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INTRODUCTION

Thermodynamics was one of Aharon Katzir-Katchalsky’s great loves. To the physi-
cists of the late nineteenth and early twentieth centuries thermodynamics epitomized
the simplicity, generality, and symmetry one expected from a physical theory. Aharon,
however, was well aware of its limitations when applied in the biological realm. He
saw a need to extend the scope of thermodynamics in a new direction, in hopes of
addressing the puzzle of biological organization and complexity from a phenomeno-
logical viewpoint. George Oster and I had the great privilege of collaborating with
Aharon on this, his last major research effort. In this memorial symposium on thermo-
dynamics and life it seems particularly appropriate to recount the history of what
Aharon christened ‘“network thermodynamics,” and to discuss its relevance and
potential in modern biophysics.

In 1968 Aharon brought to Berkeley news of Prigogine’s work on dissipative struc-
tures (Prigogine, 1969). His enthusiasm for discovering the basis of life in temporal
and spatial structuring was, as many of you know, quite contagious; George Oster,
then a postdoctoral student, and I, then a graduate student, became infected. We
understood how temporal oscillations in electrical and mechanical systems worked. If
one had two energy storage devices, such as an inductor and capacitor, one could
transfer energy between the devices periodically. Therefore, we began looking for
chemical analogs of capacitors and inductors. We also realized that the mere presence
of capacitors and inductors was not enough; their interconnection had to be precisely
right. Thus, we also began searching for ways to quantitate the notion of topology in
chemical systems. Graphical and network techniques naturally came to mind. The
idea of applying concepts in electrical network theory to thermodynamics was not new,
Meixner (1963, 1964, 1965, 1966 a,b) had already proposed a nonequilibrium thermo-
dynamic theory based on the general theory of linear passive systems. Qut of a syn-
thesis of concepts from thermodynamics, circuit theory, graph theory, and differential
geometry, network thermodynamics was developed.

Unfortunately, Katchalsky did not live to see the work grow to fruition. During his
lifetime we spent much time “putting old wine in new bottles” so to speak; much of
nonequilibrium thermodynamics as applied to biophysics was reformulated in terms of

BIOPHYSICAL JOURNAL VOLUME 15 1975 667



network thermodynamics, theoretical results such as the Glansdorff-Prigogine d, P in-
equality and 4, P stability criterion were given rigorous and elegant network formula-
tions (Glansdorff and Prigogine, 1971; Oster and Desoer, 1971), and the framework for
a nonlinear far-from-equilibrium theory of thermodynamic processes was created
(Oster et al., 1971). Frankly, however, this period produced no significant new results.

Before discussing more recent work it is first worthwhile to explain in some detail
what network thermodynamics is and why Aharon thought it worthwhile to translate
known results into network thermodynamic terms.

WHAT IS NETWORK THERMODYNAMICS?

Great progress had been made in understanding simple thermodynamic systems using
equilibrium thermodynamics, and nonequilibrium thermodynamics as developed by
Onsager, Prigogine, deGroot, and Meixner. However, Aharon could see clearly that
the conventional tools of irreversible thermodynamics were not suitable for treating
the complex nonlinear biological processes which occur far from thermodynamic
equilibrium. As an analogy consider the problem of analyzing or designing a radio.
The basic physics is completely summarized in Maxwell’s equations. One could, in
principle, integrate these equations to obtain an overall system description. In prac-
tice, however, too much irrelevant information is required to integrate the equations
over such a complex object. As the engineers have discovered, a lumped parameter
approximation to Maxwell’s equations—network theory—is the most convenient tool
to use. Since the complexity of a biological organelle such as a membrane or chloro-
plast is more akin to a radio than an isotropic continuum, a lumped parameter ap-
proximation to the field equations or irreversible thermodynamics and continuum
mechanics would seem to be the preferred description. Network thermodynamics is
precisely such an approximation. By establishing an isomorphorism between the
underlying mathematical structure of network theory and thermodynamics, problems
in thermodynamics can be formulated and solved using network methods.

The advantages of a network approach are numerous. Engineering experience and
network methods of solving large nonlinear systems can be brought to bear on thermo-
dynamic problems. For example, complex systems can commonly be thought of as
composite systems made up of interconnected subsystems. In many instances such
systems can be “torn” or decomposed into their subsystems, the subsystems solved,
and these solutions used to generate the solution to the whole system. Such a de-
composition technique can be applied to network models of diffusion-reaction systems.
Besides specific method of analysis, there are many network theorems that can be used
to solve thermodynamic problems. One of the most important is Tellegen’s theorem.
This is a powerful theorem whose generality derives from the fact that it is independent
of the nature of the network elements—that is, whether they are linear or nonlinear,
reciprocal or nonreciprocal. All that matters is the network topology; that is, the way
in which the elements are interconnected (Penfield et al., 1970).

Graphical representations similar to engineering circuit diagrams can be constructed
for thermodynamic systems. Although the proverb that a picture is worth a thousand
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words may not be completely applicable, such diagrams do increase one’s intuition
about system behavior. Moreover, as in circuit theory, one can algorithmically read
the algebraic and differential equations that describe the system directly from the dia-
gram much more easily than they can be constructed directly. In this sense the diagram
is just another notation for the equations themselves. However, in many instances
manipulations on the diagram are much easier to perform than the corresponding op-
erations on the equations; one can interact directly with the diagram and bypass the
equations. Thus, a physiologist can sit at a computer terminal equipped with a graph-
ical display and draw his system with a light pen, assign element values, and have the
computer derive and solve the system equations. By utilizing a network framework
for thermodynamics many existing engineering computer programs can be utilized
directly, removing the need for a large programming effort.

The network approach brings to thermodynamics a degree of mathematical rigor
and provides a unification of ideas with modern dynamical system and control theory
(Oster and Perelson, 1973). There is a close formal similarity between Hamilton’s
equations in mechanics, the Brayton-Moser-Smale equations in network theory
(Smale, 1972) and equations that Oster and I have devised to describe the dynamics of
reaction and reaction-transport systems.

One of the more important aspects of network thermodynamics is that it highlights
the importance of topological concepts. Prigogine has stressed the significance of the
dissipative aspects of complex systems; but the topology of any system is also crucial
to its overall behavior. A set of resistors, capacitors, and transistors may act as a radio
when hooked up in one way, but with a minor change in the wiring may not operate at
all. From the rate of entropy production one could not distinguish the difference. An
analogous situation obtains in chemistry. A set of reactants in the presence of one
catalyst may yield a specified set of products, but a slight change in the catalyst may
select completely different reaction pathways. The relevance of topology in determin-
ing the stability of reaction networks has also been noted (Morowitz et al., 1964; Gard-
ner and Ashby, 1970).

The development of network thermodynamics depends on three postulates:

(1) We make the usual local phase equilibrium assumption. That is, even though
the system as a whole may be far from equilibrium, locally one can still describe the
state of the system by thermodynamic variables, such as temperature, pressure, and
chemical potential.

(2) Instead of viewing physical space as a continuum we treat it as discrete. This will
generate finite dimensional models described by ordinary differential equations as
opposed to the partial differential equation description of continuum theories. Indeed,
there is a precise mathematical duality between these two structures available for
describing dynamical systems. Continuum theories employ vector calculus whose op-
erational structure arises from point set topology. The discrete counterpart of point
set topology is algebraic topology; it is this latter structure that underlies the network
approach (Branin, 1966).

(3) In every volume element of a physical system complex processes are occurring;
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however, we assume that one can conceptually separate these processes into dissipative
and nondissipative parts.

EQUILIBRIUM THERMODYNAMICS

In order to demonstrate the application of network thermodynamics we consider some
examples. Let us start with equilibrium thermodynamics. Equilibrium thermo-
dynamics regards a system as a “black box” that can be described by a finite number of
external measurements. For example, the piston and cylinder shown in Fig. 1a can
interact with the environment through the mechanical movement of the piston or by
exchanging mass and heat. We can represent this system schematically as shown in
Fig. 1 b, where each mode of interaction has been represented by a line called a port.
In circuit parlance this object is called an n-port. In classical thermodynamics one
usually postulates the existence of a real valued function, the internal energy U, which
depends on a set of thermodynamic displacements g, which include the entropy, S, the
volume, ¥, and the mole numbers, N;. Then one usually defines a set of conjugate
thermodynamic potentials by differentiating U. For example the chemical potential
u; = dU/AN,. We shall denote thermodynamic potentials ¢, and call them efforts. In
network thermodynamics we follow an approach to thermodynamics initiated by
Bronsted in the 1930s. We focus on measureable quantities not on energy functions
for reasons which become apparent when we treat irreversible processes. Thus e; and
g; are taken as primitive variables in network thermodynamics and we postulate that
the properties of any n-port can be described by relations between these port variables,
called constitutive relations or “‘equations of state” (i.e., the local equilibrium postu-
late). Anexample is the relation y; = u,(T,p,N,, - - - N,). In general, a constitutive
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FIGURE 1 (a) Piston and cylinder. (b) Its n-port representation.
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relation is a map F which assigns to a set of independent port variables the set of con-
jugate port variables:

F: R"— R"
Xy (1)

where x and y are vectors of port variables.

Next, consider two simple thermodynamic systems surrounded by rigid adiabatic
walls and separated by a rigid semipermeable membrane as shown in Fig. 2. Conven-
tionally, the equilibrium of this composite system is found by minimizing the total
energy of the system subject to the constraint N, + N, = constant. One finds U is a
minimum when u;, = u,.

In network theory equilibrium is generally calculated by imposing the requirements
of Kirchhoff’s laws at the interconnection of two systems. This method, which does
not require the introduction of an energy function, is equivalent to the usual thermo-
dynamic method. The continuity of potential at system boundaries is Kirchhoff’s
voltage law (KVL). Conservation of thermodynamic displacements is a form of
Kirchhoff’s current law (KCL). For the system illustrated in Fig. 2

By o= My (2)
is KVL, while
N, + N, = constant, (3A)
or
N, +N,=0 (3B)

is KCL. Since S and V are constant for systems 1 and 2
dU = ”’lle + ﬂszz. (4)
Egs. 2 and 3 imply
dU = (g, — py)dN, = 0, (3)

i.e., the system energy is at a minimum. In general, utilizing Kirchhoff’s laws one can
obtain all of the standard equilibrium conditions and, in fact, one can always show

T*éxo T{é-o

Bl ® K2 ~P2

s 3
V=0 N, N, V20

FIGURE 2 Two thermodynamic systems surrounded by rigid adiabatic walls and separated by a
semipermeable membrane.
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that the energy is minimal when Kirchhoff’s laws apply. Of the three conditions: KVL,
KCL, and minimum energy at equilibrium, any two imply the third.

By analogy with the electrical capacitor we shall call any system which is described
by thermodynamic displacements and thermodynamic potentials a capacitor. Hence
any equilibrium thermodynamic system is an n-port capacitor and shall be denoted
symbolically by the capital letter C.

Reciprocity is the central characteristic of thermodynamic systems. In equilibrium
thermodynamics Maxwell reciprocity is a constitutive assumption equivalent to
postulating an energy function. It is easy to see that Maxwell reciprocity is just the
statement that the incremental or linearized constitutive relation describing an n-port
capacitor is symmetric (Oster and Perelson, 1973). For example, if the constitutive
relation F of the piston-cylinder arrangement shown in Fig. 1 is given by the function

(S,V,N) I—E(T, —p,u), then the linearized constitutive relation or Jacobian of F is

©@T/3S)vn @T/oV)sy  (3T/dN)sy
DF(S,V,N) = |- (3p/dS)yn — (0p/3V)sny — (8p/dN)sy
©On/dS)yn ©@n/dV)sy  (@n/dN)sy (6)

The matrix DF is symmetric if and only if

- @p/3S)yn = ©@T/aV)sn
©Or/dS)yw = (T/3N)sn
©@u/dV)sny = — (3p/dN)s,y 7

Egs. 7 are the familiar Maxwell relations (Callen, 1960, p. 118). Geometrically we can
view the relations between the port variables as defining a constitutive surface in the
space of all 2n-port variables. Reciprocity then requires this surface to lie with a very
special orientation in R?" (Desoer and Oster, 1973).

Defining energy functions is a useful way of summarizing the constitutive informa-
tion about simple homogeneous systems. However, in practice, trying to find an over-
all energy function for a radio is probably not as useful as simply applying Kirchhoff’s
laws. In network thermodynamics we have chosen to utilize the Kirchhoff approach.

NONEQUILIBRIUM THERMODYNAMICS

Next we consider an example from nonequilibrium thermodynamics: the steady-state
transport of a single substance across a membrance. We can view the membrane as a
1-port device with a constitutive relation between the chemical potential difference
across the membrane and the flow rate through the membrane as shown in Fig. 3a.
Mathematically this type of constitutive relation is identical to that of an electrical
resistor.
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FIGURE 3 (a) The steady-state transport of a single species across a membrane viewed as a
1-port. (b) The steady-state transport of two species.

Irreversible thermodynamics is generally concerned with coupled flow phenomena.
The obvious generalization is an n-port resistor defined by a constitutive relation
between the flows of n solutes and the set of n chemical potential differences (Fig. 3 b).
We postulate that, whatever its internal transport mechanism, the observed behavior
of the membrane in steady state can be completely characterized by a finite set of port
variables. If this is not the case we must look for additional variables or assume that
the membrane has not yet reach steady state. (This is the nonequilibrium equivalent
of the ““local state” postulate.)

We place no restriction on the form of resistive constitutive relations; they may be
linear or nonlinear. Analogous to equilibrium systems we say that an n-port is recipro-
cal if the Jacobian matrix of its constitutive equation is symmetric. For linear constitu-
tive equations this is the usual Onsager reciprocity. In the nonlinear case it is the
obvious generalization. However, in general, we need make no assumption of
reciprocity.

If all the resistors in the systems are 1-ports then it is easy to show that the system
must be reciprocal (Brayton, 1971). Thus as we whall see in order to model the non-
reciprocal nature of far-from-equilibrium chemical reactions one cannot use 1-ports.

In cases where the system is reciprocal, there always exists a potential function from
which the constitutive relation can be derived and which is extremal at a steady state
(Brayton and Moser, 1964, Stern, 1971; Oster and Desoer, 1971). For linear systems
the potential is simply the entropy productions, while for nonlinear systems the poten-
tial function is called the “content” (Millar, 1951).
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FIGURE4 Transport across a composite membrane.
FIGURE 5 (a) O-junction. () 1-junction.

INTERCONNECTION OF RESISTIVE AND CAPACITIVE N-PORTS

Reaction and transport processes involve only resistive and capacitive n-ports. Thus
all that remains is to specify how to interconnect these devices. As before, at points
of interconnection thermodynamic potentials are continuous and there is no loss of
flow. These restrictions are just generalized statements of Kirchhoff’s laws. What is
needed is some systematic way of writing these laws for complex interconnections.
For example, consider the composite membrane shown in Fig. 4. At point p the
membranes 4, B, and C are interconnected. Observe that since the membranes are
all in contact the chemical potential of the substrate must be the same at the right-
most surface of A and the left surfaces of B and C, and whatever flows out of 4 must
flow into B and C. This type of parallel interconnection can be represented by a
special graphical symbol, the 0-junction or parallel junction, shown in Fig. 5a. The
lines incident on the junction are called bonds and represent perfect lossless con-
nectors. Denoting generalized thermodynamic potentials or efforts by ¢, and flows
by f;, a parallel junction is defined by

€ =€ =-:--=¢€y (8)

D af=0 9

where
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+1if bond i is oriented away from the junction
0’1 =
—1if bond i is oriented towards the junction. (10)

Membranes can also be connected in series. A series interconnection of elements
can be represented by a /-junction or series junction, shown in Fig. 5 b, and defined by

Sfi=f=--- Sy (1)
Z”tet

Parallel and series junctions can be considered special types of n-ports, “connection
n-ports.”! Their constitutive relations are simply Kirchhoff’s laws corresponding to
parallel and series interconnections. One can show that any interconnection, no matter
how complex, can be constructed by combining these two junctions. Thus network
models of thermodynamic systems require only four basic symbols R, C, 0, and 1.
Graphical representations constructed from these symbols are known as bond graphs.
Bond graph fundamentals are described in a variety of references including: Karnopp
and Rosenberg (1968), Rosenberg and Karnopp (1972), Oster et al., (1973), and
Perelson and Oster (footnote 1).

0. (12)

SIMPLE SYSTEMS

Now consider some models of simple transport systems such as the one shown in
Fig. 6a. The membrane is first reticulated into volume elements each sufficiently
large that a thermodynamic description is still appropriate. Each volume element is
assumed to both store and transport material. The transport process is described by
a constitutive relation between a flow and a difference in chemical potential and thus
is a resistive n-port. The storage process is described by a relationship between con-
centration and chemical potential and hence is equivalent to an n-port capacitor. If
we consider only one substrate transported isothermally and isobarically then the
resistors and capacitors are 1-ports. One can easily establish that they must be inter-
connected as shown in Fig. 6 b. This leads to the usual RC ladder network representa-
tion of one-dimensional diffusional processes. One can show that as the size of each
volume element approaches zero the network equations approach the usual continuum
differential equations. In the case of an ideal dilute solution capacitive constitutive
relation and a linear resistive constitutive equation one obtains (Oster et al., 1973)

dc,/ot = — (3J,/9x) (13)

J; = — Dy(3¢,/dx) (14)

! Perelson, A., and G. Oster. 1975. Bond graphs and linear graphs. Submitted for publication.
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FIGURE 6 (a) Membrane transport system. (b) Network representation.
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FIGURE7 Coupled nonstationary transport of two species.
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FIGURE8 The autocatalyticreaction X + Y = 2X.
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where D,, J;,, and ¢; are the diffusion coefficient, diffusive flux, and concentra-
tion of species i, respectively.

Fig. 7 shows the coupled transport of two species. The chemical potential difference
that causes a flow of 4 also influences B and can cause its transport.

Chemical reactions can also be represented in network terms. Here we assume that
the isothermal reaction mixture is well mixed and maintained homogeneous so that
spatial considerations are unimportant. The network represents purely topological
relationships between the dissipative and storage aspects of a reaction. Fig. 8 shows
the representation of an autocatalytic reaction. The stoichiometry of a reaction repre-
sent various scalings that are occurring e.g., 2 mol of X must appear every time 1 mol
of X and 1 mol of ¥ combine. In mechanical systems this type of scaling is performed
by gears, while in electrical systems transformers are used. Thus, in representing reac-
tions one must use scaling transducers to represent stoichiometry. Observe that Fig. 8
contains a positive feedback loop, indicating that autocatalytic reactions could con-
tribute to the instability of a reaction system. Fig. 9 represents an enzymic reaction.
Notice that the network diagram clearly illustrates that the enzyme cycles back and
forth between free and combined forms. Although these diagrams look complex they
can be generated algorithmically from conventional biochemical diagrams as shown in
Fig. 10 (Morowitz, 1973). Other workers have used standard network representa-
tions for reactions (Hess et al., 1972; Busse and Hess, 1973).2

Reaction networks contain only resistors, capacitors, and transducers, making the
prediction of oscillations a difficult task. However, Atlan and Weisbuch (1973) have
shown that the effects of time delays in the reaction process can be approximated by
adding inductors.

It should be apparent that the network representations for reaction and transport
processes can be combined to form complex models of chemico-diffusional systems.

2 Network analogs of chemical systems based on kinetic rather than thermodynamic models have been devel-
oped by Seelig (1970, 1971), Seelig and Gobber (1971), Seelig and Denzel (1972), and Réssler (1974, 1975).
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FIGURE 10 (a) Bond graph and conventional biochemical representations of a reaction network.
(b) Equivalences used to interconvert the two representations.

Fig. 11 illustrates a model of facilitated transport. The membrane contains a carrier,
C, which reacts with a permeant substrate, S, to form a complex, CS. Both S and CS
are transported across the membrane. The complex then dissociates releasing C and S.
S exits from the membrane and C is free to diffuse back across the membrane and
combine with more S. Network models of a diffusion-coupled oscillatory chemical
system have also been discussed by Busse and Hess (1973).

Other complex processes of biophysical interest including transport of nonelec-
trolytes and transport through series and parallel arrays of membranes have been
modeled using network methods (Oster et al., 1973).

The important point to be made here is that by utilizing network thermodynamic
methods one can translate problems in thermodynamics and in the modeling of
biophysical systems into problems in network theory. Once this is done all of the
practical and theoretical tools that engineers have developed for analyzing complex
systems become available to the biophysicist. Studies of the temporal behavior of
complex nonlinear transport systems, a subject usually ignored in irreversible thermo-
dynamic treatments, become possible.

I emphasize that we have not simply found equivalent circuits for the equations
describing thermodynamic processes. Given a set of equations there are many possible
equivalent circuits. In network thermodynamics a unique graphical model is gener-
ated whose topology and elements are determined by the individual physical pro-
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FIGURE 11 Facilitated transport.

cesses governing the operation of the system. The model thus totally reflects the
thermodynamic description.

CHEMICAL REACTION NETWORKS

Besides extending the range of linear irreversible thermodynamics, network ideas can
be applied to theoretical problems in chemistry to provide new insights into the struc-
ture of large chemical systems.

Chemical kinetics deals with the problem of determining rates of chemical reac-
tions. Assuming temperature and pressure are maintained constant, and that the
volume change due to reaction is negligible, the “state” of a chemical system is deter-
mined by the number of moles of each component. The equations of chemical kinetics
describe the vector field that propels the state point through concentration space.
One frequently assumes that this vector field is given by the law of mass action. Thus
one is faced with the very difficult problem of solving large systems of nonlinear dif-
ferential equations. In each set of reactions a different system of equations results and
thus it has been very difficult to establish any general properties for reaction systems.
I like to think of this approach as analogous to using Newton’s equations in mechan-
ics—a given problem may be easy to solve but general theorems are difficult to come
by.

By using network thermodynamic methods one can formulate a generic set of differ-
ential equations to describe reactioh dynamics that are in some sense analogous to
Hamilton’s equations in mechanics. Although these equations are valid for nonlinear
far-from-equilibrium reactions I shall illustrate how they are derived by examining
the simpler near equilibrium case.

For each reaction we can define an extent or advancement of reaction, &,. If we
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can determine how the reaction extents change with time then the law of definite
proportions

n() = n0) + X vu (15)
k

determines how the mole numbers of each species change in time. Thus it suffices to
find a differential equation in the extents.

For a set of M chemical reactions occurring among N chemical species, let 9 = R
be the species space and let MM = RM be the reaction space. (In Oster and Perelson
[1974 a, b], a more general treatment is given in which 91 and 9T can be nonlinear
spaces; i.e. differentiable manifolds.) The mole numbers n,, n,, ... ny can be assem-
bled into a vector n € I1, and the reaction extents £,, &,, ... &, collected into a vec-
tor§ €. The law of definite proportions provides a map between the species and
reaction spaces. Let » bethe N x M stoichiometric matrix, then

v: M —N (16)

£ F—n(0) + &) = n(0). (17)

By differentiating this map we obtain a relation between the rate of change of mole

numbers, n(?), and the rate of reactionj = d¢/dr = £given by

n(t) = vE(t) = »j. (18)

To construct the equations of motion on the reaction space I we must introduce
the constitutive equations for the species capacitors and reactien resistors. The former
are defined by the map

n— u(n) (19)

onJ, where u(n) = [u,(n), uy(n), . ..uy(n)] is the vector of chemical potentials. The
reactions are characterized by a nonlinear constitutive map A defined on 91

a —A@) = j, (20)

where a is the vector of chemical affinities (@ = —»7u) and j is the reaction rate vec-
tor. The driving forces in species space u and the driving forces in reaction space a
are related by the law of definite proportions. In fact « is uniquely determined, given
u and the law of definite proportions, by the operation of pulling back a covector
field along a map (see Oster and Perelson, 1974 b for the details of this technical point).

By composing the constitutive relation and law of definite proportion maps the
equations of motion can be constructed. The law of definite proportions (Eq. 15)
determines n as a function of £. The capacitive constitutive relation (Eq. 19) assigns
a unique chemical potential vector u to n, and then as indicated above the law of
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definite portions (—»") can be used to map u into a. The reaction constitutive
relation A(-) finally determines the reaction rate. Symbolically

£ = A(—»"u[n(0) + »E)) (21A)

F($). (21 B)

Once the equations have been solved the trajectories £(z) can be mapped back to species
space vian(t) = n(0) + »£.

If A is a linear map, as it must be sufficiently near equilibrium, then Eqs. 21 are just
the conventional equations of irreversible thermodynamics written in an unconven-
tional way. The difficulty with this formulation is that far-from-equilibrium the rate
of reaction is not a unique function of the thermodynamic affinity; i.e., reaction
resistors are not 1-ports. If this were the case one could easily show that all reactions
must be reciprocal arbitrarily far from equilibrium.

For a large class of reactions including those described by mass-action and
Michaelis-Menten kinetics one can formulate the reaction constitutive relation as a
nonreciprocal 2-port with two independent driving forces: a forward affinity which
depends only on the chemical potentials of the reactants and a reverse affinity which
depends on the product chemical potentials. By appropriately modifying the stoichio-
metric matrix and the reaction extent vector one can incorporate this 2-port reaction
constitutive relation into the previous derivation, and generate a generic set of differ-
ential equations valid for any reaction process, no matter how complex. Their form
is similar to the above equations in that they show explicit dependence on three
aspects of a reaction: (a) the equilibrium properties of the reaction mixture u(), i.e.,
the chemical environment in which the reaction takes place, (b) the topology of the
reaction network, », and (c) the dissipative aspects of the reaction process, A(-). The
equations are generic in the same sense as Hamilton’s equations except here one needs
to specify three maps u, A, and » instead of one scalar Hamiltonian in order to deter-
mine the system.

The analogy with Hamilton’s equations is instructive. Hamilton’s equations can be
written in the form

x = JV, H(x), (22)

where the real valued function H:R>»— R is the Hamiltonian, x = (q, p) is the vector
of positions and momenta and

o 1
N1 o

is the symplectic matrix (Malcev, 1963; Arnold and Avez, 1968). Because u is the
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FIGURE 12 Generalized bond graph representation of a reaction system.

gradient of the Gibbs free energy, G, the equations of motion of a chemical system can
be written

§ = AV, 6(), (23)

where ¢(§) 4 —G[n(0) + »£] is a scalar potential defined on I, ie., ¢: IM—R.
The form of the two sets of equations is superficially similar. They are identical only
if M is even dimensional and A = J.

The generic equations (21) can be given a network interpretation (Perelson and
Oster, 1974). Fig. 12 shows a general bond graph representation of any reaction
system. With the capacitor constitutive relation given by u() and the resistor con-
stitutive relation A(-), the equations describing this network are precisely Egs. 21.
The capacitors represent species space, the resistors represent reaction space and the
set of junctions and transformers representing the network topology correspond to the
reaction stoichiometry » (Oster and Perelson, 1974a).

Using the network representation as a guide the equations of chemical dynamics
can be extended in many ways. First, the generalization to open reaction systems can
be derived by simply adding sources to the network (Perelson and Oster, 1974). Next,
the biologically interesting situation in which there are a collection of cells com-
municating with each other and their environment via the transport of material across
their outer boundaries can be modeled by a network which is formally identical to a
reaction network. Here however, the resistors exhibit the dissipation due to transport
and the capacitors represent the storage of chemical species in N cells instead of the
storage of N species in one cell. This model can then be further generalized to include
multiple species undergoing chemical reaction within each cell. The generic differential
equations for this complex transport-reaction system can be easily derived from the
network (Perelson and Oster, 1974); they are a generalization of the equations dealt
with by Othmer and Scriven (1971) in studying instabilities and dynamic patterns in
cellular networks.

FUTURE OF NETWORK THERMODYNAMICS

The analysis of large chemical systems is far from complete. Eq. 21 which described
the dynamics of reaction systems needs to be thoroughly examined under a variety
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of constitutive assumptions. For example, by fixing the capacitive and resistive
constitutive equations one can study the effects of changes in reaction topology. Are
there certain topologies such as the positive feedback loop of autocatalytic reactions
that make oscillations more probable? Alternatively, one can hold the topology and
the reaction constitutive relation fixed and vary the capacitance. Some effects of
capacitance variation on system stability and bifurcations to periodic solutions have
been investigated (Luss, 1974).> Given a system of known reactions and equilibrium
properties one can study the qualitative behavior of systems in which the non-
linearity of the reaction constitutive relations are restricted. For example monotone,
passive, or quasi-linear (Duffin, 1946), resistive constitutive relations can be studied.
Also the asymptotic behavior and the number of maxima or minima in the constitutive
relation can be specified. Perelson and Oster (1974) consider the reciprocal, passive,
and locally passive cases.

The graphical techniques developed to represent thermodynamic systems need to
be exploited. Since the graphs are just another notation for the dynamic equations
one may be able to find graphical criteria for stability and oscillations. The decompo-
sition or “tearing” of a complex system into subsystems has been utilized in treating
one reaction-transport system (Perelson and Oster, 1974). This technique should prove
useful in analyzing a variety of large systems.

The ease of interfacing bond graph models with computer systems can be exploited
in a classroom situation. Experience at Berkeley in teaching both undergraduates
and graduates has shown that students with no previous computer experience can
formulate and solve complex physiological modeling problems. Thus an intuitive
understanding of complex system behavior can quickly be attained by students with
little or no experience in nonlinear systems. The biophysics can be emphasized while
submerging the formal mathematics.

Let me end by mentioning an area in which I foresee future growth of network
thermodynamics. The goal of biophysics is to understand how biological systems
work. Traditionally we have approached this problem through reductionist analyses.
However, when we have isolated every enzyme and catalogued every reaction that
occurs in a cell will we understand how the system works? I think not, for there are
complex dynamic interactions that impart to matter the property that we call life.
However, if we can design and synthesize systems which have these dynamic charac-
teristics we will have made significant progress towards understanding them. Engi-
neers have enormous experience in synthesis and design, and it is my hope that through
network thermodynamics, these techniques can be applied to synthesize chemical net-
works with prescribed behaviors.

Network thermodynamics is based upon an idea of great simplicity—that the logical
foundation of finite-dimensional thermodynamic models is formally identical to that
of network theory. It was Aharon’s hope that this similarity could be exploited to

3 Perelson, A. 1975. A note on the qualitative theory of lumped parameter systems. Chem. Eng. Sci. In press.

ALAN S. PERELSON Network Thermodynamics 683



enrich thermodynamics and to provide a practical tool for the experimental biophysi-
cist.

I wish to thank George Oster for critically reading and commenting on the manuscript.

Portions of this work were performed under the auspices of the U.S. Atomic Energy Commission.
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