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ABSTRACT Pure bending of a membrane bilayer is developed including different
properties for each membiane half. Both connected and unconnected bilayer sur-
faces are treated. The bilayer bending resistance is the resultant of parallel surface
compression “resistances.” The neutral surface is a function of the upper and lower
surface compressibility moduli and does not necessarily coincide with the mid-
surface. Alterations in the interfacial chemical free energy density (surface tension)
on either face can create induced bending moments and produce curvature; even small
changes can have a pronounced curvature effect. Chemically induced moments are
considered as a possible mechanism for crenation of red blood cells.

INTRODUCTION

The question of the relative contribution of bending moments and membrane tensions
has arisen frequently in the consideration of plasma membrane deformations.! Rand
and Burton (1964) theorized that the unusual behavior of micropipette aspiration of
red blood cells resulted from ““bending resistance” (resistance to producing curvature
in the surface). Fung (1966) discussed the general relation between bending resistance
and membrane tensions and pointed out the importance of bending in stability of the
biconcave shape of red cells when stressed. Canham (1970) and Lew (1972) considered
the biconcave shape to be the minimum bending configuration. Zarda (1974) has re-
cently investigated the role of bending resistance in maintenance of the biconcave
shape of the red cell during osmotic swelling. On the other hand, it is important to
recognize that considerable evidence exists indicating that bending resistance is second
order in comparison with surface shear resistance in large deformations (Evans, 1973;
Evans and LaCelle, 1974; and Hochmuth, 1972, 1973). Therefore, the membrane bend-
ing resistance needs to be determined.

There have been extensive observations of induced curvature in red cell membranes
resulting from alterations in chemical environment (Bessis, 1972). The red cell shape
spectrum ranges from a normal biconcave disk to a tightly crenated sphere; the inter-

'In deformation of thin membrane shells, bending moments are most often negligible compared with
membrane stresses or stress resultants (tensions) (Fliigge, 1966; Fung, 1966). However, there are
many situations that arise where bending moments not only cannot be neglected, but dominate and
are essential for stability (Fung, 1966).
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mediate states are spiculated shapes called echinocytes of different degrees. The revers-
ible shape change from a biconcave disk into a crenated sphere was first described by
Hamburger (1895) and still remains an unsolved puzzle for many a hematologist and
cell physiologist. Ponder (1971) accumulated a vast amount of information concern-
ing the multiplicity of agents and conditions that produce this transformation, but
the underlying mechanism has not been established. Here, the possibility that the
spiculation or curvature can be produced by chemically induced bending moments in
the lipid bilayer will be investigated.

Pure bending of a membrane bilayer will be considered in this paper. However,
it is reemphasized that additional structural rigidity exists for plasma membranes of
biological cells (Evans, 1973; Evans and LaCelle, 1974); biological membranes have a
non-zero shear modulus and resistance to in-plane shear. The shear modulus is sig-
nificantly smaller than the modulus for resistance to area changes; therefore, for the
bending resistance, isotropic tension created by small area changes in the layers will
dominate. On the other hand, the deformation of the total surface (at essentially
constant surface area) requires in-plane shear and will in general create anisotropic
tension in biological membranes; the result of membrane tension will be discussed but
not explicitly treated (see Evans [1973] and Skalak et al. [1973] for consideration of
membrane shear resistance). This approximation to an actual composite membrane
provides insight into a possible mechanochemical basis for equilibrium shape changes.

Lipid monolayers and bilayers behave as two-dimensional liquids: no resistance to
in-plane shear, only isotropic tension (in the membrane plane) can be developed and
is the result of surface dilation or compression. Bending of monomolecular layers
can take place freely provided the radii of curvature of the surface are greater than
intermolecular distances and no alteration in surface area occurs. The same is true for
multilayers that are not connected and are free at the extremities (in other words, the
freedom condition permits the layers to extend past one another at the edges to accom-
modate relative area changes). However, for connected layers or layers with con-
straints at the edges or boundaries, preventing the layers from slipping relative to each
other, it is not possible to bend the composite without introducing area changes in the
layers. For “pure bending,” there will be a neutral surface that maintains constant
area. Both connected and unconnected layers with fixed boundaries will be investi-
gated to establish resistance to curvature production (‘“bending resistance”) and in-
duced bending moments.

MECHANICAL EQUILIBRIUM IN BILAYERS

The tension in two-dimensional, monomolecular lipid layers is isotropic (independent
of direction in the plane of the membrane) but not necessarily homogeneous.

Tij = Taij’ (1)
where tension is the force per unit length on the side of a material element; the sub-

scripts (i, j) refer to the two coordinates in the plane of the surface; §; is the Kro-
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necker delta matrix. The isotropic tension is the balance of the interfacial, free energy
density (surface tension between the monolayer and environmental solutions) and the
two-dimensional compressibility of the surface.

T=7v+ Ka, (2)

where 7 is interfacial, free energy density; K is the two-dimensional compressibility
modulus; « is the areal strain (fractional change in area resulting from compression of
the surface: [4 /4,] — 1).

For a bilayer, the surface properties will, in general, be different for each layer:

upper: T = (" + K'a"),
lower: T = (v' + K'a). (3)

If the bilayer is initially in equilibrium without any external forces, then the tensions
are zero (where the subscript zero specifies initial equilibrium conditions):

T = Ty = 0.

The initial properties are related by,

[
L

Yo + K'ag
Yo + Klog

(4)

BENDING RESISTANCE AND RIGIDITY CONSTANT IN
CONNECTED BILAYERS

If the connected bilayer is initially flat and then bent, a bending moment is produced
by expansion of the upper surface and compression in the lower surface (Fig. 1).
The bending moment is given by,

M =hT - WT, (5)
where h*“, h' are the distances of the upper and lower surface from the neutral sur-
face (which has not changed area). The total intersurface distance, A, is the sum of
h*plush’,

h =h"+ h'. (6)

In pure bending, the expansion of the upper surface relative to the compression in the
lower surface is inversely proportional to the respective surface compressibilities:

—da*/da’ = K'/K". (7)
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FIGURE 1 Schematic of lower surface compression and upper surface expansion resulting from
bending of a membrane bilayer.

For thin membranes, the changes in the area strains (8, ') are given by,
uf 1 1
h ( F+ RZ),
(L, L
—h ( R, + R2> (8)

R,, R, are the principal radii of curvature for the surface.
Using Egs. 6-8, the neutral surface distances are determined,

1

da”

da!

h*/h' = K'/K*,
h* = h/(1 + [K*/K')),
K = h/(1 + [K'/K")). 9)

The moment, Eq. 5, can be expressed in terms of the compressibilities and fractional
area changes,

M = K*6a*h* — K'6a'h’,

which is given by,
K'Kk* 1 1
M=hrn-——_")=+ =)
g (K" ¥ K’)(R. * %) e
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The bending rigidity constant, D, is

K'K*
D = n?|—2_). 11
(K" + K’) (b

The area compressibility moduli, K, are in units of dynes per centimeter and would
be divided by a single molecular layer thickness in order to obtain the “‘equivalent”
stress units (dynes per square centimeter); however, such a conversion can not be made
because the membrane is not a continuum in the thickness dimension. In Eq. 11, the
result is that the bending rigidity constant is proportional to total bilayer thickness
squared. For a three-dimensional, isotropic material, the bending rigidity constant is
Eh3/12(1 — o?) where E is Young’s modulus in dynes per square centimeter and
o is Poisson’s ratio. The numerical coefficient results from the integration of shell
stresses that linearly vary through the shell thickness (Landau and Lifshitz, 1970).
Also, Young’s modulus, E, is proportional to the shear modulus of the material which
is zero in this case; therefore, bending theory for a three-dimensional isotropic mate-
rial is clearly inappropriate to lipid bilayers. An important aspect of Eq. 11 is the
effect of different surface compressibilities. The surface compression “resistances” act
in parallel; therefore, the total bending resistance is limited by the smallest modulus.
The neutral surface is not necessarily the “mid-surface”.

CHEMICALLY INDUCED MOMENTS IN CONNECTED BILAYERS

Changing the surface chemical equilibrium by altering the interfacial free energy den-
sities (v*, ') would result in adjustments in upper and lower surface areas, thereby
inducing a bending moment. In order to establish the new equilibrium, the surface free
energy change must be minimized. The surface free energy per unit area is given by,

F=v“a*+ 1)+ v'(a" + 1) + 1/2K*(a*)* + 1/2K'(a')%. (12)

Using the initial equilibrium conditions (Eq. 4) and examining the change in free
energy,

AF = év"6a* + 6y'6a’ + 1/2K*(5a*)? + 1/2K'(8a’)?, (13)
where,
AF = F — F,,
Fo = vi(ag + 1) + volag + 1) + 1/2K(e5)* + 1/2K'(a4)?,
oY = v = Yo,

ba = a — a,.

For pure bending of a connected bilayer with the neutral surface area unchanged, the
variation in free energy can be expressed in terms of local curvature.
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ar - [ B]B(L, D+ 2014 1Y, (14)
k* K' Jh\R, R,/ 2\R, R,

The first term in Eq. 14 is the chemically induced, moment free energy, and the
second term is the bending resistance. In the absence of external forces and boundary
constraints, the free energy is minimized by setting the variation with respect to total
curvature equal to zero,

8(AF)/6C = 0, (15)
where
C = (1/R)) + (1/Ry),

the total curvature. Egs. 14 and 15 give the relation between local curvature and
chemical alterations for a connected bilayer:

1 1 oy" ov'\1
e — Y= (=== L) 16
(& )= (- % 19

If the surface has fixed boundary conditions or is a closed surface, then the equilibrium
condition involves transverse shear, membrane tensions, and moments in a compli-
cated set of relations (see Fliigge, 1966). However, as will be discussed in a later sec-
tion, lipid bilayers are apparently unconnected; therefore, it will not be necessary to
carry the development further here.

BENDING IN UNCONNECTED BILAYERS

As previously mentioned, an unconnected bilayer without edge restrictions would
offer no resistance to bending because the lower layer would merely “slip” past the
upper layer. If, on the other hand, the edges of the bilayer are constrained such that
the layers are prevented from relative movement at the edge (or if the membrane is a
closed surface, e.g. encapsulating a cell), then there will be net area differences between
upper and lower layers when curvature is produced. But local adjustment and relative
movement can take place between the layers. In this case, the difference in total upper
and lower surface areas is determined by the integral of curvature over the whole mem-
brane.

v ol =L L
da* — da A,,,f<R,+R2)ds’ (17)

where [ ds is the integral over the total membrane and A,, is the total membrane
area. Again, the fractional area changes are related by Eq. 7 and the surface com-
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pressibilities:
b = P (L \p(L, L\
A\l + (K*/K))" \R, ~ R,

—h 1 1 |
Z<—l " (K,/K“)) S (R_. + R—z)ds. (18)

Using Eq. 18, the variation in free energy density can be obtained from Eq. 13 for an
unconnected, bounded bilayer.

da

AF = [(3v*/K*) = (37'/KD(D/h) (C) + (D/2) {C)?, (19)

where (C) is the surface average total curvature.

1 1 1
C) = —/J =+ =]|ds.
( ) Am f (RI R 2)
Here, it is observed that the induced moment and bending resistance are active in a col-
lective sense over the whole surface rather than at a specific location.
The equilibrium condition is given by the variation of the free energy change with
respect to average curvature:

3AF) _
8({C)) ’

L g [0yt _ av'\1

Moty

MECHANISM FOR RED BLOOD CELL CRENATION

As mentioned in the Introduction, the human red blood cell exhibits progressive
crenation in response to increasing amounts of various chemical agents and to elec-
trical fields (Rand et al., 1965). The action of induced bending moments is proposed
here as the mechanism for crenation. In this case, crenation would be the result of
expansion of the outer surface relative to the inner surface. Such conditions would
arise either when the outer interfacial free energy density (y*) decreased (e.g. the
addition of electrical charges to the outer layer) or when inner interfacial free energy
(') increased (e.g., Ca** binding between negatively charged amphiphilic molecules
of the inner surface, see Bretscher [1973]). In order to evaluate the evolution of the
spiculation, it is necessary to determine whether or not the bilayer is connected. Direct
mechanical evidence would require measurement of relative shear resistance between
the layers, but this has not been done. However, extensive X-ray diffraction data exists
showing that the nonpolar tails are not connected (Mateu, et al. [1973] and Tardieu
et al. [1973]). Therefore, it is reasonable to assume that the two layers can move rela-
tive to one another.

E. A. EVANs Bending Resistance and Chemically Induced Moments 929



If the spicules are produced uniformly over the surface, Eq. 20 shows that the aver-
age curvature per spicule must increase as the interfacial free energy density of the
outer surface decreases:

~ O spicutc = ((67"/K*] — [87'/K']) 1 /h. (21)

For a fixed surface like the red cell membrane, the average curvature per spicule
increases with increasing number of spicules. Therefore, the number of spicules pro-
gressively increases with the interfacial free energy change. In addition, it is apparent
from Eq. 21 that reducing the surface compressibility amplifies the effect (e.g. by in-
corporating material in the membrane like cholesterol).

Only the crenation of red cells has been discussed here; but, the concept is also com-
patible with the red cell disk to cup shape transformation (Bessis, 1972). In this case,
the opposite situation exists: the inner surface is expanding relative to the outer sur-
face (in other words, the cell is trying to turn “‘inside-out”). Here, either the inner
surface interfacial free energy density (y') decreases or the outer surface interfacial
free energy density (y*) increases.

Implicit in the preceding discussion has been the assumption that the structural
rigidity possessed by the red cell membrane can be neglected. In order to evaluate this
assumption, the elastic free energy of the structural component must be compared with
that of Eq. 13. The elastic free energy density is given by (Evans, 1973),

AF; = (u/2) (& + ),

where u is the two-dimensional shear modulus (dynes per centimeter) of the mem-
brane; ¢,, ¢, are the finite strains in the plane of the membrane. When the induced
curvature of the surface is very small, the sum of the strains is the order of 6«; there-
fore, the interfacial free energy change must be greater than the membrane shear
modulus in order to initiate bending,

oy ~ u.

However, when the curvature is not small, the sum of strains greatly exceeds the frac-
tional area change of a layer. In this case, the condition is approximately,

by ~ ule + ¢)/h{C),

and could be the order of 100 times the shear modulus . The red cell membrane shear
modulus has been measured to be about 10-? dyn/cm; therefore, the interfacial free
energy change would have to be between 10-2 and 1 dyn/cm for the progressive crena-
tion of red cells.
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CONCLUSION

The bending resistance and chemically induced moments in membrane bilayers have
been developed with different properties for each layer; both connected and uncon-
nected bilayers have been treated. It was shown that the location of the neutral sur-
face is a function of the upper and lower surface compressibility moduli. Note, these
moduli may change in value when going from compression to tension. Therefore, the
neutral surface may move in response to curvature reversal. The bending resistance
of a connected bilayer is a function of local curvature whereas bending resistance of
unconnected bilayers is related to the surface average curvature. Alterations in the
interfacial, chemical free energy densities can create induced moments and produce
curvature. Small changes in environment can cause appreciable curvature production
because large curvature must counter the small layer separation in order to give the
fractional area change needed.

The chemically induced moment is proposed as a mechanism to produce crenated
and cup-shaped red cells. The shear rigidity of the red cell membrane must also be
overcome along with the bending resistance and may be appreciable for large spicules.
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