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ABSTRACT This is the first in a series of four papers in which we present the numerical
simulation of the application of the voltage clamp technique to excitable cells. In this
paper we describe the application of the Crank-Nicolson (1947) method for the solu-
tion of the parabolic partial differential equations that describe a cylindrical cell in
which the ionic conductances are functions of voltage and time (Hodgkin and Huxley,
1952). This method is compared with other methods in terms of accuracy and speed of
solution for a propagated action potential. In addition, differential equations rep-
resenting a simple voltage-clamp electronic circuit are presented. Using the voltage-
clamp circuit equations, we simulate the voltage clamp of a single isopotential mem-
brane patch and show how the parameters of the circuit affect the transient response
of the patch to a step change in the control potential. The simulation methods pre-
sented in this series of papers allow the evaluation of voltage clamp control of an
excitable cell or a syncytium of excitable cells. To the extent that membrane param-
eters and geometrical factors can be determined, the methods presented here provide
solutions for the voltage profile as a function of time.

INTRODUCTION

The voltage clamp technique, originally developed for squid axons (Cole, 1949; Hodg-
kin et al., 1952), has been applied to a variety of other excitable cells. The interpreta-
tion of the recorded currents as being proportional to membrane conductance changes
depends on the assumption of isopotentiality of that region of membrane from which
the current is recorded. Because this requirement of isopotentiality is never fully met
(e.g. the resistance of the surface of the axial wire is not low enough or the length of the
node must be finite), it is important to evaluate the quality of any voltage clamp tech-
nique.

One particular impetus to initiating these studies was concern for the quality of the
voltage clamp of a bundle of smooth muscle. A preliminary report of our initial results
reflects this interest (Anderson et al., 1971).

The primary purpose of this group of four papers is to develop methods and show
some evaluations of the voltage control of cylindrical cells. The first discusses and
compares methods of numerical solutions for the equations describing the axon and
voltage clamp. The second paper examines the quality of the double sucrose-gap
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FIGURE 1 Representation of a cylindrical cell as an electrical circuit including the extracellu-
lar resistance, (7, ), the axoplasmic resistances, (7;), the membrane capacitance, (c,, ), and the series
resistance, (r,). The active membrane conductances and ionic equilibrium potentials are repre-
sented by the boxes marked HH, the Hodgkin and Huxley model.

voltage-clamp which we use.! The third paper evaluates the feasibility of voltage
clamping in a postsynaptic region of membrane imbedded in an axon, and the fourth
treats the problem of a bundle of small axons. These examples are important in the
work of our laboratory but the methods are very general and can be easily adapted to
simulation and examination of many other experimental arrangements.

A brief description of the components of the system follows.

Cable Equations

Cable equations were derived by Lord Kelvin (1855) to describe voltage and current
distribution in the electrical equivalent circuit of the submarine cable. The first to
apply them to axons was Weber (1873). Hermann (1877) reduced the problem from
three dimensions to one by assuming that radial currents in the core and surrounding
medium could be ignored. Several investigators have contributed to the analysis of
the corresponding cable equations (Hodgkin and Rushton, 1946, and Lorente de N6,
1947, for other references see reviews by Taylor, [1963] or Cole [1968]). Fig. 1 repre-
sents the electrical properties of long cylindrical nerve cells, such as the squid giant
axon as a distributed cable equivalent circuit. The resistance in series with the squid
axon membrane first described by Hodgkin et al. (1952) is important in quantitative
studies of voltage clamp currents and is included for completeness. However it will be
assigned a value of zero until the effect of the series resistance is specifically considered
in the fourth paper.

There are numerous derivations of the cable equations; we refer the reader to Cole
(1968) (whose sign convention we follow). The membrane voltage (V,,) is taken as in-
side minus outside voltage and inward current is taken as positive. The subscripts i
and o represent the inside and outside, respectively. In the absence of external sources
or sinks, the general cable equation is given by

92V, [0x = (r, + 1,)(Cm[0Vn/0t] + [V /1n)), )

! A preliminary report has been given at an American Physiological Society meeting (Anderson et al., 1971).
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where r; and 7, are the internal and external resistivities per unit length and i,, and ¢,
are the membrane current and capacitance per unit length; r,, is the membrane re-
sistance x unit length.

It is frequently expressed in the form

A 3%V, /0x?) = 17, (0V/01) + Vp, )

where A2 = r,,/(r; + r,)and 7,, = 7pCp.

Hodgkin and Rushton (1946) assumed the membrane resistance and the injected
current to be constant and derived an analytic solution for Eq. 2. This *““passive cable”
solution will hold for small perturbations about the resting potential, but to obtain a
more realistic solution, the nonlinear membrane characteristics of an axon niust be in-
corporated into Eq. 2.

Nonlinear Membrane of the Squid Giant Axon

The Hodgkin and Huxley (H-H, 1952) model is the reference standard description of
squid axon membrane ionic conductances. A set of ordinary differential equations
describe three independent first order reversible processes whose forward and back-
ward rate constants are voltage dependent. The H-H membrane model may be incor-
porated into the cable equations, by replacing V,,/r, in Eq. 1 by the H-H ionic cur-
rent per unit length of membrane, ij,,, giving

(1/lr; + 1)) (0*Vm/3x2) = (V] 31) + iion- 3)

The solution of this nonlinear partial differential equation (PDE) cannot be obtained
by analytical procedures but Hodgkin and Huxley (1952) transformed it into an or-
dinary differential equation by assuming that the action potential propagates at a
constant speed 6 along an axon with constant diameter and membrane properties. This
method is not applicable at ends or to regions of changing geometry or membrane
properties (e.g. as a result of temperature variations or drug treatment). Therefore it is
necessary to solve Eq. 3 by numerical methods. Programs for its solution are now
available and can be run on even small laboratory computers.

Voltage Clamp Methods and Characteristics

The Hodgkin-Huxley model was formulated from data obtained from a voltage clamp
of the squid giant axon, where longitudinal gradients were avoided by introduction of
an axial wire with low surface resistance. The axial wire also provides a low resistance
path to supply the required membrane current, the current per unit length being:

im = m(a Vm/at) + iion' (4)

If the membrane potential is forced to follow to a voltage step, capacitative current
flows only during the period during which the membrane potential is changing. Follow-
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ing that, the feedback circuit injects or withdraws the ionic current through the mem-
brane arising from changes in the voltage-dependent ionic conductances.

For a good voltage clamp, the membrane must have a uniform potential over the re-
gion from which current is measured. In large axons, this is frequently achieved by
means of the previously mentioned short-circuiting axial wire. For voltage clamping
small fibers the most widely used technique is the double sucrose gap introduced by
Stampfli (1954) and first used on lobster axons by Julian et al. (1962 a,b). The sucrose-
gap voltage clamp is based on electrical isolation of a “node” or short length of axon
between two high resistance partitions of flowing sucrose. When the node length is
short? (compared with the diameter), space clamp conditions are approximated—that
is, any voltage gradients over the length of the node hopefully introduce only small
errors. Since then the method has been applied to several other cells such as squid
axons (Moore et al., 1964), smooth muscle (Anderson, 1969), cardiac muscle (Rougier
et al., 1968), and skeletal muscle (Moore, 1972; Ildefonse and Rougier, 1972).

Previously a simplified first approach to simulation of a realistic voltage clamp had
been carried out by assuming that the cable properties of the axon could be represented
by two coupled patches of isopotential membrane (Taylor et al., 1960). Not only was
the cable very oversimplified for this simulation but it also left out the control amplifier
characteristics as well as the membrane capacitance. The current through one patch
was solved by an analog computer and the values “‘stored” as a line drawn on an X-Y
plotter. A curve follower made the stored values available for insertion into the po-
tential signal driving the second patch.

Advances in computer technology since then have made possible the present much
more realistic simulations on a digital minicomputer. They incorporate a representa-
tion of the full control circuit as well as an accurate description of the axon as a cable,
including the membrane capacitance.

LIST OF SYMBOLS

t Time (s).

k Time increment, Az (s).

x Distance (cm).

h Spatial increment, Ax (cm).

a Axon or cable radius (cm).

D Axon or cable diameter (cm).

R; Resistivity of internal medium (Q-cm).

Cn Membrane capacitance per unit area (F/cm?).
Vi Transmembrane voltage (V).

Vi, ¥V, Internal and external voltages with respect to ground (V).

2When the segment length is comparable to the diameter of the axon, one must consider the three-dimen-
sional voltage distribution problems. Eisenberg and Johnson (1970) showed serious nonuniformities exist
for a point source of current injection. In the experiments considered for simulation in this paper, the cur-
rent entering the segment is distributed across the whole cross section of the axon and we may consider
a one-dimensional system with assurance.
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i;,i,  Internal and external longitudinal currents (A).
r;,r, Internal and external medium resistance per unit length (2/cm).

im Transmembrane current per unit length (A /cm).
Cm Membrane capacitance per unit length (F/cm).
T Membrane resistance x unit length (Q cm).

A Length constant (cm).

Tm Time constant (s).

[} Conduction velocity (cm/s).

fion H-H ionic current per unit length (A/cm).

METHODS

Numerical Integration

There are only a few special cases in which the solution to Eq. 2 may be written in closed
form, such as an infinitely long passive cable (Hodgkin and Rushton, 1946) or an infinitely long
passive cable terminated at one end by a cell body (Rall, 1960). For a passive cable of finite
length, the solution for the condition of current injection at a single point can be written as
a Laplace transform (Norman, 1972). Solutions for the propagation of transient potentials
in a wide variety of finite and infinite passive cables have been obtained (Jack and Redman,
1971) but these solutions are written in closed form only for a current impulse. To obtain
the solution for a transient potential resulting from an arbitrary current function, the solu-
tion for the current impulse must be convolved with a current function.

Hodgkin and Huxley (1952) transformed the partial differential equation into an ordinary
differential equation by assuming that the action potential propagates with constant velocity,
obtaining

(1/2[r: + 1,102 d2V,, /dt? = c,(dV,/dt) + iy,.

It is possible to solve this equation when 8 is known, but it is necessary to find 6 by trial
and error through iteration. The solution is very sensitive to the value of # and the solu-
tions diverge to + « after the peak of the impulse even for 8 bracketed to one part in 107
(FitzHugh and Antosiewicz, 1959). Hodgkin and Huxley (1952) switched the method of cal-
culation for the falling phase to that for a membrane action potential. FitzHugh and Antosie-
wicz (1959) were able to extend the solutions to the latter part of the impulse by interpolating
between these two bracketing solutions to find initial conditions for continuation of the com-
putation. This procedure “had to be repeated as many as six times” before satisfactory solu-
tions were obtained.

The scheme of transformation of a partial to an ordinary differential equation is restricted
to propagation of an impulse with constant velocity along a cylinder of constant diameter.

The more generally useful approach is to write the partial differential equation as a difference
equation and solve this. This difference equation may be solved numerically by either explicit
or implicit methods of integration. Explicit methods evaluate expressions for partial deriva-
tives of ¥V while implicit methods solve simultaneous equations (relating the potential at
several points along the cable) which imply, or are the result of stepwise integration.

The explicit method scheme uses the second central difference at time ¢ for the second
partial derivative of V (footnote 3) with respect to x, and the forward difference as the time

3 For simplicity we now consider the axon in a bath large enough for us to neglect the external resistivity.
Then the membrane potential is identical with the internal potential and we drop these subscripts.
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derivative of ¥. When this is done, the cable equation (Eq. 3) can be written as:
(Vicn = 2V + Vi) (B)? = ric,(VF* = Vi/K) + Fiiion, (5)

where A is the spatial increment (Ax) and k the time step (Ar). The value of ¥*** can be
evaluated for each segment because the voltages at all values of x at time ¢ are known, either
from previous calculations or as a boundary condition for the first time step. In principle,
the solution of any cable equation problem may be obtained by explicit numerical integration,
using any one of several methods for derivative evaluations. However, two basic constraints
with explicit methods make them unstable and impractical for some axon problems.

The first constraint is that, for stability of numerical solutions of parabolic partial differ-
ential equations (including those for cables), the ratio of the increments in time and distance
must satisfy the following condition. See for example, Gerald, 1970:

Dk/4h*R,C,, < 0.5,

where D is the axon diameter in centimeters.

When the axon membrane is characterized by temporal and voltage dependent conductances
(e.g. the H-H membrane), a second stability condition must also be met. The integration time
step must be short compared to the time constant of the changes in the membrane conductance,
i.e. the k/7, ratio should also be less than 0.3. For an accurate solution, one would
imagine that this ratio would have to be much smaller.

To illustrate this problem let us consider explicit numerical integration using axon segment
lengths equal to the diameter (500um), the first condition requires that the time step must be
<3 ps. This makes the solution quite slow because some 3,000 computation loops are required
at each segment for a reasonable length of membrane time (10 ms at 6.3°C). While this may
be acceptable for studies of impulse propagation over a length of axon, accurate simulations
of the voltage profile in a short length of axon (such as 1/4 to 1/2 the axon diameter for
a sucrose gap) require much shorter segments. Whenever the segment length is halved, the time
interval must be reduced fourfold to maintain stability. This rapidly leads to a situation re-
quiring extremely short time steps and correspondingly unacceptable computation times.

When the simulation includes the additional complication of the voltage control circuit in
explicit numerical integration, still another difficulty arises. The potential at the point of
current injection tends to swing wildly and lead to unstable solutions because computations
for the potential of this input segment are made without relation to its neighbors.

On the other hand, implicit methods of integration are intrinsically stable and ideally suited
for solution of parabolic partial differential equations such as those for the cable (Young,
1961). In contrast to the explicit method, there is no restriction on the relative sizes of the
temporal and spatial steps. In these methods the voltage distribution over the whole length of
the cable is calculated for each time step. For stability of simulations which include the
voltage control, implicit methods of numerical integration are almost the required method.

The first numerical solutions of the equations for impulse propagation in an axon with a
Hodgkin-Huxley membrane were made by Cooley and Dodge (1966) with an implicit integration
method based on the trapezoidal rule. The method used in the present work is the Crank-
Nicolson (1947) implicit method and is similar to that used by Heppner and Plonsey (1970).*

Briefly, the Crank-Nicolson method of integration consists of writing the differential equation
as a difference equation for each segment, with the second order spatial derivative replaced with
the second central difference at the present time step (#) and at one time increment later

‘Dr.M. Kootsey has pointed out to us that the integration method used by Heppner and Plonsey (1970) is
better described as a backwards difference method.
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(¢ + k). If the voltage at time ¢ in cable segment j is written as V', then the difference equa-
tion for segment j is:

riealVitE = VK] = 12011V )y = 2V + Vi
+ Vit = 2V 4 Vi = i, (6)

itions
where, as before, h represents the increment in distance and k the increment in time. Bound-
ary conditions must be stated for the first (F) and last segment (L) to represent the termina-
tions of the cable. We take the condition of perfect end sealing or zero longitudinal current
flow to the left end and zero current to the right end, i.e.

VF = VF—l and VL = VL+I-

These assumed boundary conditions approximate the situation for several voltage clamp
arrangements of interest: (/) The central guarded segment of an axon with an axial wire having
a low surface resistance. (2) The ends of the artificial node in a sucrose gap with negligible
external leakage. (3) An axon with an internally injected oil drop electrically sealing off an
end. (4) The termination at the end of a long cable because boundary conditions here do not
affect potentials at several “length constants” away.

For all segments except the terminal ones:

—KVitk+2(1 + K)V*k — KV =
21 - K)Vi+ K(Vjoi + Vi) = @K/cm)iion, (7)

where K = k/r;c,,h*. The terminal segments are evaluated separately. The first segment is
given by:

—KVE + 2(1 + K/VER = KV + 2(1 = K/2)VE - (2k/¢pn)iion,  (8)

F+1

and for the last segment, segment L
—KVi*E £ 2(1 + K/2)Virk = KV | + 2(1 — K/2) VY — 2k/cm)iion- )

Note that the equations are arranged such that the left side includes only terms containing
the voltage at the next time step, and that the right side includes only terms containing the
voltage and the current at the present time step, which are assumed to be known. When the
first segment is taken as segment 1, these equations can now be written in matrix form as:

(¢, b, 0 0 1 [ve] [a ]
a, ¢, b, 0 0 Vit d,
. . .00 . .
... 0 0 < |- = .
0o - - . 0 . .

acy e by Vith di_y

L ar CL | _V;fk_ LdL _
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where the a’s, b’s, and ¢’s are constants related to the cable parameters and the d’s are
functions of the membrane potential and current at the current time step (i.e., the right sides
of Egs. 7, 8, and 9). Since we have L equations in L unknowns (the voltages at the next time
step), if the d’s are computed at each time step we can solve for the unknowns by standard
matrix methods of inversion or elimination. Because the matrix is tridiagonal, a particular
modification of the Gauss-Seidel elimination method can be used (Gerald, 1970).

Evaluation of Accuracy of Solutions of the PDE

It is possible to obtain an analytical solution for passive cables. We tested our integrations
for an ohmic membrane against error function solutions for an infinite cable (Hodgkin and
Rushton, 1946) and found them to superimpose.

However there are no analytical solutions for the nonlinear partial differential equation such
as a cable with an excitable membrane and therefore it is not possible to make comparisons
of computations by any particular method with the “true” solutions. However there are a
few practical ways to assess the.validity of the computed solutions: (/) They must not violate
physical principles. (2) They must satisfy the original PDE. (3) They may be compared®
to solutions by different time and distance increments. (¢) They may be compared’® to
solutions by different integration methods.

The first two tests ‘were readily satisfied. The most sensitive variable to compare integration
methods and increment sizes appears to be the speed of impulse propagation. Table I com-
pares different methods of integration for a propagating action potential in an axon with an

TABLE 1

METHODS OF INTEGRATION FOR A PROPAGATING ACTION
POTENTIAL IN AN AXON WITH AN H-H MEMBRANE

- Implicit
Uniform wave Explicit P~
assumption * ; rank-
Euler,* Istorder  Euler,* 2nd order Trapezoidal || Nicolson*
dr (us) 5 1 B 10 10
Speed (m/s) 18.8% 49.5 21.24 21.19 18.694 18.795
18.74§
18.74339 |
18.7274*
V, (mV) 90.55* 10234  92.70 92.62 90.5 90.68
d¥v/dt(V/s) 429.9* 547.52 475.61 473.16 43843
Relative computation
time 10 10 1
Where applicable, segment lengths of 500 um were used for all methods and the number of segments
was 100 (ours) or more.
*Present work.
{Hodgkin and Huxley, 1952.
§FitzHugh and Antosiewicz, 1959.
| Cooley and Dodge, 1966.

5 A similar evaluation for solutions of the ordinary differential equations describing the Hodgkin-Huxley
model for a uniform patch of membrane has been made for membrane action potentials by numerical
integration. Moore and Ramén (J. Theor. Biol., 1974) found that as the time increment decreased, the
solutions approached an invariant solution which was identical for all integration methods tested.
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H-H membrane. The parameters used for the comparison were: the speed of propagation of
the action potential once it attains its constant value, the spike height (¥,) and the max-
imum rate of rise (d¥/dt). The cable and integration parameters, where applicable, were the
same: radius of 238 um, axoplasm resistivity 35.4 Q-cm, temperature 18.5°C and dx of
500 um.

The simplified ordinary differential equation method of Hodgkin and Huxley (1952) presum-
ably would yield an accurate value of the constant speed of propagation for the action po-
tential if the integration of the ordinary differential equation is accurate (see for example,
Moore and Ramén, 1974). The speed of propagation obtained from the uniform wave as-
sumption falls between those found by two implicit methods of integration and differs from
them by only about S parts in 2,000. Cooley and Dodge (1966) have shown (their Table I) that
as the spatial increment is decreased the velocity found by their implicit method moves even
closer to the wave equation solution but a decrease in the time step makes little change in the
velocity. Because our implicit solution falls so close to theirs, we have not repeated their
systematic evaluation. In contrast, explicit methods, using the same time step fail badly and
it is only when the time steps are reduced 10-fold that they yield values that approach those
from other methods. The time to compute one increment in axon time is about the same for
each of the methods examined. Therefore the explicit methods which require a small step size
take much more computer time to approach the proper velocity of propagation, revealing
another distinct disadvantage of the explicit methods. Although the ODE resulting from the
wave squation assumption can be solved rapidly, a very large number of iterations is required
in order to obtain a solution through most of the falling phase of the action potential. Thus
the overall computation time may often exceed even that for integration of the PDE.

Voltage Clamp Equations

The voltage clamp circuit frequently used in our laboratories (Moore et al., 1964; Moore, 1965)
is represented in Fig. 2. There are several lag response elements in the feedback circuit: (/)

FIGURE2 Diagram of the voltage clamp circuit to be simulated; showing the control ampli-
fier, (CA), and the feedback loop which includes the cell and the current measuring amplifier,
(7). The current from CA enters the cell through a resistance, (R,,), and the potential of one
segment is measured by the amplifier, (E), and fed back to the summing point of CA.
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the transient response of the control amplifier; (2) the lag of the voltage across the membrane
capacitance behind the injected current; (3) the lag in the spread of potential along the cable
from the segment of current injection to the segment where potential is recorded; (4) the lag
of the potentiometric or electrometer amplifier in measuring the membrane potential. Where
the potential is measured through a resistance of less than 1 MQ (as in a sucrose gap), this
lag usually has a time constant of less than 5 us and we have neglected it in simulations. In
circuits where measurements are made via high resistance micropipette electrodes, one should
consider including it in the simulation as a first or second order response. Where two micro-
pipettes are used, one for current injection and one for potential measurement, the capacitance
between them may be the most important element in the circuit and needs to be included in the
simulation.

The net effect of these lags is to introduce a total phase lag in excess of 180° at high fre-
quencies. Therefore the system will oscillate unless phase lead is introduced or the system
gain is reduced to below unity before the high-frequency phase lag reaches 180°. In order to
have an experimental system which is fast but stable, we have regularly introduced C, to
provide phase lead and C; to attenuate the high frequency gain.

The currents which flow to and from the control amplifier in Fig. 2 are defined as follows:

L, =V, — ¢/Ry, (10)
I; = Ci(d[V, — €]/d?), (11)
I, = (Vs — €/R,) + Cp(d[V}, — €l/d1), (12)
I, = C,(de/dt). (13)

Applying conservation of charge to the summing point of the control amplifier, we have the
differential equation for ¢, the potential at the summing point

(Cs + C; + C,)(de/dt) = (V, — ¢/Ri) + (Vs — €/Ry)
+ Cy(dV,/dt) + Cp(dV,/dr). (14)

The differential equation describing the control amplifier itself is
dVa/dt = _(G'Ao + llﬂ)/'rd’ (15)

where the amplifier’s low-frequency open loop gain is —A4, and its time constant is T,. The
following steps are carried out for each time increment: (/)Eqs. 14 and 15 are integrated to
give V, (the maximum output is limited to +10 V). (2) the current applied through the
access resistance (R,,) is calculated from the voltage difference between the output of the
control amplifier and the voltage of the membrane at the segment of the current injection.
(3) The potential distribution throughout the cable is determined by the implicit integration
method. (4) The new voltage in the segment of the cable where potential measurement is
simulated, labeled ¥}, is available for use in Eq. 14 for the next iteration.

SIMULATION RESULTS AND TESTS

We will develop our observations in such a way as to try to separate and clarify the
contributions of the various components to the observations made in the most complex
situation. We start with an oversimplified system and increase the complexity in a
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TABLE 11
PARAMETER VALUES WITH SQUID AND LOBSTER AXONS

Parameter Squid (500 uxm) Lobster (125 um)

A, 500,000 500,000
T, 10usto 1 ms 10usto 1l ms
R;, 10KQ 10KQ
R,y 20KQ 50-750KQ

. R, SOKQ 50KQ
Cy 05x10°°F 0.1x10~°F
o 0.085 x 10°F 0.05x10-°F

stepwise fashion, using more realistic assumptions at each step. For the purposes of
studying the stability (control of oscillations) of the voltage clamp, we will first con-
sider lumped passive isopotential patches of membrane, then we will include membrane
excitability in an isopotential segment. The following papers consider distributed ex-
citable membrane in several voltage-clamp arrangements.

Voltage Clamp of Passive Patch

The first test of the voltage-clamp circuit simulation was made with parameters
chosen to fit specific experimental situations of special interest in our laboratory. We
frequently use squid and lobster axons in a double sucrose-gap chamber, the length
of the exposed axon in the “artificial node” is usually less than or equal one-half the
axon diameter. Typical parameter values which we have used, needed, or observed for
the circuit are given in Table II.

The values of C; and C, may be adjusted to obtain the fastest voltage-clamp for
each particular cable model as is frequently done for each experiment. Fig. 3 illustrates
how the transient voltage response to a step command changes from underdamped to
overdamped as the value of C, is increased. Typical values for a passive patch of a

Cy= 200 f

AN

~

1004

C,=1500 pf

0.1 0.2 0:3 s
FIGURE3 Transient voltage clamp response (to a 75 mV step command) of a passive membrane

patch of diameter 500 pm, length 250 um, and specific membrane resistance 1000 Q-cm?,
using two values for the capacitance C,, in the voltage clamp circuit of Fig. 2.
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500 um diameter squid axon 250 um in length with a specific membrane resistance
1,000 Q-cm? were used.

Clamped Excitable Membrane

We next endow a membrane patch with the reference standard characteristics for the
squid axon described by the Hodgkin and Huxley (1952) equations and assume that it
is isopotential throughout. In so doing we simulate the original voltage clamp experi-
ments of squid axons (Cole, 1949; Hodgkin et al., 1952) in which a nearly uniform
potential was maintained over a considerable length by means of a short-circuiting
axial wire with a low surface resistance. Because voltage clamp experiments in our
laboratory frequently yield ionic current densities which are twice as large as those
given by the H-H equations (Hodgkin and Huxley, 1952), we scaled up the maximum
conductance two-fold, taking gy, = 240 mmho/cm? and gx = 72 mmho/cm? 2 la
FitzHugh and Cole (1964).

For the active patch, the membrane conductances change as function of voltage and
time. Following a step command to the control circuit, the potential measured by the
electrometer amplifier becomes voltage-clamped after some delay due to the time to
charge the capacitance through the access resistance. The patch then undergoes the
well known changes in conductance associated with the depolarizing potential step. In
order to keep the voltage across the membrane at the command potential, the control
amplifier has to inject or withdraw current equal to that flowing through the mem-
brane. To generate the current flow, the output voltage of the control amplifier devi-
ates from the desired value, first in the negative direction during the phase of inward

: e

1oow : i

754;

254

Vm

/ 2
mA,Cm

87‘

4 by ™

-4—K \;///5/ »

-84

»
(]

FIGURE4 Current and voltage response from an active membrane patch of diameter 500 um
and length 250 um. The upper part (A) shows the transmembrane voltage (V,,) along with
the output voltage of the control amplifier (V). The lower part (B) is the current elicited
from the membrane in response to the S0 mV depolarizing step.
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current and later in the positive direction during the outward current. The waveform
of the control amplifier output deviations appears to be rather similar to that of the
ionic current through the clamped membrane, but the amplitude depends on the access
resistance R,, .

The results of such a simulation (using the same size patch and control circuit
parameters as in Table II) are shown in Fig. 4. The membrane voltage undergoes a
step depolarization of 50 mV from rest and remains constant throughout the 5 ms
shown in the figure. After the initial transient, the output voltage of the control ampli-
fier (¥, shown in Fig. 4 A) follows a pattern which is the sum of the potential step and
the current generated by the membrane segment (Fig. 4 B). The peak inward and
steady-state outward current-voltage relations obtained when the command is stepped
from a 20 mV hyperpolarized holding potential to several potentials over the physio-
logical range are essentially identical to those which obtain from the augmented H-H
equations under assumed perfect voltage-clamp conditions.
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