealed 22 probes that could not
confidently be contributed to genes in the original hypoxia
signature. These were removed, resulting in 158 matched
probes. These 158 were the matching probes to 123 unique
Unigene clusters. In order to overcome possible overestima-
tion of Unigene clones that were matched to more than one
probe on the NKI array, the probes that were not uniquely
match to one Unigene cluster were averaged. Genes were
mean centered and clustered and visualized in TreeView.
Based on genes highly expressed in the hypoxia response, two
groups of patients were identified. These were called,
respectively, high- and low-hypoxia response. Overall survival
was defined by death from any cause. Distant metastasis-free
survival was defined by a distant metastasis as a first
recurrence event; data on all patients were censored on the
date of the last follow-up visit, death from causes other than
breast cancer, the recurrence of local or regional disease, or
the development of a second primary cancer, including
contralateral breast cancer.

Kaplan-Meier survival curves were compared by the Cox-
Mantel log-rank test in Winstat for Excel (R. Fitch Software,
Staufen, Germany). Multivariate analysis by the Cox propor-
tional hazard method was performed using the software
package SPSS 11.5 (SPSS, Chicago, Illinois, United States).

Results

Analysis of the Cell-Type Specificity of Hypoxia Responses
To characterize the gene expression program in response

to hypoxia, and its variations among different cell types, we
examined primary cells from several anatomic locations,
including coronary artery ECs, coronary artery SMCs,
HMECs, and two independent isolates of renal proximal
tubular epithelial cells (RPTEC#1 and #2). These cells were
expanded in culture and then exposed to culture environ-
ments of ambient oxygen level (; 21%), hypoxia (2%), and
anoxia (0%) under identical CO2 concentrations (5%). We
profiled global mRNA levels at five time points each for the
coronary artery SMCs and HMECs (1, 3, 6, 12, and 24 h) and
three time points each for coronary artery ECs (1, 3, and 24 h)
and two independent cultures of RPTECs (6, 12, and 24 h).
Different time points were chosen to characterize the
temporal changes of gene expression patterns in the first 24
h of exposure to hypoxia. One of the cultured RPTEC
samples (#2) suffered significant cell death after 24 h of
anoxia and was not analyzed further. The 56 different mRNA
samples were analyzed by hybridization to DNA microarrays,
containing approximately 42,000 elements, representing
27,291 unique Unigene clusters (build number 173, released
on 28 July 2004), to generate a total of 2.4 million gene
expression measurements. Gene expression profiles of the
hypoxia response of each cell type were derived by a zero
transformation process [26] in which we compared transcript

levels for each gene in cells cultured under low-oxygen
conditions (2% and 0% O2) to the transcript levels in the
same cell type (at the same time point) cultured in ambient
air (;21% O2). The 4,333 array elements, representing 3,725
Unigene clusters, which exhibited the largest hypoxia
responses, are displayed in Figure 1A (the detailed expression
values in different samples are available on the Stanford
Microarray Database at: http://microarray-pubs.stanford.edu/
hypoxia), with genes hierarchically clustered according to
similarities in expression patterns.
There was significant heterogeneity in the cellular hypoxia

responses among different cell types. We identified a cluster
of ‘‘epithelial cell hypoxia genes’’ (highlighted by the vertical
brown bar in Figure 1A) induced by hypoxia in all the tested
epithelial cells and a cluster of ‘‘common hypoxia genes’’
(vertical red bar in Figure 1A; expanded in Figure 1B)
induced by hypoxia in all tested cells. Another distinct set of
genes is repressed in all cells (vertical green bar in Figure 1A;
expanded in Figure 1C). The common hypoxia genes (Figure
1B) included many genes that have previously been associated
with hypoxia responses, including genes encoding proteins
with central roles in glucose transport (glucose transporters
SLC2A1 and SLC2A3) and metabolism (phosphofructokinase
[PFKP], glycogen synthase [GYS1], lactate dehydrogenase A
[LDHA], and phosphoglycerate kinase [PGK1]), angiogenesis
(angiopoietin 4 [ANGPTL4] and adrenomedullin [ADM]),
differentiation (DEC1), cell proliferation and apoptosis
(BNIP3L, NDRG1, and MXI1), extracellular matrix synthesis
(prolyl 4-hydroxylase [P4HA1, P4HA2], and lysyl oxidase
[LOX]), and other significant biological processes (HIG2,
FAM13A1, and RNASE4). Although these genes were found to
be hypoxia-inducible in all cell types in this and several
previous studies (reviewed in [30]), significant variations were
seen in the degree of induction among different cell types, as
is evident from the intensity of signal in Figure 1B. The
magnitude of induction of these common hypoxia genes was
generally higher in the two primary epithelial cells (HMECs
and both samples of RPTECs) than in the two samples of
mesenchymal cells in this study (ECs and SMCs) (Figure 1D).
Among hypoxia-repressed genes were a large group of

genes whose expression is closely linked to cell proliferation
(cyclinD, PCNA, CCRK, E2F3, and E2F6) and a set of genes
encoded by mitochondrial DNA, whose expression level may
reflect variations in the number of mitochondria per cell.
These hypoxia-repressed genes may reflect a physiological
alteration that halts cell proliferation and translation
activities as the cells try to preserve energy consumption
under metabolic stress [31,32]. The mTOR pathways may be
implicated in this cell cycle arrest brought about by hypoxia-
associated energy depletion [33]. The mechanisms respon-
sible for the regulation of these proliferation-linked mRNAs
in response to hypoxia remain to be fully characterized; it is
not clear whether the down-regulation of proliferative
responses is directly mediated by sensing decreased O2 or
indirectly due to alterations in the cells’ energy economy.
To identify cell type-specific hypoxia responses associated

with eachof the four different cell types, weused apermutation-
based technique, SAM [27], to systematically identify genes
whose expression under hypoxic conditions varied according to
cell type. The analysis identified 4,712 Unigene clusters,
representing 5,432 array elements, with a FDR of 3.7% (Figure
2A, detailed at: http://microarray-pubs.stanford.edu/hypoxia). A
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large cluster of genes were induced only in bothRPTEC samples
(vertical orange bar in Figure 2A; expanded in Figure 2B). A
comparison of the number of genes induced and the amplitudes
of their inductions in different cell types is shown (Figure 2C).
More genes are induced in RPTECs than in HMECs or SMCs.
The RPTEC-specific induced genes are involved in many
biological processes, including hypoxia metabolic adaptations
(HIF-2a), immune regulation (HLA-DRB1, HLA-DRB3, and
serine proteinase inhibitor [SERPING1]), solute transport
(Multiple Drug Resistance [MDR1], ABCA1, and ABCA5), cell
communication (CXCR4), genomic integrity (RAD50, RAD54B,
MutS2, MutL3, and AlkB), and several p53 downstream target
genes (PTGES, BAI1-associated 3 and proline dehydrogenase,
caveolin, and transforming growth factor (TGF)-a (Figure 2B)
[34]. Several of the RPTEC-specific hypoxia genes participate in
the adaptations to ischemia/perfusion injuries associated with
disrupted blood flow to the kidney. SERPING1 is a C1 esterase
inhibitor, which regulates complement activation and can

protect the cells from ischemia/perfusion injuries [35]. PTGES
is a glutathione-dependent prostaglandin E synthase respon-
sible for the production of prostaglandin E2 [36]; prostaglandin
E2 is elevated during renal ischemia/perfusion injuries and
offers protective functions to the renal tubule cells [36].
Induction of CXCR4, a chemokine receptor for SDF-1, could
potentially lead to better tissue repair after tissue injuries due to
recruitment of circulating progenitor cells [7]. Interestingly,
many of these genes have also been implicated in tumor
formation and progression, especially in relation to renal cell
carcinoma (RCC). For example, elevated expression of trans-
forming growth factor (TGF-a) in renal cell carcinoma may
provide an autocrine stimulation for RCC proliferation [37];
CXCR4 is involved in the progression and metastasis of renal
cell carcinoma [38] and breast cancers [39]; andHIF-2a, another
inducible member of the HIF family, has been shown to be
important for the malignant transformation of renal cell
carcinoma [40].

Figure 1. Overview of the Genomic Responses to Hypoxia

(A–C) Hierarchical clustering of a total of 4,333 elements that display a greater than 3-fold change in mRNA expression in more than four different
samples when exposed to hypoxia (A). Data from individual elements or genes are represented as single rows, and different time points in the time
courses (triangles) are shown as columns. Red and green denote expression levels of samples cultured under hypoxia (2% O2) or anoxia (0% O2) greater
or lower, respectively, than baseline values of samples cultured under ambient air (;21% O2). The intensity of the color reflects the magnitude of the
change from baseline. The color of the triangles represents the time course of the different cell types (red, ECs; blue, SMCs; pink, HMECs; orange,
RPTECs). The vertical red bar marks a cluster of genes induced in all cells, termed the ‘‘common hypoxia genes’’ (B); the vertical brown bar marks a
cluster of genes induced in all epithelial cells, termed the ‘‘epithelial hypoxia genes’’; and the vertical green bar marks a cluster of genes repressed in all
cells, termed the ‘‘commonly repressed hypoxia genes’’ (C). The gene clusters representing ‘‘common hypoxia genes’’ (B) and the ‘‘commonly
repressed hypoxia genes’’ (C) are expanded to show the names of representative genes on the right side.
(D) Average folds of gene induction (y-axis) in the common hypoxia genes cluster from each indicated cell type at different time points (x-axis) are
calculated and shown. (Complete data can be found at: http://microarray-pubs.stanford.edu/hypoxia)
DOI: 10.1371/journal.pmed.0030047.g001
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Bi-allelic inactivation of VHL genes can cause renal
epithelial cells to undergo malignant transformation, leading
to renal cell carcinoma [41]. Restoration of a wild-type VHL
gene into VHL-deficient RCC cells inhibits RCC tumori-

genesis [42]. Although the tumor suppression activity of
pVHL is thought to be mediated through the degradation of
HIF-1a and HIF-2a proteins [40,43], recent evidence suggests
the involvement of other oncogenic pathways. We compared

Figure 2. Cell Type–Specific Hypoxia Response

(A and B) Hierarchical clustering of a total of 5,432 array elements showing a cell type-specific hypoxia response that are selected by multiclass SAM
using zero-transformed gene expression with a FDR of 3.7% (A). The orange vertical bar marks clusters of genes induced only in RPTECs and is expanded
with the names of representative genes (B).
(C) The number of genes (y-axis) with fold inductions greater than those indicated (x-axis) in all six hypoxic samples (6, 12, and 24 h at 2% and 0% O2)
are shown for SMCs (SM, blue curve), HMECs (pink curve), and RPTEC#1 (orange curve).
(D) Comparison of the gene expression pattern of VHL-reconstituted RCCs (A498 cells) to the hypoxia response of RPTEC#1. We compared the
expression of genes affected by VHL reconstitution of VHL-deficient RCC A498 cells (from [38] and in the sample marked ‘‘VHL repression’’) to the
expression of those same genes in RPTEC#1 with hypoxia treatments (samples marked ‘‘RPTEC#1 hypoxia’’). Genes showing concurrent induction
(vertical red bar), concurrent repression (vertical green bar), and VHL-specific response (vertical black bar) are shown with selected gene names.
(Complete data can be found at: http://microarray-pubs.stanford.edu/hypoxia)
DOI: 10.1371/journal.pmed.0030047.g002
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the effects of restoration of functional VHL to VHL-mutant
RCCs (A498 cells) on global gene expression patterns as
reported in a previous study [38] with the RPTEC hypoxia
response defined here. Since VHL mediates the degradation
of HIF-1a and HIF-2a and thus inhibits the hypoxia pathways,
the relative abundance of transcripts in the VHL-mutant
A498 cells versus VHL-reconstituted derivatives [38] was
compared to the changes in transcript levels of the same set
of genes in RPTEC (#1) in response to hypoxia (Figure 2D,
detailed at: http://microarray-pubs.stanford.edu/hypoxia). In
general, we noted significant similarities between these two
biological processes (VHL repression and hypoxia response)
with concordant induction (Figure 2D, red vertical bar) and
repression (Figure 2D, green vertical bar) of large numbers of
genes, including the up-regulation of genes encoding CXCR4,
TGF-a, inositol 1,4,5-trisphosphate receptor 1 (ITPR1),
REDD1/RTP801, dual specificity phosphatase 1 (DUSP1),
cerebroside sulfotransferease (CST), ceruloplasmin (CP), and
stanniocalcin (STC1) and the down-regulation of fibronectin
1 (FN), VCAM-1, connective tissue growth factor (CTGF),
collagen II (Col II), and aldehyde dehydrogenase 1B1
(ALDH1B1) (Figure 2D) associated with hypoxia stimuli.
There were, however, important discrepancies between the
responses to these two perturbations. Notable VHL-specific
changes were the down-regulation of genes encoding c-MAF,
TGF-b, neuregulin, and two TNF-a–induced genes (TNFAIP3
and TNFAIP6) (Figure 2D, vertical black bar). Some of these
differences have been noted previously [8] and may be related
to cell type-specific features of the response or they may
point to hypoxia-independent VHL pathways and VHL-
independent hypoxia response pathways.

Molecular Basis of Strong Hypoxia Responses of RPTECs
To investigate the basis of the exceptionally vigorous

response to hypoxia observed in RPTECs, we analyzed the
global gene expression profiles of all cell types incubated in
all oxygen environments without zero transformation. With
unsupervised hierarchical clustering, all samples of the same
cell type (nine ECs, 15 SMCs, 15 HMECs, and 17 RPTECs [nine
RPTEC #1 and 8 RPTEC #2]) cosegregated into four distinct
branches (Figure 3A, detailed at: http://microarray-pubs.
stanford.edu/hypoxia). Many of the cell type-specific genes
were familiar markers of the corresponding cell lineage, such
as CD31 (which identifies ECs), and cytokeratins (which are
expressed in epithelial cells such as HMECs and RPTECs)
(Figure 3A). RPTECs have exceptionally high levels of
expression of genes encoded by mitochondrial DNA (Figure
3A). This is consistent with the previous observation that
these cells have large numbers of mitochondria, presumably
to cope with the high energy demands associated with
molecular transport within the renal tubules.

Several genes involved in the regulation of hypoxia
response were differentially expressed among different cell
types. For example, PHD3/EGLN3, one of the proline
hydroxylases that regulates HIF-1a degradation, was more
highly expressed in HMECs and RPTECs than in SMCs or ECs
(Figure 3A). This immediately suggests the possibility of
different mechanisms for oxygen sensing and HIF-1a regu-
lation in these cells. The differential expression of hypoxia
response regulators was most clearly evident in the variations
in HIF-1a transcripts. The levels of HIF-1a transcripts were
higher in all 17 RPTEC samples than in any of the other cells

in this study (Figure 3A and 3B), regardless of the oxygen
tension during culture. Expression levels of HIF-2a, another
member of the HIF family, were similar in all the cell types of
this study. Analysis by real-time PCR confirmed that HIF-1a
transcript levels were 3- to 5-fold higher in RPTECs than in
HMECs or SMCs, while ECs expressed even less HIF-1a mRNA
than HMECs or SMCs (Figure 3C). The difference was not due
to different culture media—HIF-1a transcripts remained
elevated after culturing RPTECs for 24 h in media used for
ECs, SMCs, or HMECs. To see whether these elevated HIF-1a
transcripts were accompanied by increased protein levels, we
analyzed HIF-1a protein levels in SMCs, HMECs, and RPTECs
(Figure 3D) under hypoxic conditions (2% O2). HIF-1a
protein, while undetectable under ambient air, was induced
upon exposure to hypoxia in all cells. RPTECs, however, had
the highest level of HIF-1a protein induction (Figure 3D),
reaching levels that we estimated to be five times higher than
those of the other cell types. The RPTECs, then, have the
highest levels of HIF-1a at the RNA and protein levels among
all tested cells; this characteristic might play an important role
in the uniquely strong hypoxia response observed in RPTECs.
To investigate the role that the relatively high HIF-1a levels

play in the exaggerated hypoxia response in RPTECs, we used
RNAi to reduce the amount of HIF-1a transcripts, and
determined the resulting hypoxia response. Since there was
no significant preexisting HIF-1a protein when cells were
exposed to ambient air, it was not necessary to wait for the
degradation of existing HIF-1a proteins after RNAi treat-
ment. To minimize the potential off-target effects of any
particular siRNA (J. W. Myers, personal communication)
[44,45], we used a mixture of siRNAs generated using in vitro
cleavage of the target genes by recombinant Dicer protein, a
procedure that results in so-called diced-siRNAs (d-siRNAs)
[23]. We generated d-siRNAs from three separate non-
overlapping regions of HIF-1a called HIF-1-a1, 2, and 3 as
well as from two controls, GL3 and RL [23]. All three of the
HIF-1a-directed d-siRNAs showed an ability to knock down
HIF-1a expression while none of the three control siRNA
affected HIF-1a transcript levels (Figure 3E) or the induced
HIF-1a protein levels during hypoxia (unpublished data). We
used DNA microarrays to examine the genomic responses of
the d-siRNA-treated RPTECs (using three HIF-1a-directed d-
siRNAs or three control-directed d-siRNAs) after 12 h of
hypoxia (2%) treatment (Figure 3F, detailed at: http://
microarray-pubs.stanford.edu/hypoxia). Although the re-
sponses of all the d-siRNA-treated cells were generally
similar, we found a cluster of genes whose induction was
significantly diminished in all three HIF-1a-RNAi treated
RPTEC cultures (Figure 3F, vertical green bar), but not in the
three control-RNAi treated cultures. Many of these genes
were also induced by hypoxia only in RPTECs and not in the
other primary culture cell types we tested (all the genes with
names shown in Figure 3F are also present in Figure 2B).
Thus, the induction of these RTPEC-specific hypoxia genes
appears to be sensitive to the variations in HIF-1a expression,
whether the variations were naturally mediated (through cell
type-specific expression) or artificially mediated (through the
use of d-siRNAs). We conclude that the unusually high level of
HIF-1a expression is likely to play a significant role in the
exaggerated hypoxia responses observed in RPTECs, and
perhaps in their unique vulnerability to transformation when
VHL activity is lost.
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The Hypoxia Phenotypes in Human Cancers
Tumor hypoxia is an important factor in human cancer

progression [15]. We reasoned that the level of expression of a
set of genes characteristically induced by hypoxia in cultured
cells might provide a molecular gauge of the presence and
extent of the hypoxia response for cancerous human tissues
in vivo. Since carcinomas derive from epithelial cells, we
selected a cluster of 253 individual elements (representing
168 unique Unigene clusters according to build number 172,
released on 17 July 2004) that was consistently induced by
hypoxia in cultured epithelial cells and will be referred to as
the ‘‘epithelial hypoxia signature’’ (see Figure 1A) for analysis
of hypoxia response in vivo. Genes that display the hypoxia
signature are generally consistent with independent studies
of the global expression response to hypoxia [10,11,14],
suggesting that this gene expression signature of hypoxia
should provide a good gauge of cellular hypoxia responses.

In a set of global gene expression data from 41 renal
tumors [28], we found that the genes within the epithelial
hypoxia signature showed remarkable concordance; they

were simultaneously elevated in a distinct subset of renal
tumors, allowing easy classification of these cancers by
hierarchical clustering into two groups, one with high and
one with low expression of the hypoxia response genes
(Figure 4A, detailed at: http://microarray-pubs.stanford.edu/
hypoxia). When we examined the molecular and clinical
characteristics of these samples, we found that all the tumors
in the ‘‘high hypoxia response’’ group were of the clear-cell
RCC type, while the normal kidney samples and tumors of all
other histological types were all in the ‘‘low hypoxia
response’’ group (Figure 4A). Clear-cell RCCs typically bear
a deletion in Chromosome 3p25 that results in the loss of
functional VHL proteins [3]. The high hypoxia response
signature in clear-cell RCCs is consistent with previous
studies that show the activation of hypoxia pathways in these
tumors [46], perhaps due to the inappropriate stabilization of
HIF-1a and HIF-2a, as a result of the defect in VHL.
We applied a similar approach in examining the hypoxia

response in a published breast cancer study [29]. The samples
represented four normal breasts, three fibroadenomas, and

Figure 3. Elevated HIF-1a in RPTECs and Its Role in RPTEC Hypoxia Response

(A and B) Hierarchical clustering of a total of 3,630 arrays elements that display a greater than 3-fold change in mRNA expression when placed under
hypoxic/anoxic environments in more than four different samples among the 56 samples (A). All samples of the same cell lineages segregate
themselves into distinct branches (EC, red; HMEC, pink; RPTEC#1 and #2, orange; SM, blue). The names of some representative genes (mitochondrial
genes, PHD3, CD31, and genes encoding keratins) are shown to the right, and two elements representing HIF-1a are expanded in (B).
(C) The relative expression level of HIF-1a assessed with real-time PCR is shown for different cell types under ambient O2 concentration.
(D) The levels of HIF-1a protein measured by Western blots of different cells under either ambient air (N) or 2% O2 (H) at the indicated times (6 or 12 h).
(E) The level of HIF-1a in RPTECs assessed with real-time PCR after the transfection of either control d-siRNAs (transfection fluid alone [Cont] or Dicer-
generated siRNAs generated from GL3 or RL3) or d-siRNAs generated from different regions of HIF-1a mRNAs (RNAi-1, 2, and 3).
(F) The comparison of hypoxia responses of RPTECs after treatment with either three control or three HIF-1a RNAi transfections. A cluster of genes
sensitive to HIF-1a RNAi treatments is marked by a vertical green bar and is expanded with the names of selected genes shown. All the genes with
names shown are induced only in RPTECs during hypoxia (Figure 2B). (Complete data can be found at: http://microarray-pubs.stanford.edu/hypoxia)
DOI: 10.1371/journal.pmed.0030047.g003
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78 locally advanced breast cancers with extensive clinical and
molecular data. We found that expression of most of the
genes in the hypoxia response signature in the breast cancer
samples varied in such a way that all the samples were
separated into two groups by hierarchical clustering based on
the level of hypoxia response (Figure 4B, detailed at: http://
microarray-pubs.stanford.edu/hypoxia). All the normal breast
samples and fibroadenomas were clustered in a group
characterized by generally low expression of the hypoxia
response signature, while the ductal adenocarcinoma samples
were split between the low and high hypoxia response groups.
To investigate whether the two different groups distinguished
by levels of hypoxia response might differ in their clinical
course, we compared them with respect to overall and
relapse-free survival. The patients assigned to the high
hypoxia response group had significantly lower overall
survival (p ¼ 0.0046) and relapse-free survival (p ¼ 0.00022)
(Figure 4B). Based on analysis of the 69 cancers that had been
characterized for the presence or absence of p53 mutations,
there was a significant association between high expression of
the hypoxia response signature and mutation in p53—18 of
21 samples with high hypoxia response had a p53 mutation as
compared to 12 of 48 low hypoxia response samples (p ¼
0.00025, Fisher’s exact t-test). The high hypoxia response
tumors were also more likely to be negative for estrogen
receptor (ER)—10 of 23 high hypoxia response tumors were
negative for ER, while only 8 of 51 low hypoxia response
tumors were negative (p ¼ 0.012)—and more likely to be
classified as high-grade—20 of 24 high hypoxia response
tumors were high-grade, whereas only 12 of 52 low hypoxia
response tumors were high-grade (p , 10�6) (detailed hypoxia
status assignment and their corresponding molecular/clinical
data are available at: http://microarray-pubs.stanford.edu/
hypoxia).
To assess the consistency and prognostic significance of

the hypoxia response signature in an independent set of
breast cancer samples, we analyzed a published data set from
the NKI, which consisted of 295 early-stage breast cancer
samples (stage I and II) [47]. Of the 168 Unigene clusters that
defined the epithelial hypoxia response gene cluster in our
microarray dataset, 123 genes were also represented (by 176
distinct elements) in the microarrays used in the NKI study.
We analyzed variation in expression of these 123 genes,
which represent the epithelial hypoxia response signature, in
the 295 breast cancer samples. Most of the hypoxia response

Figure 4. The Analysis of Hypoxia Response in Human Cancers

The expression values of genes in the ‘‘epithelial cell hypoxia signature’’
were extracted from an expression study of 41 renal tumors (A) [28].
Genes and samples are organized by hierarchical clustering. The tumors
are segregated into two groups defined by high (blue) or low (red)
hypoxia response. The histopathological features of renal tumors within
the high and low hypoxia response groups are shown. Expression
patterns of available ‘‘epithelial hypoxia response’’ genes in a group of
breast cancer samples from Norway and Stanford (B) [29] and NKI (C) [47]
as well as ovarian cancer samples (D) are shown. The tumors are
separated into two groups based on their hypoxia responses, high or
low. Kaplan-Meier curves for the clinical outcomes of indicated tumors
exhibiting high and low hypoxia responses are shown in (B), (C), and (D).
In the Kaplan-Meier curve diagrams, high hypoxia response is indicated
by blue, low hypoxia response is indicated by red, and censored patients
are indicated with ‘‘x’’ marks. The correlation between the average
hypoxia response and HIF-1a RNA levels in 70 ovarian cancer samples is
shown in (E).
DOI: 10.1371/journal.pmed.0030047.g004
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genes showed consistent variations among tumor samples.
Hierarchical clustering, based on similarity in expression of
these 123 genes (see Materials and Methods), separated all
the tumors into two distinct groups, the high and low
hypoxia response groups (Figure 4C, detailed at: http://
microarray-pubs.stanford.edu/hypoxia). Because these sam-
ples were from patients with early stage disease (stage I and
II), the results suggested that significant tumor hypoxia
response, or inappropriate activation of a hypoxia response
program, could occur even in tumors with diameters of 5 cm
or less. Tumors in the high hypoxia response group were
associated with much poorer overall survival (p ¼ 1.4 3 10�9)
and higher risk of disease recurrence (p¼ 1.3 3 10�5) (Figure
4C), further confirming that the transcriptional signature of
a hypoxia response is a significant predictor of poor
prognosis for patients with breast cancer.

Using a similar approach, we also examined the hypoxia
response of 72 ovarian cancers, all of which are associated with
detailed clinical information (MCS, personal communication).
The hypoxia signature also showed coordinated regulation
and allowed all ovarian cancer samples to be separated into
two distinct groups by hierarchical clustering based on
hypoxia response (Figure 4D, detailed at: http:/ /
microarray-pubs.stanford.edu/hypoxia). These two groups
had significant differences in terms of survival (p ¼ 0.008)
and relapse-free survival (p¼ 0.003) (Figure 4D). Interestingly,
in this examination of hypoxia response, HIF-1a levels
appeared to co-vary with the level of hypoxia response in
different ovarian cancers. We determined the correlation
between the HIF-1a and HIF-2a RNA expression levels and
the hypoxia responses of individual ovarian tumors by
converting numerical gene expression values to a logarithmic
scale and averaging them. We have found a significant
correlation between the average hypoxia responses and HIF-
1a transcript levels (p , 0.0001, Figure 4E) but not with HIF-2a
transcript levels (p¼0.6121). These data suggest that variations
in the HIF-1a transcript levels may play a role in determining
the degree of the hypoxia response of ovarian tumors as it
does in the vigorous hypoxia response observed in RPTECs.

To provide a metric that can be prospectively applied to
new tumor samples, we defined a quantitative ‘‘hypoxia
response score’’ for each sample by simply averaging the gene
expression levels (converted to logarithmic scale) for the 123
genes of the hypoxia response signature. Setting this metric
also allowed us to investigate the relationship between the
hypoxia signature and other previously identified prognostic
gene expression signatures. One such prognostic signature
was based on expression of a set of 70 genes that was first
identified in a ‘‘supervised’’ fashion based on their ability to
predict freedom from tumor metastasis (favorable prognosis)
over a five-year period in the same dataset [48]. A second
signature, related to a wound response signature, was
identified in a study of fibroblast exposure to serum and
shown to predict risks of progression and metastasis of breast
cancer [22]. In these tumors, the hypoxia response score was
only very weakly correlated with the wound response score
(correlation ¼ 0.12), or with the 70-gene score (correlation ¼
�0.36). The wound response score, on the other hand, showed
a strong (negative) correlation with the 70-gene score
(correlation ¼�0.59) (Figure 5A).

The hypoxia response score could be further simplified by
thresholding its value at 0.0; patients with a score greater than

zero are classified in the ‘‘high hypoxia response’’ group, and
those less than zero the ‘‘low hypoxia response’’ group. When
we compared the clinical outcomes of patients in these two
different groups, we found that patients in the high hypoxia
response group do much worse in terms of survival (p¼ 3.13

10�6) and the risk of disease recurrence (p¼ 1.4 3 10�4) than
the patients in the low hypoxia response group (Figure 5B).
While thresholding the score at zero produced a striking

classification, this cutoff point was somewhat arbitrary. To
investigate whether an alternative threshold might improve
predictive power, we refit our multivariate Cox model by
including the hypoxia response score in a quantitative form,
using natural cubic splines with four degrees of freedom.
These curves estimated the differential contribution of the
hypoxia response score to the (log) relative risk in a
continuous fashion (see Figure S1). The results showed a
strong positive trend over the range of hypoxia response
scores in which most of the data occur, and indicate that a
threshold value of zero was a reasonable choice.

Prognostic Information Content of the Hypoxia Signature
We wanted to know whether the hypoxia signature adds

anything new and useful to clinical decision-making and
whether it significantly complements previously established
prognostic factors. To this end, we included the hypoxia
response score in a multivariate Cox model, along with other
established prognostic and clinical factors (including the
wound response signature [22]). Remarkably, the hypoxia
signature contributed more significantly to the predictive
power of the model than did chemotherapy, ER status, tumor
size, grade, angioinvasion, or age; its contribution was
comparable to that of the wound signature but less than the
NKI 70-gene signature (Tables 1, 2, S1, and S2). This further
confirms the importance of the hypoxia response signature as
an independent predictor of poor prognosis. The hypoxia
response score was significantly associated with both survival
(p ¼ 0.003; relative risk ¼ 2.387; 95% confidence interval,
1.357–4.198) and time to recurrence (p¼ 0.004; relative risk¼
2.164; 95% confidence interval, 1.284–3.647) (Table 1). We
also calculated the contribution of individual factors in a
multivariate Cox model by assessing the differences in
predictive power of the model with or without any individual
factors. Adding the hypoxia response signature to a Cox
model for survival that included the wound response
signature and established prognostic factors accounted for
an additional 9.4% of the variance in survival. This
contribution was more than the variance accounted for by
tumor grade, diameter, or angioinvasion, similar to the
contribution of ER status, but less than the variation explained
by age or the wound response signature. The hypoxia response
signature and wound response signature together accounted
for 40.8% of the prognostic power of the multivariate models
(analysis detailed in data file Cox_factor_model at: http://
microarray-pubs.stanford.edu/hypoxia).

Discussion

In this study, we first examined the diversity of gene
expression responses to hypoxia among cultured cells of
different origins, and found significant differences in the
amplitude and breadth of the responses. Both of the
epithelial cell types (HMECs and RPTECs) we tested showed
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a higher amplitude of gene induction than the two stromal
cells (ECs and SMCs). Although the root of this observation is
not yet clear, it is consistent with previous studies in which
most of the hypoxia-induced genes (e.g., GLUT-1 and CA IX)
in cancerous tissues were identified preferentially in carci-
noma cells but not in the adjacent stromal cells [49], although
both cell types are presumably exposed to similar oxygen
microenvironments. RPTECs have especially vigorous tran-
scriptional responses to hypoxia, which appear to be due, at
least partially, to the high levels of HIF-1a expression in
these cells. In support of this idea, we found that RNAi-
mediated knock-down of HIF-1a expression greatly dimin-
ishes the induction of many RPTEC-specific hypoxia re-
sponse genes. Furthermore, the positive correlation between
the HIF-1a RNA level and the amplitude of the hypoxia
response in ovarian cancer suggests that the transcriptional
control of HIF-1a may also play a role in the ovarian cancer
hypoxia responses. It is likely that this cellular fine-tuning of
the magnitude of the hypoxia response or sensitivity to
hypoxia may be achieved by regulating the abundance and
composition of the molecular machinery involved in the
hypoxia response. There are undoubtedly many more
variations in the hypoxia responses still to be discovered
and explored in other cell types. Understanding the
molecular system that determines these differences will be
critical to dissecting the physiological and pathological
responses to variations in oxygen availability at the tissue
and organism levels [50].

Patients with von Hippel-Lindau disease, who have a
defective copy of the gene encoding VHL protein, are at
remarkably increased risk of cancer, with the majority of
epithelial cancers in these patients being clear-cell renal cell
carcinomas. This specific type of RCC is thought to
originate from RPTECs [3]. But why are RPTECs preferen-
tially affected, although the VHL mutation is present in all
cell types? The uninhibited hypoxia response is thought to
underlie the oncogenic transformation associated with the
loss of VHL, because inhibition of HIF activities [40,43] can
halt the malignant transformation and aggressive behavior
of VHL-deficient RCCs. The unusually high levels of HIF-1a
expression and strong hypoxia response in normal RPTECs
might make them especially vulnerable to a defect in the
degradation of HIF protein in von Hippel-Lindau disease.
Many of the RPTEC-specific transcriptional changes in
response to hypoxia have been suggested to contribute to
the pathogenesis of clear-cell RCCs (through the actions of
HIF-2a, TGF-a, CXCR4, and MDR1). Although the exact
nature of the exceptionally vigorous hypoxia response of
RPTECs, and its contribution to the formation of clear-cell
RCC is still to be determined, our results raise the
possibility that inhibiting the systems underlying the
vigorous hypoxia response of RPTECs might have utility
in inhibiting the development of RCC in von Hippel-Lindau
disease.
In this study, we were also able to stratify human cancers

according to the presence and amplitude of a hypoxia

Figure 5. Quantitative Analyses of the Prognostic Significance of the Hypoxia Response Signature

Response signature was analyzed in the 295 breast cancer samples in the NKI study
(A) Scatter plots showing the relationship between the value of the average expression level of the genes in the hypoxia signature and that of genes in
the wound response signature [22] or 70-gene signature [48]. Each point in the scatter plots represents a single one of the 295 tumors analyzed in the
NKI dataset. The overall correlation between each pair of expression signatures across this set of 295 samples is indicated in each panel.
(B) With the threshold value of the hypoxia response signature for classification of patients into high and low hypoxia response groups set at zero, the
Kaplan-Meier curve shows significant differences in survival and time to recurrence between the samples in the high and low hypoxia response groups
of these breast cancer samples.
DOI: 10.1371/journal.pmed.0030047.g005
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response, as reflected in a gene expression signature that we
defined in a cell culture model. In breast and ovarian cancers,
tumors with a strong gene expression signature of the
hypoxia response had a significantly worse prognosis. The
correlation of the hypoxia response signature with cancer
progression and metastasis immediately raises the question
of whether the hypoxia response actually contributes to the
enhanced aggressiveness of these cancers and their poor
therapeutic response. Treatment resistance of hypoxic
tumors has been ascribed to factors in tumor microenviron-
ments, such as failure of local drug delivery during chemo-
therapy or inability to generate free oxygen radicals during
radiation therapy [15]. However, many in vitro studies have
revealed that hypoxia can alter cell properties to directly
contribute to tumor development, progression, and drug
resistance through various mechanisms, such as up-regula-
tion of MDR1 (drug resistance) [51], telomerase (cell
immortality) [52,53], CXCR4 expression (cell migration and
metastasis) [38], and down-regulation of the DNA repair
system (genomic instability) [54]. These data suggest that the
hypoxia-induced gene expression program may have a direct
causal role in impacting the tumor biology to affect clinical
outcomes. It will be important, then, to understand what
specific hypoxia-driven biological processes underlie the
phenotypic differences between the tumors in the high-
hypoxia response group and those in the low-hypoxia
response group.

The mechanisms underlying the variation in hypoxia
responses in breast and ovarian tumors are still unknown.
There are three reasonable possibilities; variations in the
hypoxia response program could reflect: (1) actual variations
in oxygen tension in the tumors; (2) cell type-specific
variations in the magnitude of, or threshold for, the response
to bona fide hypoxia, similar to those seen in our analysis of
different normal cells; or (3) inappropriate activation of the
hypoxia response resulting from genetic and/or epigenetic
alterations in cancers. Although the hypoxia response in
tumors is usually thought to be caused by the first mechanism,
the evidence suggests contributions from the second and
third mechanisms as well. For example, activation of the
hypoxia response program in clear-cell RCC is almost
certainly caused by loss of VHL (see Figure 4A) [4] rather
than by low oxygen tension. In breast cancer, the over-
representation of p53 loss-of-function mutations in the
tumors with elevated hypoxia responses suggests that the loss
of the p539s role in inhibiting HIF-1a protein stability and
hypoxia-induced cell death [4,55–57] may be a factor in these
tumors. Other oncogenic alterations in regulatory systems [3–
7] might also play a role in triggering or modifying the
hypoxia response in human cancers; a dissection of the
contributions of tumor oxygen levels and disordered regu-
lation of the hypoxia response in individual tumors will,
therefore, be important in developing therapeutic strategies
based on exploitation or inhibition of this program.

Table 1. Epithelial Hypoxia-Induced, Wound Signature, and Clinical Risk Factors: Survival (Cox Regression)

Variable Significance Hazard Ratio for Death 95.0% CI for Exp(B)

Lower Upper

Chemotherapy, yes or no 0.272 0.674 0.334 1.362

Diameter T2 (.2 cm) versus T1 (�2 cm) 0.103 1.493 0.922 2.419

Lymph node positive versus negative 0.663 1.159 0.597 2.251

Grade 3 versus 1 and 2 0.557 1.190 0.666 2.125

Age above 40 versus 40 and below 0.020 0.563 0.348 0.912

ER positive versus negative 0.471 0.803 0.441 1.460

Angioinvasion þ versus 6 versus � 0.006 1.418 1.107 1.816

Hypoxia-induced versus hypoxia-noninduced 0.003 2.387 1.357 4.198

Wound signature activated versus quiescent 0.010 2.176 1.204 3.933

DOI: 10.1371/journal.pmed.0030047.t001

Table 2. Epithelial Hypoxia-Induced, Wound Signature, and Clinical Risk Factors: Metastasis as First Event (Cox Regression)

Variable Significance Hazard Ratio for Metastasis 95.0% CI for Exp(B)

Lower Upper

Chemotherapy, yes or no 0.058 0.527 0.272 1.021

Diameter T2 (.2 cm) versus T1 (�2 cm) 0.004 1.970 1.240 3.128

Lymph node positive versus negative 0.718 1.119 0.608 2.057

Grade 3 versus 1 and 2 0.901 1.035 0.603 1.776

Age above 40 versus 40 and below 0.020 0.578 0.365 0.916

ER positive versus negative 0.583 1.188 0.643 2.197

Angioinvasion þ versus 6 versus � 0.007 1.393 1.097 1.769

Hypoxia-induced versus hypoxia-noninduced 0.004 2.164 1.284 3.647

Wound signature activated versus quiescent 0.074 1.628 0.954 2.778

DOI: 10.1371/journal.pmed.0030047.t002
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By using systematic analysis of global gene expression
patterns to relate in vitro cell culture models to their in vivo
cancer counterparts, we have been able to identify gene
expression patterns characteristic of two specific regulatory
programs: a wound response [22], and a hypoxia response
(this study) that together account for more than 40% of the
predictive power of a multivariable prognostic model that
includes all the classical prognostic factors for breast cancer
survival. These results show the power of controlled ex vivo
studies in defining gene signatures that allow the recog-
nition of critical molecular programs in cancers. The results
also show the potential for improvement in the current
criteria for risk stratification of cancer patients. The
prognostic information in the hypoxia signature was
virtually independent of that provided by the previously
reported wound signature [22] and a 70-gene prognostic
score [48]. Thus, integrating information representing
diverse genetic and molecular characteristics with clinical
data, to build a detailed profile of the biology of each
tumor, can greatly improve our ability to predict its clinical
course and choose the appropriate therapeutic strategy [58].
Unlike the ‘‘top-down’’ supervised approach to identifying
gene expression-based predictive models of cancer out-
comes, in which no specific biological processes are
associated with the tumor phenotypes, this ‘‘bottom-up’’
approach directly links cancer phenotypes to specific
molecular programs. Equally importantly, it links prognostic
molecular signatures to ex vivo experimental models that
can be used to study them, providing a more direct route to
the development of targeted therapeutics [59]. Many
therapeutic agents are already under development to
specifically target HIF pathways [2], or to target cells under
hypoxic environments by hypoxia-selective cytotoxins and
hypoxia-dependent gene therapy [60,61]; these drugs may
offer the greatest benefits to cancer patients with a high
hypoxia response.

Supporting Information

Figure S1. Quantitative Measurement of Hypoxia Score and
Corresponding Clinical Risks

The correlation of the quantitative and continuous hypoxia response
score (x-axis) of each tumor sample (black circle) in the NKI breast
cancer dataset [48] versus the (log) relative risk (y-axis) with in terms
of survival and metastasis-free survival.

Found at DOI: 10.1371/journal.pmed.0030047.sg001 (153 KB PDF).

Table S1. Multivariate Analysis of Risk Factors Using Classical
Clinical Predictors Alone

Multivariate analysis of risk factors for death (A) and metastasis (B) as
the first recurrence event in early breast cancer using a predictive
model containing only classical clinical predictors.

Found at DOI: 10.1371/journal.pmed.0030047.st001 (37 KB PDF).

Table S2. Multivariate Analysis of Risk Factors Using Classical
Clinical Predictors Combined with Hypoxia Signature and 70 Gene
Predictors

Multivariate analysis of risk factors for death (A) and metastasis (B) as
the first recurrence event in early breast cancer using a predictive
model containing several classical clinical predictors as well as the
gene signature of hypoxia response and NKI 70-gene predictor [48].

Found at DOI: 10.1371/journal.pmed.0030047.st002 (42 KB PDF).

Accession Numbers
Our microarray experiment data were deposited in the GEO database
(http://www.ncbi.nlm.nih.gov/geo) and assigned the accession number
GSE3537.
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Patient Summary

Background. All human cells need oxygen and have elaborate
mechanisms to sense inadequate oxygen levels and to respond in ways
that minimize damage. Low oxygen conditions, also called hypoxia, are
characteristic of many tumors. Several previous studies have suggested
that tumors that are more starved of oxygen (more hypoxic) are also
more aggressive and associated with a poor prognosis for the patient.

Why Was This Study Done? The researchers who did this study wanted
to thoroughly characterize the response of different types of cells to
hypoxia. They also wanted to see whether a tumor’s response to hypoxia
held information that could help doctors decide about the best
treatment.

What Did the Researchers Do and Find? They used a type of genetic
tool called DNA microarrays (these can measure changes in activity
across thousands of genes) to examine the response to hypoxia in a
number of different cell types. There are some differences in how
individual cell types (kidney cells, breast cells, or muscle cells, for
example) respond to hypoxia, but also many similarities. From the
changes in gene activity that were common to different cell types, the
researchers selected a representative group, which they called the
‘‘hypoxia response signature.’’ They then examined the hypoxia
response signature in several human cancer types, including kidney,
breast, and ovarian cancer. They found that, consistently, patients with
tumors whose gene activities were similar to the hypoxia signature were
worse off. They were more likely to have a recurrence of the cancer after
surgery and less likely to survive for five years or longer after the initial
cancer diagnosis. The researchers also found that the results from the
hypoxia signature test provided more information about the course of a
patient’s illness than any one of the clinical parameters that doctors take
into account when making decisions on how to treat a particular cancer
patient (such as tumor size and grade, patient age, and whether a breast
cancer is estrogen-responsive or not).

What Does This Mean? The study suggests that measuring how closely
a tumor’s gene activity pattern matches the hypoxia signature yields
information that is relevant for clinical decision-making. Much more work
is necessary before it is clear whether such a test is useful and practical in
normal clinical settings. However, like a number of other recent studies,
this one suggests that applying new molecular technologies can reveal
important differences between tumors that can’t be seen by other
means but are relevant for the best choice of treatment.

Where Can I Find More Information Online? The following Web sites
contain general information about cancer.
Pages from the American Cancer Society (search for microarray):
http://www.cancer.org/docroot/home/index.asp
Pages from Cancer Research UK:
http://www.cancerresearchuk.org/
Pages from the US National Cancer Institute:
http://www.cancer.gov/
MedlinePLus pages on cancer:
http://www.nlm.nih.gov/medlineplus/cancer.html
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