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Abstract

Background: Whereas genome sequencing has given us high-resolution pictures of many
different species of bacteria, microarrays provide a means of obtaining information on genome
composition for many strains of a given species. Genome-composition analysis using microarrays,
or ‘genomotyping’, can be used to categorize genes into ‘present’ and ‘divergent’ categories based
on the level of hybridization signal. This typically involves selecting a signal value that is used as a
cutoff to discriminate present (high signal) and divergent (low signal) genes. Current methodology
uses empirical determination of cutoffs for classification into these categories, but this
methodology is subject to several problems that can result in the misclassification of many genes.

Results: We describe a method that depends on the shape of the signal-ratio distribution and
does not require empirical determination of a cutoff. Moreover, the cutoff is determined on an
array-to-array basis, accounting for variation in strain composition and hybridization quality. The
algorithm also provides an estimate of the probability that any given gene is present, which
provides a measure of confidence in the categorical assignments.

Conclusions: Many genes previously classified as present using static methods are in fact
divergent on the basis of microarray signal; this is corrected by our algorithm. We have
reassigned hundreds of genes from previous genomotyping studies of Helicobacter pylori and
Campylobacter jejuni strains, and expect that the algorithm should be widely applicable to
genomotyping data.
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Background 
Categorization of bacteria on the basis of their genotypic

characteristics is supplanting classification based on pheno-

typic markers. Genotypic information surpasses the resolu-

tion achievable with phenotypic markers, giving deeper

insights into evolutionary relationships between species that

are indistinguishable on the basis of phenotypic traits. We

are particularly interested in the use of genome-composition

information to identify factors that distinguish pathogenic

bacteria from their non-pathogenic counterparts.

Although more than 86 prokaryotes have been sequenced

since the first completed genome in 1995 [1], the vast major-

ity of the sequenced genomes represent different species.

Use of this information is therefore generally limited to

mapping relationships on the genus and species levels.
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However, much of the interesting genome information that

determines phenotypic traits, such as degree of virulence, is

encoded in small differences between strains and serovars,

rather than species. Although considerable time will elapse

before enough strain-specific sequence information becomes

available through genome sequencing projects to identify

such traits, microarrays provide us with a tool to gain insight

into genome composition at present.

A number of studies have investigated genome composition

using spotted DNA microarrays [2-13], a technique that has

been referred to as genomotyping [14]. The basic methodol-

ogy is to hybridize the fluorescently labeled genomic DNA of

the strain of interest to the microarray along with the fluo-

rescently labeled genomic DNA of a reference strain, typi-

cally the strain whose genome sequence the array was based

on. By comparing the ratios of the signals obtained from the

spots on the microarray, one can predict whether a given

gene is present or divergent (the latter referring to either an

absent gene or a gene that is divergent to the point of having

poor hybridization properties) in the strain of interest.

Current data-analysis methods typically use a constant ratio

value as a cutoff for assignment into either the divergent or

present categories. This cutoff is typically empirically deter-

mined from a comparison of the reference strain to a similar

strain that is known to be missing certain genetic elements.

However, a strain with known deletions is not always avail-

able for every organism, hindering empirical determination

of a constant cutoff. This has led some researchers to adopt

published cutoff values without empirical determination.

This approach may be inappropriate, however, as variability

in appropriate cutoffs will be inherent in the many variations

of microarray technology and analysis methods, as well as in

the strains being analyzed.

In addition to these limitations, we have observed that use of

a constant cutoff leads to erroneous assignment of gene

presence in many cases. First, using a constant cutoff

demands that the microarrays exhibit high reproducibility.

Each dataset must exhibit an almost identical distribution of

ratio values in order for the chosen value to fall in the same

relative location along the distribution. Variation in the

width of the ratio distribution, which occurs as a result of

variable array and hybridization quality, results in anom-

alous categorization of genes. More problematically, strains

which are highly divergent from the reference strain cannot

be compared to the reference because of strain-specific

inconsistencies in established normalization procedures

(described in more detail below). For these reasons, we have

developed a method for dynamic assignment of genes, where

an independent cutoff is calculated for each hybridization

dataset. Array-specific cutoff determination provides more

flexibility in the hybridizations and strains that can be com-

pared. The method is more accurate than using a constant-

ratio cutoff for identification of divergent genes, and also

allows extraction of data from lower-quality hybridizations

which would otherwise be discarded. We have implemented

these methods in the genomotyping analysis program GACK.

Results 
Constant cutoffs are not appropriate for varying
distributions 
One might expect that in comparing the genome composi-

tion of a strain of interest to a reference (usually a

sequenced) strain, the genes would either be present or

absent. In examining such a strain on a microarray, the spots

would either exhibit signal (corresponding to present genes)

or be missing signal (corresponding to absent genes). This

would manifest itself in a distribution of signal intensity

ratios as a bimodal distribution representing present and

absent genes. In practice, we observe a major peak (present

genes) with a left-hand tail for every distribution we have

examined, including several published datasets (see, for

example, Figures 1, 2). We presume that the manifestation of

the non-present genes as a left-side tail rather than a peak is

due to a combination of divergence on the nucleotide-

sequence level (see below), cross-hybridization and variabil-

ity inherent in the calculation of ratios for small

signal-intensity values. We refer to these genes as divergent

rather than absent, as they may be present but too divergent

in nucleotide sequence to show a good hybridization signal.

Owing to the continuous nature of the ratio distribution rep-

resenting both present and divergent genes (Figure 3), the

selection of a cutoff ratio value to assign the genes into these

classes is not straightforward.

Previously published work has empirically determined a

cutoff value utilizing a strain known to be missing certain

genetic elements [8,10,11]. The raw ratios are normalized to

represent a linear ratio of 1, which assumes that most genes

are present in both the comparison and reference strains.

The constant-ratio cutoff is an arbitrarily chosen value that

divides the known present and divergent genes (based on

genome sequence) into their respective categories. However,

small differences in selection of a constant-ratio cutoff can

lead to improper assignment of hundreds of genes

(Tables 1-3). We desired a more robust method of cutoff

assignment that would address this problem. Furthermore,

whereas the constant cutoff method may be reasonably accu-

rate for strain comparisons in which closely related strains

are compared, we discovered during the comparison of

several Salmonella enterica serovars using our serovar

Typhimurium microarray that this procedure is inaccurate

for relatively divergent strains. 

The first facet of the problem exists within the normalization

procedure. In a typical normalization of a microarray

dataset, the ratio values are converted to a log scale, and

each data point is normalized by subtraction of the mean or

median log-ratio value of the dataset in order to center the

distribution around zero. This procedure was primarily
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developed for the analysis of RNA expression data, in which

the shape of the distribution of ratios is often consistent

from hybridization to hybridization regardless of the condi-

tions. In genomic DNA comparisons, however, the distribu-

tions display more variation in their shape as a result of

different numbers of divergent genes (Figures 1, 2, 3a). The

distribution of ratios is generally skewed to the left, but the

size of the left tail, as represented by the area under the tail,

varies depending on the number of divergent genes

(Figure 3). A larger tail results in the main peak being shifted

further to the right during this type of normalization, as the

main peak must balance the values of the tail. As the diver-

gent genes presumably fall primarily within the left tail of

the distribution and the main peak primarily consists of

present genes, the ideal cutoff value to distinguish present

and divergent genes is located near the base of the left side of

the main peak. 

As different types of analysis will require slightly different

cutoffs (see below), we refer to the region near the left base

of the main peak as the ‘transition region’, and to the precise

cutoff value selected for a given analysis as the ‘transition

point’ (Figure 3b). Owing to different proportions of diver-

gent genes, the boundary values of the transition region

change depending on the strain being analyzed, which

results in different degrees of shifting of the main peak. In

addition, variability in hybridization quality will influence

the boundary values, as the main peaks of the distributions

will vary in width and position. Using a constant-ratio cutoff

for the transition point leads to the cutoff having a variable

location along different distributions, rather than intersect-

ing each distribution at an identical point. Ideally, the transi-

tion point should fall at the same location along the

distribution of ratios for every hybridization; that is, the

transition point should always be located near the base of

the left side of the main peak. Visual inspection of the inter-

section of a constant cutoff ratio with a distribution with

many divergent genes demonstrates first, that the constant

transition point intersects different distributions at different

locations along the curve (Figure 3b; see also Figures 1, 2),

Figure 1
Magnified portion of the ratio distributions of all previously published C. jejuni strains. The arrow indicates the published constant cutoff. Inset graph: the
full ratio distributions of C. jejuni. The shaded region indicates the region taken for magnification. Inset table: log ratio values of the 0% EPP transition
points chosen by GACK in a strict analysis of divergent genes.
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and second, that there are divergent genes in some

hybridizations which would be inappropriately deemed

present instead of divergent because the constant transition

point falls far to the left of the transition region (Figure 3b,

Bongori hybridization).

Dynamic cutoff determination 
One solution to the above problems is to choose a different

cutoff for each hybridization dataset, which we refer to as

dynamic cutoff determination. By calculating independent

cutoff ratio values for each dataset, we can eliminate the

problems of variability in the ratio distributions. Manual

selection of cutoffs for each dataset is both tedious and inac-

curate, so we desired an algorithm that would perform

reproducible and consistent analyses. In order to select a

cutoff dynamically, we first require an algorithm for identify-

ing the transition region. This algorithm can either describe

the left tail or the main peak; identification of one allows

identification of the other by subtraction from the overall

distribution. We initially employed what we refer to as posi-

tive-side mirroring to describe the peak. In this algorithm,

the highest point of the main peak is identified, and the right

half of the main peak of the distribution is mirrored over the

maximum. This creates a symmetrical distribution in which

the right half of the main peak is mirrored to the left side,

creating a distribution which approximately resembles the

distribution we would expect if all of the genes were present

(for example, the reference strain hybridized to the reference

strain). However, we found this algorithm was not very accu-

rate for peaks that deviated from perfect symmetry around

their maxima (data not shown). We subsequently turned to

an algorithm that estimates the main peak using the normal

probability density function, which we found to be more

accurate in describing the shape of the main peak for

datasets deviating from symmetry.

The first step of the normal curve-mapping algorithm is to

find the location and height of the maximum of the major

peak. The sides of the distribution are then determined on

the basis of the ratio values at half of the peak’s maximum

height. A normal probability density function is fitted to the

main peak on the basis of these three parameters (height of

4 Genome Biology Vol 3 No 11 Kim et al.

Figure 2
Magnified image of the ratio distributions of all previously published H. pylori strains. The arrow indicates the published constant cutoff. Inset chart: the
full ratio distributions of H. pylori. The shaded region indicates the magnified region. Inset table: the log ratio values of the 0% EPP transition points
chosen by GACK in a strict analysis of divergent genes.
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peak + coordinates of two side points) (Figure 4a). This

normal curve is used as an estimate of the peak represent-

ing the present genes. We observe a left tail in the actual

ratio distribution, which deviates from the normal curve

and represents the population of putatively divergent genes

(shaded region, Figure 4a). We have thus established a
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Figure 3
Hybridizations of S. enterica serovar Typhimurium and S. bongori, each to a serovar Typhimurium reference on a Typhimurium LT2 array. (a) Distribution
of log ratios for serovar Typhimurium and S. bongori. Serovar Typhimurium is expected to hybridize to all spots, whereas S. bongori is expected to have
divergent genes. Note the left tail in the S. bongori distribution, which is absent in the serovar Typhimurium distribution (skewness = 0.322 for
Typhimurium; skewness = -2.094 for Bongori). (b) Magnification of the region between -2.0 and 0.5. The circles represent the transition regions, where
the main peak meets the left tail for each distribution. The arrow represents the constant cutoff which previous publications have used to distinguish
present and divergent genes.
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mathematical description of the main peak of the distribution,

allowing us to identify the transition region, that is, the

region at the left base of the mapped normal curve. This is

the first step in allowing us to distinguish between present

and divergent genes.

Estimated probability of presence 
Most published genomotyping analyses have been limited to

identification of divergent genes. However, this is only one

type of analysis that can be accomplished with microarray

data. One can also determine core sets of genes that are

common to multiple strains, as in the case of Helicobacter

pylori [11]. With the first step of describing the distribu-

tions complete, the challenge becomes to select a precise

transition point. Our genomotyping program GACK allows

the user to carry out different types of analyses that require

different transition-point cutoff values. For example, deter-

mination of the set of genes that are divergent in a strain

with a 0% false-discovery rate will require a different cutoff

compared to determination of the set of core conserved

genes within a set of strains with a 0% false-discovery rate.

In other words, depending on the type of analysis and the

confidence desired in the predictions, the cutoffs will need

to be assigned either very close to or farther away from the

6 Genome Biology Vol 3 No 11 Kim et al.

Table 1

Divergent genes of Campylobacter jejuni strains

Number of
Number of divergent
divergent genes found Number of Difference 

genes found by our divergent genes between
in the original constant-cutoff found by GACK GACK 

Strain publication [7] reanalysis trinary analysis and [7]

81-116 133 135 178 45

81-176 74 61 117 43

X 20 28 28 8

G1 17 17 37 20

P1 32 59 72 40

P2 63 68 38 -25

P3 91 108 140 49

P4 57 74 83 26

PHLS01 58 63 104 46

PHLS02 36 47 59 23

PHLS03 8 42 66 58

Mean 54 64 84 30

The reanalysis column in this and the other tables is our attempt to
reproduce the published analysis.

Table 2 

Divergent genes of Helicobacter pylori strains

Number of 
Number of divergent 
divergent genes found Number of Difference 

genes found by our divergent genes between 
in the original constant-cutoff found by GACK GACK 

Strain publication [11] reanalysis trinary analysis and [11]

SS1 175 171 174 -1

G50 143 141 136 -7

SPM-314 117 114 161 44

H34 193 192 202 9

J99 130 130 161 31

AR32 122 122 158 36

SPM-292 190 188 208 18

26695 87 86 88 1

87A300 156 153 225 69

G27 147 148 164 17

NCTC11638 136 135 127 -9

SPM-342 164 166 185 21

SPM-326 129 130 190 61

G39 151 142 162 11

HP1 137 135 188 51

Mean 145 144 169 23

Table 3 

Present genes of H. pylori strains

Number of 
Number of present 

present genes genes found Number of Difference 
found in by our present genes between 

the original constant-cutoff found by GACK GACK 
Strain publication [11] reanalysis trinary analysis and [11]

SS1 1,463 1,467 1,256 -207

G50 1,499 1,501 1,371 -128

SPM-314 1,526 1,529 1,289 -237

H34 1,449 1,450 1,249 -200

J99 1,511 1,511 1,309 -202

AR32 1,510 1,513 1,251 -259

SPM-292 1,453 1,455 1,242 -211

26695 1,556 1,557 1,398 -158

87A300 1,487 1,490 1,185 -302

G27 1,476 1,478 1,288 -188

NCTC11638 1,502 1,503 1,445 -57

SPM-342 1,477 1,475 1,302 -175

SPM-326 1,514 1,513 1,241 -273

G39 1,488 1,499 1,345 -143

HP1 1,506 1,508 1,284 -222

Mean 1,494 1,497 1,297 -197



base of the main peak. We have observed that the empirical

determination of cutoff values generally tends to be conser-

vative in the assignment of divergent genes (Figures 1, 2);

that is, genes that fall to the left of a cutoff of -1.0 are likely

to be truly divergent. However, assigning all genes with

signals larger than this cutoff value to the present category

is not accurate, as many genes that are actually divergent

will be assigned as present. A cutoff that is conservative
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Figure 4
Distribution for S. bongori. (a) Distribution of log ratios for an S. bongori hybridization with a serovar Typhimurium reference. The mapped normal
curve estimates the general shape of the main peak; the difference between this idealized curve and the observed data is indicated by the shaded
region. (b) The EPP distribution is negligible in the left tail, but increases quickly to 100% as the estimated proportion of present genes increases in the
transition region.
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for determination of divergent genes inappropriately over-

estimates the number of present genes, and vice versa. To

make these assignments more accurately, we invoke a simple

method for estimating the probability that a gene with a

given ratio value is present.

Estimated probability of presence (EPP) is calculated by

dividing the mapped normal curve value, which is the

expected value for a distribution in which all spots have

signal present on the hybridized microarray, by the actual

observed data distribution value for any given ratio.

%EPP = 100 x (expected normal value/observed value)

By comparing the expected distribution for a hybridization

with no absent genes (estimated by the mapped normal

curve) to the actual observed distribution, it is possible to

estimate the degree of divergence of the genome composi-

tions based on the divergence of the distributions. 

EPP values are calculated across the distribution in order to

assess the probability of presence for any given ratio value

(Figure 4b). In the left-hand tail of the observed data distrib-

ution, the normal distribution approaches zero. This reflects

the fact that in this region genes have a very low (close to

0%) chance of being present. As the EPP distribution

approaches the main peak, it rapidly increases as the

mapped normal distribution becomes substantial in relation

to the observed hybridization data distribution, which

reflects the increasing proportion of present genes. Eventu-

ally, the EPP crosses 100%, at which point all genes with that

particular ratio or higher are expected to be present.

After the point at which it crosses 100%, the shape of the

EPP distribution for different hybridizations is variable and

unpredictable. As a result, we only consider the left portion

before the curve reaches 100% for the determination of EPP.

Once the EPP distribution reaches 100%, all genes to the

right are considered to be present. We therefore have a

measure of the probability that a gene is present for every

data point in the hybridization.

Categorical assignment based on EPP 
The final problem is assignment into categories. The EPP

gives us an estimate of how likely a gene is to be present.

Genes with 0% or 100% EPP are easily assigned into the

divergent and present categories, respectively. However, a

significant number of genes have EPP values between 0%

and 100%. These genes fall into the transition region, which

is defined by the 0% and 100% EPP boundaries.

Typically, divergent and present are the primary categories

of interest. However, if a gene is predicted to have a 50%

chance of being present, the question arises as to how it

should be assigned. Moreover, in a strict analysis of diver-

gent genes, one would want to exclude even genes with a

10% chance of being present from the divergent category. It

is clear that selection of a transition point within the transi-

tion region is also a variable that should be specified by the

user depending on the type of analysis. To provide flexibility

in the types of analysis that can be carried out, we provide

three categorization tools in the GACK software for assign-

ment into various categories as well as parameters for con-

trolling the stringency with which the genes are assigned to

the categories.

The categorization options that are offered to the user are

binary assignment (present and divergent), trinary assign-

ment (present, slightly divergent, highly divergent), and an

assignment scale that reflects the EPP for every data point

(graded assignment). To date, most publications have used a

binary assignment scale [3,5,7,8,11], whereas others have

circumvented the problem of representation by reporting

raw values [10] or only identifying divergent genes [4,9]. As

noted above, the transition region contains the transition

point, but the precise point must be user-specified depend-

ing on the type of analysis. In binary assignment, a transi-

tion point is selected on the basis of the percent EPP. In a

strict divergent genes analysis, the user would specify 0%

EPP as the cutoff, which would result in approximately 0%

falsely assigned divergent genes. In contrast, a strict analysis

of present genes should use a 100% EPP to minimize falsely

assigned genes.

Although binary assignment is desirable in some cases as it

gives an orderly appearance, this sort of assignment discards

probability information that can serve as an indicator of con-

fidence in the category assignments. Trinary assignment is

identical to binary assignment, except that in addition to the

divergent and present categories, a third category is added

for data values that fall in the uncertain transition region.

Two transition points are specified, resulting in three cate-

gories. Only the genes with the most confident predictions

are included in the absolute present and highly divergent

categories, whereas a third category contains the genes that

could not be assigned with high certainty. These uncertain

genes represent the class of genes that are slightly divergent

(see “Assessment of divergence” below). The precise EPP

values to use as the cutoffs for trinary assignment are user-

specified in the software, but we recommend using the most

stringent values, 0% and 100%, for most analyses. Using

these values, there is high confidence that genes assigned

into the three categories are accurate.

The graded assignment categorization option is used to pre-

serve the most information regarding the probability that a

gene is present. A gene with a 100% chance of being divergent

is assigned a value of -0.5; a gene with a 50% chance of being

divergent or present is assigned a value of 0; a gene with a

100% chance of being present is assigned 0.5. Genes with

intermediate EPP values are assigned values in between -0.5

and 0.5 on a linear scale on the basis of the likelihood of their

8 Genome Biology Vol 3 No 11 Kim et al.



being present. This graded scale will ultimately give the most

accurate assessment of the data, as it preserves information

about the location along the distribution for each gene.

Analysis of published results 
Only two published spotted microarray genomotyping analy-

sis studies have made their raw datasets publicly available

[7,11]. We reanalyzed these datasets to evaluate the perfor-

mance of GACK.

Dorrell et al. [7] analyzed human isolates of Campylobacter

jejuni using a microarray constructed from the library of

clones used for genome sequencing of C. jejuni NCTC 11168.

Using other published analyses as a basis, these researchers

chose a linear constant cutoff of 0.5 (-1.0 in log2 space) to

identify divergent genes. We conducted our own constant-

cutoff analysis using the same parameters on the published

raw data, and our results generally agree with the published

analysis (Table 1, and Additional data files). However, we note

that even following the methods of the original authors, we

were unable to reproduce the analysis with 100% precision.

We next analyzed the original raw dataset with our algorithm

coded in the program GACK and used trinary categorization

for the output. Visual inspection of the frequency distributions

of their hybridization data reveals that the cutoff was generally

conservative (Figure 1). This was reflected in the EPP values;

all except one of the 0% EPP values is greater than a log2 ratio

of -1.0 (Figure 1). The less conservative cutoff resulted in the

larger number of highly divergent genes predicted by GACK

(Table 1; median of 40 more highly divergent genes per

strain). We conclude that as a result of GACK’s dynamic cutoff

determination, less conservative transition points, which are

still appropriate as judged by visual inspection of the ratio dis-

tributions, can be used for gene categorization.

The overall genome compositions look fairly similar across

the analyses (Figure 5), even though many additional diver-

gent genes are predicted by GACK. Closer analysis of the loci

analyzed in the original publication (restriction modification,

lipo-oligosaccharide, and capsule biosynthesis) show that on

the gene level, the analytical methods yield similar results

(Figures 6-8). GACK, however, predicts additional divergent

genes in these previously identified variable loci, suggesting

that the level of divergence may be even greater than deter-

mined by the original authors. Some of these additional loci

are readily explainable: in the original publication, a single

present locus is sometimes flanked by two regions of deleted
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Figure 5
Whole-genome depiction of present and divergent genes for C. jejuni. Blue denotes present genes, black denotes slightly divergent genes, and yellow
denotes highly divergent genes.
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genes. Our analysis finds that such loci often fall into the

divergent category or into the transition region, indicating a

low signal ratio. These genes are presumably divergent, but

did not meet the constant-cutoff analysis criterion for a

divergent gene because of a slightly higher signal. Using the

combination of a less conservative cutoff and trinary output

shows that such loci are not very likely to be highly con-

served. Furthermore, sequencing of these loci has confirmed

that many genes previously assigned to be present are in fact

divergent, and that GACK is more accurate than constant-

cutoff approaches in identifying these divergent loci (B.

Wren, personal communication). A complete list of diver-

gent genes is available from our website [15] and as addi-

tional data files with the online version of this paper.

Salama et al. [11] analyzed strains of Helicobacter pylori

using a spotted microarray based primarily on the strain

26695 genome sequence, with additional spots representing

strain J99-specific genes. The array therefore contains

sequences that are unique to J99 and others that are unique

to 26695, which proved useful for empirically choosing a log2

cutoff of -1.0. As observed for the C. jejuni analysis, we

observed that a log2 cutoff of -1.0 was generally conservative

(Figure 2), and that many divergent genes were falsely

assigned to the present category. We compared the trinary

GACK output to published analyses of divergent and present

genes. In some strains, more highly divergent genes are pre-

dicted by GACK, but in other strains, fewer highly divergent

genes are predicted (Table 2). In the case of present genes,

fewer present genes are predicted by GACK for all strains

(Table 3), which is due to the assignment of many of the

genes to the slightly divergent category. In conclusion,

whereas GACK analysis coupled with trinary output is gener-

ally less conservative in predicting highly divergent genes, the

predictions for present genes are more conservative (that is,

they predict fewer present genes) as a result of assignment of

some of these genes to the slightly divergent category. From

visual inspection of the position of the cutoff values along the

ratio distributions we expect that these assignments more

accurately reflect the true genome compositions. 

Viewing the whole genomes indicated that the major variable

loci predicted in the original publication are preserved in the

GACK analysis. No additional major contiguous regions of

divergence are predicted. A full list of divergent loci predicted

by GACK is available [15]. Analysis of the cag pathogenicity

island reveals that whereas the major differences are con-

served, some loci also display consistent weak signal across a

portion of the strains (black regions, Figure 9). Examples of

these loci are orf7, cag4, cag22 and cag25. Intriguingly,

multiple alleles of orf7 are apparent across the strains

(N. Salama, personal communication). The microarray con-

tains the 26695 allele of orf7, which is confirmed to be

present in strains G27, NCTC11638 and SPM-342 by PCR and

sequencing, in agreement with GACK analysis. The locus is

absent in strains SS1, G50, SPM-314, H34 and SPM-292, also

in agreement with GACK analysis. In J99 and 87A300, orf7

contains an insertion in the coding sequence. These two

strains exhibit weak hybridization signal, resulting in assign-

ment of orf7 to the slightly divergent category, presumably

due to the presence of the insertion. The orf7 alleles present

in AR32, SPM-326, G39, and HP1 are uncharacterized, but

our results would predict that these strains also contain the

J99 allele or another allele that is divergent from the 26695

allele. This finding suggests that the preservation of ratio-

intensity information in the trinary or graded output may be

useful in identifying allelic differences in some genes.

Assessment of divergence detection for H. pylori
microarrays 
The complete sequencing of a second H. pylori strain, J99

[16,17], provides a convenient means for assessing how

10 Genome Biology Vol 3 No 11 Kim et al.

Figure 6
GACK trinary analysis of restriction/modification loci of C. jejuni. Blue denotes present genes, black denotes slightly divergent genes, yellow denotes
highly divergent genes, and grey denotes missing data. The analysis corresponds to Table 2 of [7].

Cj0031 type IIS restriction/modification enzyme, amino-terminal half
Cj0032 type IIS restriction/modification enzyme, carboxy-terminal half
Cj0208 DNA modification methylase
Cj0690 possible restriction/modification enzyme
Cj0722 DNA methylase
Cj1051 restriction/modification enzyme
Cj1549 type I restriction enzyme R protein
Cj1551 type I restriction enzyme S protein
Cj1553 type I restriction enzyme M protein
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divergence in sequence identity affects microarray signal,

and therefore categorization. As the design of the micro-

array was based on the 26695 sequence, the J99 hybridiza-

tion products represent a spectrum of sequence identities

between target and probe. We examined the correlation

between signal intensities and percent sequence identity for

a J99 hybridization dataset in order to assess the degree of

sequence divergence that could be detected on the H. pylori

microarray. As expected, the hybridization signal decreases

with increasing sequence divergence (Figure 10a). For a

constant-cutoff analysis using a log2 cutoff of -1.0, the

identity level for categorization as divergent is approxi-

mately 88%. For the trinary GACK analysis, the transition

points were at -0.2 and -0.7, corresponding to approxi-

mately 92% and 89% sequence identity. These trends are

reflected in Figure 10b; approximately 50% of the genes

with 88% sequence identity are categorized as present, and

the other 50% are divergent for the constant-cutoff analysis.
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Figure 7
GACK trinary analysis of the capsule biosynthetic locus of C. jejuni. Blue denotes present genes, black denotes slightly divergent genes, yellow denotes
highly divergent genes, and grey denotes missing data. The analysis corresponds to Table 3 of [7].

Cj1413 kpsS
Cj1414 kpsC
Cj1415 cysC
Cj1416 sugar nucleotidyltransferase
Cj1417 GMP synthetase
Cj1418 phosphoenolpyruvate synthase
Cj1419 methyltransferase
Cj1420 unknown
Cj1421 sugar transferase
Cj1422 sugar transferase
Cj1423 sugar-phosphate nucleotidyltransferase
Cj1424 gmhA2
Cj1425 galactose kinase
Cj1426 unknown
Cj1427 sugar-nucleotide epimerase/dehydratase
Cj1428 fucose synthetase
Cj1429 unknown
Cj1430 nucleotide-sugar epimerase/dehydratase
Cj1431 glycosyltransferase
Cj1432 glycosyltransferase
Cj1433 unknown
Cj1434 galactosyltransferase
Cj1435 phosphoserine phosphatase
Cj1436 aminotransferase
Cj1437 aminotransferase
Cj1438 galactosyltransferase
Cj1439 UDP-galactopyranose mutase
Cj1440 galactosyltransferase
Cj1441 kfiD
Cj1442 glycosyltransferase
Cj1443 kpsF
Cj1444 kpsD
Cj1445 kpsE
Cj1447 kpsT
Cj1448 kpsM
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Similarly, the GACK analysis assigns approximately 50% of

the genes with 89% identity to divergent, and close to 100%

of the genes with greater than 92% identity as present. This

suggests that the detection limit of the H. pylori microarray

is approximately 88% sequence identity, and that this

detection limit results in classification of certain genes as

divergent in spite of the fact that sequence identity may be

relatively high (80-85%). 

We observe, however, that the majority of PCR products on

the array are approximately 93-97% identical to J99

(Figure 11a), and that the distribution of percent sequence

identity bears a striking resemblance to the shape of the dis-

tribution of the array data (Figure 11b). This implies that the

shape of the array data distribution may largely be a function

of the genome content, in addition to the hybridization

quality and parameters, and that the limits of detection for

the H. pylori microarray may be considerably lower than the

apparent value. The consequence for interpretation of

genomotyping data is that divergence is always relative to

the main peak of present genes. This main peak will repre-

sent differing degrees of sequence identity for different

organisms and strains, limiting our ability to make precise

predictions about the absolute degree of divergence for any

given gene. Furthermore, the predictions are likely to be

affected by the hybridization conditions. Nevertheless, it is

evident that the microarray data contain a fairly high level of

sequence identity resolution, and that binary representation

unnecessarily overlooks this information.

Validation of GACK predictions 
Sequencing of the C. jejuni capsule biosynthetic locus from

several strains has indicated that some regions which were

incorrectly predicted to be present by constant-cutoff

methods are correctly predicted to be divergent by GACK (B.

Wren, personal communication). To further validate the

algorithm, we attempted to PCR-amplify and sequence 40

genes representing a spectrum of array intensities from the

H. pylori strain G27. We successfully amplified 21 regions

12 Genome Biology Vol 3 No 11 Kim et al.

Figure 8
GACK trinary analysis of the lipo-oligosaccharide biosynthetic locus of
C. jejuni. Blue denotes present genes, black denotes slightly divergent
genes, yellow denotes highly divergent genes, and grey denotes missing
data. The analysis corresponds to Table 4 of [7].
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Cj1145 unknown
Cj1146 waaV
Cj1148 waaF
Cj1149 gmhA
Cj1150 rfaE
Cj1151 rfaD
Cj1152 phosphatase
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Figure 9
The cag pathogenicity island of H. pylori. Trinary GACK output was
directly visualized in Treeview [22]. Blue denotes present genes, black
slightly divergent genes, and yellow highly divergent genes.
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for subsequent sequencing. Many of the genes predicted to

be highly divergent by GACK did not amplify, presumably

because of their divergence. However, in the cases where

amplification and sequencing were successful for the highly

divergent genes, we observed approximately 90% sequence

identity between G27 and the amplified sequence present on

the array (26695 or J99) (Table 4). All genes that were pre-

dicted to be slightly divergent by GACK (array ratio of -0.6 to

-0.2) were 91-96% identical with sequences on the H. pylori

array, with a median of 94%. Genes with stronger array

intensities were predicted to be present by GACK, and, not

surprisingly, corresponded to higher sequence identities. On

the basis of a linear regression of the sequencing results, we

predict that the majority of genes of G27 share approxi-

mately 96% identity with the sequences on the array (pri-

marily 26695). These data, taken together with our analyses

of the J99 hybridizations, indicate that microarrays do not

just predict presence or divergence, but can resolve variation

in sequence identity between target and probe. Furthermore,

GACK is able to correctly categorize these genes.

Discussion
Microarrays are increasingly used as a tool for genome-com-

position analysis, or genomotyping [14,18]. Current methods

of microarray data analysis are primarily designed for expres-

sion (mRNA) studies, in which the distribution of signals is

assumed to remain relatively similar across conditions. For

microarray-based comparative genome analyses, the signal

distributions may show significant variation between species

or strains. Furthermore, normalization procedures in which

distributions are centered to zero on a log2 scale are not

appropriate for strain comparisons, as the majority of the dis-

tributions are skewed. This skew manifests itself as the main

peak of the ratio distribution, representing the present genes,

being shifted to different degrees for different strains. The

peak’s position is also dependent on the length of, and

number of genes present in, the left tail (area under the left

tail). Because of the varying position of the ratio distribu-

tions, a constant-cutoff analysis results in selection of a dif-

ferent location on each distribution as the transition point for

category assignment. Other normalization procedures can be

used that will not be subject to such problems, but are more

complicated to implement and require some prior knowledge

of genome composition [19]. We hypothesized that a more

accurate approach to creating these assignments is to select a

mathematically identical point on each distribution being

analyzed as the transition point. We subsequently developed

an algorithm to reproducibly identify such a point.

The algorithm assumes that a hybridization in which all

spots have signal present are distributed normally. This

assumption proves to be fairly accurate, as is observed in the

mapping of normal curves to the hybridization distributions

(for example, Figure 4). Slight deviations are seen in the tails

of the distributions, suggesting that better estimates of the

distributions may exist. The observation that percent

sequence identity is at least crudely resolved on the micro-

arrays suggests that a multinormal model may be more accu-

rate. Nonetheless, the normal curve mapping consistently

gives good overlap with the main peak of the ratio distribu-

tions in our analyses. Furthermore, normalization of the

dataset does not impact on analysis with GACK because the

algorithm depends on the shape of the distribution. The

genes are determined to be present or divergent on the basis

of their relative position in the distribution, rather than an

absolute signal intensity ratio. We observed that the algo-

rithm works as well on un-normalized datasets as it does on

normalized datasets (data not shown), circumventing the

need to implement more complex normalization procedures

for genomotyping data. However, while GACK is able to

account for minor variations in a set of replicate hybridiza-

tions, we emphasize that hybridizations of poor quality yield

irreproducible results regardless of the analysis method.

We originally considered using the left side of the normal

curve map as a transition point for binary analysis. This point

effectively represents a 0% EPP cutoff, which we believe is

appropriate and accurate for a strict divergent genes analysis.

However, we realized that genomotyping data embodies

information that can be analyzed in many other ways, and

therefore chose to implement multiple flexible assignment

systems in the software. The choice of the transition point(s)

and the output format depend closely on one another; regard-

less of this, the algorithm selects points that are consistent in

their location on each distribution for any given analysis. This

method, coupled with our estimates of probability that a gene

is present (EPP values), should give more accurate assign-

ments across hybridizations and strains.

We developed GACK to improve analysis of genomotyping

data generated in our laboratory. In an effort to both deter-

mine if the algorithm would be broadly applicable to other

genomotyping datasets generated from different micro-

arrays and by other laboratories, we tested all of the publicly

available datasets with GACK. It should be noted that at

present only two datasets are available, both of which were

generated using spotted DNA microarrays, and therefore the
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Table 4 

Sequencing summary

Range of array Attempted Successful Median percent 
signals PCRs PCRs sequence identity

-4.2 to -1.0 9 1 90.2

-1.0 to -0.5 8 1 90.5

-0.5 to -0.3 9 7 94.3

-0.3 to -0.1 9 8 95.2

-0.1 to 1.1 5 4 97.5
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Figure 10 
Microarray results as a function of sequence identity for H. pylori J99. (a) H. pylori J99 sequences show varying degrees of divergence from the 26695
sequences present on the microarray, which is reflected in the microarray signal. Median signal ratios were calculated from J99 spots grouped by
predicted degree of local sequence identity greater than 50 nucleotides in length with 26695. (b) The proportion of present genes for J99 spots grouped
by sequence identity with 26695 was tabulated for constant cutoff and GACK analyses.
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Figure 11
Comparison of sequence identity and microarray hybridization distributions for J99. (a) Percent local sequence identity shared between the amplicons
present on the H. pylori microarray and J99. The majority of J99 genes share 93-97% identity with the array sequences, which are based on 26695. A peak
of 93 genes with 100% identity is mostly comprised of J99-specific sequences that were added to the array. (b) J99 hybridization distribution. Note the
presence of a small peak to the right of the main peak, similar to above.
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applicability of GACK to data generated from oligo-based

arrays remains to be tested. Nonetheless, our analyses gen-

erally correspond well with the published analyses of

C. jejuni and H. pylori strains. Categorical assignments were

based on a constant log2 cutoff of -1.0 in these publications,

which, from visual inspection of the distributions, appear to

be conservative for divergent gene identification. Accord-

ingly, GACK predicted transition-point values that were gen-

erally higher than -1.0. As these publications primarily

focused on divergent genes, conservatism in the predictions

was appropriate, but resulted in lower sensitivity of detec-

tion. Our analyses have recategorized several hundred genes

based on 0% and 100% EPP values. Although many genes

have been reclassified as highly divergent, many also fall into

the slightly divergent category. In creating this additional

category, we make a relatively conservative prediction of

both highly divergent and present genes, which results in

more confidence in our assignments. 

We found that the published analyses of H. pylori strains

were also conservative in their predictions of divergent

genes, although less so than the C. jejuni analysis. In con-

trast, the published predictions for present genes were less

conservative, as genes that lie within the tail of the ratio dis-

tribution but have a ratio of greater than -1.0 were classified

as present (Figure 2). This is a limitation of binary represen-

tation of the information. This limitation, coupled with our

observations that sequence-identity information is present

in the array data, indicate to us that more sophisticated and

detailed representation systems are necessary. We believe

that at present, trinary and graded output are the best

options, as they preserve more information than binary

output, but more work is needed in this area. 

Closer analysis of the cag pathogenicity island revealed that

the predictions were for the most part identical to the previ-

ously published predictions. Intriguingly, some loci, such as

orf7, consistently show hybridization, but with relatively low

strength. This is particularly interesting because there are

multiple allelic forms of orf7 in different H. pylori strains

(N. Salama, personal communication). This indicates that

preservation of ratio information, such as in the output of

trinary or graded analyses, can result in detection of relevant

biological differences and should be done for most analyses.

Analysis of the degree of sequence identity required for

detection on the H. pylori microarray revealed that

sequences with less than 88% identity resulted in dramati-

cally reduced signal on the microarray. Genes with this

degree of identity or lower were typically classified as highly

divergent, regardless of the method of analysis. In contrast

to the hybridization results, loci with greater than 80%

sequence identity are generally considered to be likely

homologs by in silico comparison. This is a limitation of the

microarray technology that should be considered when

referring to a particular locus as divergent.

We attempted to validate the GACK predictions by PCR

amplifying and sequencing loci of the different classes. Not

surprisingly, many of the highly divergent genes did not

amplify, limiting our ability to draw any conclusions about

the precise degree of sequence identity that results in a gene

being classified as divergent. Nevertheless, the observed

PCR success/failure rate and percent sequence identities are

consistent with the GACK predictions. True validation of this

analysis method, and of microarray genomic comparison

and analysis methods in general, will be achieved through

a combination of more strain comparison work and accom-

panying sequence information in the form of genome

sequencing projects and the sequencing of particular loci by

individual laboratories. Multiple strain and species genomes

are available, or will be soon, for a number of organisms,

providing a wealth of information for direct comparative

genomic analysis and the groundwork for further establish-

ing microarray-based genomic comparisons as a viable

means of assessing genetic differences in strains of interest.

Our findings offer improved methods for analysis of

microarray-based genome-composition data. Analysis of

genomotyping datasets of S. enterica serovars has demon-

strated that dynamic cutoff selection is more reliable and

reproducible than constant cutoffs [20]. We have also

described two additional systems for representation, which

preserve more of the raw information than a binary analysis.

Most importantly, we have identified shortcomings in cur-

rently available analytical methods. Most of the tools for

microarray data analysis have been developed for use with

expression data, but even simple manipulations such as nor-

malization of the datasets are not necessarily appropriate in

the case of genomic comparisons. We hope and anticipate

that identification of these problems will facilitate that

development of even more sophisticated analysis methods.

Materials and methods 
GACK programming 
GACK was written in Perl. Testing was conducted on a

Windows 2000 system with ActivePerl 5.6.1 build 631. The

script requires Perl/Tk for the user interface. A stand-alone

executable for Windows was created using Perlapp (Activestate

Perl Developer’s Kit 4.0).

Reconstruction of datasets
We found that we could not precisely reproduce the results of

two previously published works [7,11]. We therefore detail

here the reconstruction of the raw datasets that we generated

for our analyses, as well as make available our datasets [15].

C. jejuni dataset 
Raw hybridization values were downloaded for triplicate

hybridizations of the 11 C. jejuni strains [7]. The linear data

was converted to log2, although the linear data contained

negative values (median 0.8% per strain, or 14 spots out of

16 Genome Biology Vol 3 No 11 Kim et al.



1,730), which could not be converted to log2 and were sub-

sequently discarded from the dataset. The triplicates were

averaged, and these data served as the raw dataset for our

analyses. The published present/divergent genes category

sizes were tabulated from the lists of divergent genes avail-

able at [15]. 

H. pylori dataset 
Raw values were downloaded from the Stanford Microarray

Database [21]. The data for the AR32 and H34 strains were

absent in the Published Data section, and were obtained

directly from the authors. The data were filtered to include

the same genes as the previously published dataset [11].

Numbers describing the size of the present and divergent

genes categories were obtained directly from the publication.

PCRs and sequencing 
Genes were selected for sequencing using various criteria,

including array signal intensity, variance in the replicates

and amplicon length. Primers were selected that were identi-

cal to those used to construct the H. pylori array. Sequenc-

ing was from both ends of the PCR products and was carried

out by Sequetech (Mountain View, CA). H. pylori G27

genomic DNA was a gift from Douglas Scott Merrell.

Additional data files 
The Perl source code for GACK, a Windows-executable

version of the program, and a manual in PDF format are

freely available at our website [15] and as additional data

files with the online version of this paper. A complete list of

divergent genes, raw ratio values and trinary outputs are

also available for C. jejuni and H. pylori. A tool for constant-

cutoff analysis, CCACK, can also be downloaded at our

website [15].
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