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The mechanical properties of materials and particularly the
strength are greatly affected by the presence of defects; therefore,
the theoretical strength (�10% of the Young’s modulus) is not
generally achievable for macroscopic objects. On the contrary,
nanotubes, which are almost defect-free, should achieve the the-
oretical strength that would be reflected in superior mechanical
properties. In this study, both tensile tests and buckling experi-
ments of individual WS2 nanotubes were carried out in a high-
resolution scanning electron microscope. Tensile tests of MoS2

nanotubes were simulated by means of a density-functional tight-
binding-based molecular dynamics scheme as well. The combina-
tion of these studies provides a microscopic picture of the nature
of the fracture process, giving insight to the strength and flexibility
of the WS2 nanotubes (tensile strength of �16 GPa). Fracture
analysis with recently proposed models indicates that the strength
of such nanotubes is governed by a small number of defects. A
fraction of the nanotubes attained the theoretical strength indi-
cating absence of defects.

inorganic � mechanical properties

The strength of macroscopic objects is determined by the
intrinsic (crystalline) properties of the material as well as by

such extrinsic factors as grain boundaries, dislocations, vacan-
cies, and other defects (1, 2). These extrinsic factors are affected
by the manufacturing processes used for the preparation of a
specific specimen. Thus, the strength of macroscopic objects is
generally much smaller than the theoretical value of 10% of
Young’s modulus. This apparent discrepancy highlights the fact
that the strength of materials is only partially determined by their
intrinsic mechanical properties (1, 2), i.e., the strength of their
chemical bonds.

In general, the strength of macroscopic materials increases as
the scale decreases. In reinforcing fibers for example, this is true
whether the scale is taken as the diameter of the fiber or its
length. It is also true for the characteristic (or average) dimen-
sion of a reinforcing particle or a platelet. This phenomenon is
usually called the size effect and can be understood by two
distinct arguments, based either on probability or fracture
mechanics. From a probabilistic viewpoint, Weibull (3, 4) and
Freudenthal (5) proposed a formal link between the probability
of occurrence of a critical defect in a solid of (dimensionless)
volume, the concentration of defects, and the size (length, area,
and volume) of the solid specimen. According to Weibull’s
model the probability of occurrence of a critical defect (and thus
of failure) increases rapidly with increasing size for a given defect
concentration. The same conclusion is reached when fracture
mechanics arguments are used, based on the original observation
of Griffith (6).

In contrast to macroscopic models, which deal with a statis-
tically large number of defects within a body or a continuum of
matter, nanomaterials and nanotubes in particular can be studied
and modeled on a microscopic (atomistic) level (7, 8). Because
only a discrete number of atomistic defects are present in the

nanotube, the effect of individual defects can be examined
experimentally and theoretically. By isolating and studying in-
dividual nanostructures, which contain no defects, one may hope
to achieve strengths much larger than the macroscopic ana-
logues. Also, the dimensions of the examined specimen are not
necessarily a relevant parameter in judging their strength. Rather
the control of the synthesis of the nanotubes determines their
perfectness and consequently their strength. Indeed, long and
defect-free nanotubes can be stronger than shorter nanotubes,
which contain many point defects. A contrasting proposal is that
below a certain critical size, nanomaterials may well become
altogether insensitive to defects (9).

Recently, two studies analyzing the influence of the vacancy-
related defects on the ultimate strength of nanotubes were
published (10, 11). The first study used quantized fracture
mechanics (QFM) to describe the strength of (carbon) nano-
tubes and (silicon) nanowires (10). The model is in fact the
Griffith theory adapted for a beam with a discrete number of
defects, which could arise from a few missing atoms in the
nanostructure. The second study used atomistic computer sim-
ulations and analytical continuum theory to describe the influ-
ence of the concentration of vacancy related defects (11) on
Young’s modulus and tensile strength. The enormous influence
of a single missing atom defect on the strength of nanotubes is
demonstrated in both of these studies.

With the advent of methodologies for the synthesis and
manipulation of individual nanotubes, a systematic study of their
mechanical properties is now feasible (12–18). This progress
allows, in return, the testing of the above models (10, 11). In view
of the present findings it can be concluded that inorganic
nanotubes may well in the future be the basis of a new generation
of high-performance nanocomposites.

Since the discovery of inorganic fullerene-like nanostructures
and nanotubes (IF) of WS2 in 1992 (19), many more IF nanopar-
ticles were reported, including MoS2 (20), BN (21), VOx (22), NiCl2
(23), WO2Cl2 (24), etc. The physical properties of these nanoma-
terials so far have not been investigated extensively. It was never-
theless pointed out by both theory and experiment that this brand
of new nanomaterials possesses a wide range of electrical and
optical properties that can be tuned with the diameter of the
nanotubes (25) offering a host of new applications.

Carbon nanotubes have been proposed for use in a variety of
applications where high strength is implicated. Inorganic nano-
tubes have unique properties that may offer certain advantages,
like high compression strength. They possess some mixed cova-
lent-ionic nature. In fact, some (like WS2 and MoS2) are more
covalent in nature, whereas metal-halide nanotubes, like those of
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NiCl2, are much more ionic and are therefore chemically much
more reactive. The known phase diagram of Mo–S and W–S does
not contain any specific high-pressure phase and consequently
these materials are not expected to yield under load. Indeed,
diamond anvil cell experiments showed that both materials are
stable under a pressure of 20–30 GPa (R. Vaidya, M. Dave, S. G.
Patel, A. R. Jani, A. B. Garg, V. Vijayakumar, and B. K. Godwal,
personal communication). Recently, the shock-wave resistance
of both fullerene-like structures and nanotubes of WS2 and MoS2
was studied. WS2 nanotubes were found to survive shock waves
of up to 21 GPa (26), and fullerene-like MoS2 nanoparticles
could withstand shock waves as high as 30 GPa (27). These
findings suggest numerous applications for these nanomaterials,
highlighting the need for fundamental studies of their mechan-
ical properties.

The mechanical properties of multilayer WS2 nanotubes were
not studied extensively until now. Recently, the buckling of
individual WS2 nanotubes mounted on silicon cantilevers was
demonstrated in the atomic force microscope. This experiment
measured an average Young’s modulus of 171 GPa (18), in close
agreement with the value obtained from theoretical calculations
[150 GPa (18)].

In this study, tensile tests and buckling experiments of mul-
tiwall WS2 nanotubes were performed and compared with

simulated tensile tests of defect-free, single-wall MoS2 nano-
tubes that previously were studied theoretically (28). Notwith-
standing the subtle chemical differences between the two com-
pounds, MoS2 is isostructural to WS2, and they both have very
similar properties. The choice and limitations of the simulation
result in a model that provides a qualitative agreement with the
measured system and provides realistic limits for the ideal
nanotube strength. Furthermore, the simulations allow a visual
perspective on the atomic-level details of the nanotube failure,
details unavailable from experiment. The results of the tensile
strength, elongation, and Young’s modulus emphasize the
unique mechanical properties of nanotubes.

Results and Discussion
Tensile Tests. Tensile tests of WS2 nanotubes were carried out in
a scanning electron microscope (SEM) as described by Yu et al.
(13, 14). Images of the nanotube before and after rupture are
presented in Fig. 1, and the tensile strength results are presented
in Table 1. To calculate the applied stress, it was assumed that
the load was applied only to the outer layer of the nanotube
because the bond to the force transducer covered only the outer
surface of the nanotube. Hence, rupture of the nanotube oc-
curred only at the outer shell, and inner shell movement followed
it in a telescopic manner. This hypothesis was confirmed by
observing that the total length of the fragments was significantly
larger than the initial nanotube length. For instance in Fig. 1, the
initial length of the nanotube was 1.5 �m and the lengths of the
two fragments are 2 and 1.3 �m. The cross section of the outer
layer was calculated as �Dt (13), where D is the outer diameter
of the nanotube and t is the shell thickness (t � 6.2 Å), i.e.,
one-half the lattice constant c. Young’s modulus, strength, and
elongation values were found to be 152 GPa (�68), 3.7–16.3 GPa
(�11%), and 5–14% (�0.1%), respectively. Here, the stated
experimental uncertainty for the Young’s modulus is the stan-
dard deviation derived from the measurements, whereas for the
other measurements it is propagated from the known uncer-
tainty of the various measured parameters. The values of
Young’s modulus agree with the value obtained from the
buckling experiment (18).

The high tensile strength of these nanotubes seems to be very
promising compared with other known high-strength materials
as presented in Table 2 (2, 13, 14). The combination of high
tensile strength and �14% elongation is a unique property for
all of the nanotubes that so far were measured (13, 14). Fur-
thermore, the strength of the strongest nanotubes is �11% of its

Table 1. The tensile strength results of WS2 nanotube

Length,
�m

Diameter,
nm

Force,
N

Strength,
GPa

Strain,
%

E,
GPa

2.17 20 5.87E-7 15.10 — —
2.95 30 5.71E-7 9.77 8.30 119.9
2.03 20 3.37E-7 8.66 8.70 150.4
2 34 1.31E-7 3.75 — —
1.55 25 7.83E-7 16.09 — —
4.6 25 5.87E-7 15.07 5.03 218.0
0.85 30 7.78E-7 13.32 10.08 81.6
2.4 36 1.14E-6 16.27 11.60 244.0
2.09 19 2.49E-7 6.74 6.90 102.2
1.81 18 5.55E-7 15.8 14.00 109.3
1 11 2.91E-7 13.58 12.70 87.6
1.09 21 3.45E-7 8.42 — —
1.97 20 5.83E-7 14.97 11.10 255.3
1.7 20 3.0E-7 7.70 — —
0.77 20 4.3E-7 11.05 — —
2.8 20 4.87E-7 12.50 7.75 151.4

Fig. 1. SEM images of tensile test of an individual WS2 nanotube. Shown is
the tensile test of an individual nanotube (�20 nm in diameter) that is
attached to two atomic force microscope cantilevers (amorphous carbon
serves as a glue); the force is applied through the upper cantilever, which has
a higher force constant compared with the lower one. (a) A loaded nanotube,
before fracture. (b) Two pieces of the nanotube after fracture occurred. (Scale
bar: 2 �m.)
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Young’s modulus, corresponding approximately to the theoret-
ical value of the material’s strength. This value is appreciably
larger than typical high-strength engineering materials (ref. 2,
p.191). These findings indicate that the WS2 nanotubes are
remarkably free of critical defects.

A combined molecular dynamics (MD) density functional–
tight binding simulation of the stretching process was performed
for single-wall MoS2 nanotubes. According to these simulations,
the failure of the nanotube is abrupt starting at a single atomic
defect and propagating very quickly across its entire circumfer-
ence. The calculated stress and strain are 40 GPa and 17% for
the zigzag (22,0) tube, and 34 GPa and 19% for the armchair
(14,14) tube. Fig. 2 presents the simulated rupture process. A
movie of the computer simulations is provided as Movie 1, which
is published on the PNAS web site. The calculated strength
results are equivalent to 17.4% and 14.7% (for the zigzag and
armchair nanotubes, respectively) of Young’s modulus of MoS2
nanotubes (which was calculated to be 230 GPa) (18). These
values compare favorably with the experimental strength (11%
of their Young’s modulus) and elongation (14% values). The
small differences can be attributed to the fact that under the
experimental conditions, equilibrium may not be established.
Furthermore, thermal fluctuations, which can lead to ‘‘early’’
failure, could not be fully accounted for in the calculations.
Finally, the experimental elongation is a lower bound, because

the last SEM micrograph from which it is taken misses any
additional elongation up to the failure point observed in the final
SEM micrograph.

An example of an experimentally determined stress–strain
behavior of a WS2 nanotube is presented in Fig. 3. The stress–
strain plots show that the nanotube deformed elastically, almost
until failure. This behavior is in close agreement with the results
of the simulations.

As mentioned in the introduction, the strength of bulk mate-
rials at the macroscale is dictated by defects. It is commonly
assumed that, in strong microscale fibers such as carbon and
glass, the severity of the flaws follows a Poisson distribution,
whereas the strength of a fiber is determined by the most severe
flaw: failure of the weakest point in the fiber results in general
failure of the fiber. This behavior may conveniently be modeled
by the Weibull two-parameter distribution. The cumulative
distribution function F(�f) for the two-parameter Weibull dis-
tribution is (3, 4)

F��f� � 1 � exp��� � f

�
� �� , [1]

where F(�f) is simply termed the probability of failure, �f is the
failure strength of the nanotube, � is a scale parameter with
dimensions of stress, and � is a dimensionless shape parameter.
The validity of the Weibull model was tested on the tensile
strength results of the WS2 nanotubes. The probability of failure
was estimated by using the lowest mean-squared error estimator,
defined by (i � 1/2)�N (29), where i is the running index number
and N is the total number of measurements. The Weibull plot is
presented in Fig. 4. Notwithstanding the limited number of
available measurements, fitting of the strength values of the WS2
nanotubes to Eq. 1 was not successful over the entire range of
measured values. A careful review of the plot shows that the last
four points, i.e., the nanotubes with the highest strength values,
seem to show the largest deviation from the fitted curve. Because
those nanotubes are believed to be free of critical defect (see Fig.
5 and the ensuing discussion), they are not likely to conform to
the Weibull plot.

The Griffith theory of brittle fracture predicts that for a given
length of crack in a solid, there exists a unique critical stress for
which the crack is in stationary equilibrium. The Griffith theory
is the result of continuum considerations; however, because
solids are composed of discrete atoms, the continuum prediction
of a unique equilibrium stress should break down when the
discrete nature of the lattice is considered. Such an approach
may be expected to give insights on nanoscale events. In the
1970s, Thomson et al. (30, 31) extended the Griffith theory to
take into account the discrete nature of the lattice. Recently, an
approach to nanomaterial fracture mechanics, the QFM model,

Table 2. Mechanical properties of strong materials

Material
Modulus of

elasticity, GPa
Tensile

strength, GPa
Elongation,

%

Steel alloy 4340 207 1.76 12
Stainless alloy 440A 200 1.79 3.5
Tungsten 400 0.76 2
Diamond 700–1,200 1.05
Silicon nitride 304 0.7–1
Zirconia 205 0.8–1.5
Aramid fiber 60–150 3.6–4.1 2.8
Carbon fiber 200–750 4.65–7.1 1.8
E glass 72 3.45 4.3
C nanotubes 1,000 20–63 13

Fig. 2. Simulated tensile tests of single-wall MoS2 nanotubes. The rupture
progress is described by MD density functional–tight binding simulation for
zigzag (22,0) and armchair (14,14) nanotubes.

Fig. 3. Stress–strain plot of an individual WS2 nanotube. The linear behavior
of the plot indicates that the nanotubes deformed elastically until failure.
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was developed in the specific context of nanotubes (10). Here, an
energy-based theory of fracture mechanics involving a modifi-
cation of the well known continuum-based model has been
developed that explicitly accounts for the discrete nature of
matter (or energy release). The size of the defects or the number
of missing atoms in the critical locus is calculated by the equation

�f �n� � �c� 1 �
	

2a�
1/2

�1 � n��1/2, [2]

where �f(n) is the strength of the material for an n-atom defect,
�c is the ideal strength, 	 is the rupture radius for the developing
fault, and a is the lattice parameter (termed fracture quantum in
ref. 10). For a linear chain of n removed atoms, 2	 � a. In ref.
10 the fitting process used the theoretically determined �c and
directly assigned the set of n by ordering the �f(n). A different
procedure was applied here because �c was not known, but
rather fit, together with a trial set of n. The best fit to Eq. 2
therefore both provided an estimate for �c and uniquely deter-
mined the value of n for each strength value measured. The
results are presented in Fig. 5. According to this analysis, some
of the nanotubes are defect-free, whereas others contain 1–21
missing atoms in the critical loci that lead to their fracture. In the
case of a WS2 nanotube a critical defect is not well defined by a
missing atom because each layer is composed of three atoms.
The defect in this case could be more subtle; for instance, a
conformational change. The calculated value of �c (15.8 GPa)

from fitting to Eq. 2 compares favorably with the average
strength value of the defect-free nanotubes, which is 15.7 GPa
(see Fig. 5). This value also agrees with the estimated strength
of a defect-free material, i.e., 10% of Young’s modulus (1).
Furthermore, the nanotubes evaluated as defect-free (n � 0)
correspond to those exhibiting ideal Young’s Modulus as de-
scribed above.

A theoretical study on the role of defects in determining the
mechanical strength of nanotubes recently was published (11).
The combination of continuum methods and atomistic simula-
tion was used to evaluate the elastic properties of nanotubes
containing defects. The simulations were performed for nano-
tubes with single, double, and triple vacancies. The results
indicated that the tensile strength of a nanotube can degrade to
60–85% of the defect-free nanotube strength, if vacancies are
present. The estimated number of missing atoms or critical
atomic defects according to QFM in the WS2 nanotubes seems
to agree with the results of this simulation. The tensile strength
of these nanotubes is found to be �60–80% of the defect-free
nanotube strength if single, double, and triple atoms are missing.

In conclusion, based on the analysis of the tensile measure-
ment it can be assumed that some of the WS2 nanotubes are

Fig. 6. Large deformations of nanotube measured in SEM for post-buckling
elastic analysis. (a) The large deformation of the nanotubes in the post-
buckling stage is described by the SEM image. (Scale bar: 1 �m.) (b) A
deflection vs. displacement curve of the nanotube in a. The plot demonstrates
the elastic behavior of the nanotube at large deflections.

Fig. 7. Scheme of the post-buckling shape of a beam that is used for the
Elastica analysis. The parameters that are used for the Elastica equations are
presented in this scheme.

Fig. 4. Weibull plot: Ln(�Ln(1 � F)), where F is the probability of failure at
a given stress vs. Ln(Stress). The probability of failure can be described by the
Weibull model if the plot is linear.

Fig. 5. Strength vs. number of missing atoms in the critical defect according
to the QFM model. The squares represent the analysis of the experimental
results, and the circles represent the calculated strength according to the QFM
model.
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defect-free, whereas others have a discrete number of critical
atomic defects.

Buckling Experiments. Post-buckling experiments on WS2 nano-
tubes were performed in an SEM equipped with a nanomanipu-
lation system. These experiments resulted in a large deformed
nanotube (Fig. 6). The post-buckling behavior of the WS2
nanotubes was studied by applying the Elastica theory, which
describes large deflections of buckled bars (32). The large elastic
deformation of the WS2 nanotubes and the absence of hysteresis
are clearly demonstrated here (Fig. 6). According to the theory,
for a thin bar with a stiffness EI (where E is the Young’s modulus
and I is the geometrical moment of inertia) under axial force P
at the free end, the large displacement coordinates can be
described at any point (x, y) and length (s) (32) along the
nanotube (see Fig. 7). For the analysis only the expression for the
y coordinate was used:

y � �EI
4P �

0

� sin
d


�sin2��2 � sin2
�2
. [3]

Young’s modulus was calculated according to Eq. 3 at each y
point of the nanotube’s curve. Thus, calculated values of the
Young’s modulus varied and were close to 150 GPa only when

 was almost identical to � (edge of the nanotube). These results
can be explained by means of the geometrical moment of inertia
I, which is assumed to be constant along the buckled nanotube
but in fact is not. A transmission electron microscope image (Fig.
8) of a naturally occurring large deflected nanotube shows that
the shape of the nanotubes is distorted at the maximal curvature,
and it is incorrect to assume a cylindrical shape with a constant
radius for the geometrical moment of inertia. Indeed, the
geometrical moment of inertia that was used for the calculation
was true only for the ends of the nanotube.

Conclusions
This study shows that WS2 nanotubes are both ultra-strong and
elastic, distinguishing them from other known materials. Further-
more, the results of these experiments were found to be in good

agreement with the QFM model, suggesting that the mechanical
properties of the WS2 nanotubes are dictated by a discrete number
of atomistic defects and the intrinsic strength of the W–S chemical
bond. Thus, individual nanotubes have been shown to demonstrate
ideal strength, providing real evidence for defect-free structures. In
situ buckling experiments carried out within the SEM were in
agreement with previous measurements made by atomic force
microscope, providing independent support for the value of
Young’s modulus. Questions regarding the shear modulus of these
nanotubes and the influence of chirality on the mechanical prop-
erties have yet to be addressed. Still, these high-strength and quite
ductile materials are good candidates for numerous applications
from nanocomposites to nanomachines.

Materials and Methods
Multiwall WS2 nanotubes 15–30 nm in diameter (5–8 layers) and
2–5 �m long were synthesized by the fluidized bed reactor as
described in ref. 33. Both tensile tests and buckling experiments of
individual nanotubes were carried out within the high-resolution
SEM. The direct tensile tests were done as described in refs. 13 and
14 in SEM (E-SEM model FEI XL-30 equipped with a microma-
nipulation system, Quarter Research and Development). The nano-
tubes were attached to Si cantilevers (see Fig. 1) by exposing the
contact point to the electron beam, producing amorphous carbon
from hydrocarbons in the vacuum to form high-strength glue.
Whereas the upper cantilever with high force constant �30 N�m
was moved, the lower cantilever (nominal 0.2 N�m force constant)
was deflected in response to the applied force until the nanotube
was broken (see Fig. 1). The experiment was recorded by video
recorder cassette, digitized, and subsequently analyzed.

The buckling experiments were performed in the LEO Supra
55 high-resolution SEM equipped with a nanomanipulator
(Klocke Nanotechnik; 10-nm steps). For this experiment a WS2
nanotube was attached to an atomic force microscope cantilever
(force constant of 0.05 N�m) within the E-SEM. A mirror-
polished silicon wafer was pushed against the mounted nano-
tube. The nanotube was pictured after each movement and
subsequently digitized and analyzed. Cantilever spring constants
were calculated with accuracy of 5% according to the method of
Sader et al. (34).

A combined MD density functional–tight binding simulation of
the stretching process was performed for single-wall MoS2 nano-
tubes, which have the same structure as that of WS2 nanotubes. As
representative examples, (22,0) zigzag and (14,14) armchair nano-
tubes with a diameter of �30 Å were chosen for this calculation.
Simulations of the stretching process have been carried out within
the density-functional-based tight-binding method (35, 36), employ-
ing the DEMON program (37). The tube models were computed in
super cells containing 10 unit cells for the armchair (14,14) tube
(840 atoms) and 7 unit cells for the zigzag (22,0) tube (924 atoms).
On each side of the boxes, the coordinates of one unit cell (168
atoms for the armchair and 264 atoms for the zigzag tube) were
fixed during the MD simulations. The MD simulations have been
carried out within an NVT ensemble [constant number of particles
(N), constant volume (V), constant temperature (T)] at 300 K. The
stretching process was simulated in the following way: starting from
ideal, defect-free structures, an initial MD run of 0.2 ps was
performed. The resulting structure was stretched by a parameter
�z: the fixed atoms, which marked the left and right borders of the
super cell, were shifted by �z�2, and the coordinates of the
remaining atoms were scaled by a factor (L 	 �z)�L, where L is the
length of the nanotube. This stretched tube was taken as the initial
structure for a succeeding MD simulation using the same param-
eters, and the procedure was repeated until the tube broke apart,
which happened after 20 repetitions of this procedure. In a similar
way, 20 starting trajectories for different elongations have been
obtained, which have been individually equilibrated. Finally, inde-
pendent trajectories of 4 ps were computed.

Fig. 8. Transmission electron microscope image of a naturally buckled
nanotube. This image demonstrates clearly that the cross section of the
nanotube is not constant. (Scale bar: 20 nm.)
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