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ABSTRACT The Wiener-Lee-Schetzen method for the identification of a nonlinear
system through white gaussian noise stimulation was applied to the transient light
growth response of the sporangiophore of Phycomyces. In order to cover a moderate
dynamic range of light intensity I, the input variable was defined to be log 1. The
experiments were performed in the normal range of light intensity, centered about
o = 10-6 W//cm2. The kernels of the Wiener functionals were computed up to sec-
ond order. Within the range of a few decades the system is reasonably linear with
log 1. The main nonlinear feature of the second-order kernel corresponds to the
property of rectification. Power spectral analysis reveals that the slow dynamics of
the system are of at least fifth order. The system can be represented approximately
by a linear transfer function, including a first-order high-pass (adaptation) filter with
a 4 min time constant and an underdamped fourth-order low-pass filter. Accordingly
a linear electronic circuit was constructed to simulate the small scale response charac-
teristics. In terms of the adaptation model of Delbruck and Reichardt (1956, -in
Cellular Mechanisms in Differentiation and Growth, Princeton University Press), kernels
were deduced for the dynamic dependence of the growth velocity (output) on the
"subjective intensity," a presumed internal variable. Finally the linear electronic
simulator above was generalized to accommodate the large scale nonlinearity of the
adaptation model and to serve as a tool for deeper tests of the model.

INTRODUCTION

The growth velocity of Phycomyces sporangiophores can be modulated by varying the
light intensity. Measurements of this light growth response using pulse, step, and
sinusoidal light stimuli have been reported recently (Foster and Lipson, 1973). To
characterize the light growth response system in a more efficient, compact, and mean-
ingful fashion a new approach has been adopted, wherein "white noise" stimulus pro-
grams are used to derive the Wiener kernels of the system (Wiener, 1958; Lee and
Schetzen, 1965). This method has been applied very effectively to retinal neural sys-
tems in the catfish (Marmarelis and Naka, 1973) and in the fly (McCann, 1974).

In contrast to these studies on multicellular neural pathways, this work is concerned
with a stimulus-response pathway which starts and ends within a single cell. The first
paper of this series presents a detailed analysis of the response in the "normal range"
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of light intensity, as defined by Delbruck and Reichardt (1956). The second paper
(Lipson, 1975 a, referred to as paper II) treats the entire dynamic range of light intensi-
ties relevant for Phycomyces. The third paper (Lipson, 1975 b, referred to as paper III)
examines components of the stimulus-response pathway by analyzing representative
photomutants.

Formalism of White Noise Analysis
Wiener (1958) first recognized that a nonlinear system could be identified by analyzing
its response to white gaussian noise, provided only that the system exhibited time-
invariance, boundedness, and finite memory. For such a system with white gaussian
noise input x(t) and output y(t), he showed that the output could be decomposed
into a sum of orthogonal "G-functionals,"

y(t) = E G.[hn,x(t)] (1)
n-o

where the components G. are linked to the input function by means of the series of
kernels h.:

GO[ho, x(t)] = ho
rZ

G,[h, x(t)] = h,(r)x(t - Tl)dTl,

G2[h2,x(t)] = f f h2(T1,r2)X(t - r,)X(t - r2)dl dr2

- Kf h2(r, r) dr,

and so on, where K is the power spectral density 4,x (f) of x(t).
Lee and Schetzen (1965) devised a practical computational technique for deter-

mining the Wiener kernels h. by means of a cross-correlation analysis between x(t) and
y(t). Specifically,

hn.17.n2K,O,) = KY(t) - E Gp[hm9X(t)]

* x(t - 9O)x(t - a2) ** x(t - qr.)}) (2)

where the angle brackets indicate an average over time t.

METHODS

Strain and Culture Conditions
The work in this paper is restricted to the albino mutant C2 (genotype carA5(-)), which
shows photophysiology virtually identical to its parent wild-type Phycomyces strain
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NRRL1555(-) (see end of paper 111). The culture conditions were the same as in Foster and
Lipson (1973).

Tracking Machine

All experiments were performed on the Phycomyces tracking machine (Foster and Lipson,
1973; Foster, 1972), which provides a continuous record of the vertical growth velocity of a
single sporangiophore. The specimen was located in a temperature-controlled chamber at
20.5 i 0.5°C. The machine maintained the light-sensitive growing zone, just beneath the
sporangium, in a fixed position in the stimulating light beams. Bilateral oblique illumination
at 30° above the horizontal was achieved by means of a beam splitter and mirror system.
During experiments (duration about 6 h) the sporangiophore typically grew 2 cm from an
initial length of 2 cm.

Light Source

In all experiments the light source was a Coherent Radiation Model 52G argon ion laser
(Coherent Radiation, Palo Alto, Calif.). The laser was operated in light-regulation mode at a
wavelength of 488 nm. The beam was expanded with a lens pair to a diameter of about 1 cm at
the specimen.

Light Intensity Control and Calibration

To vary the light intensity dynamically, a 4.0 OD Inconel-coated circular neutral-density wedge
was used (Kodak A-6040, Eastman Kodak Co., Rochester, N.Y.). The logarithm of the
transmitted intensity was proportional to the wedge angle, and this angle was controlled by
an electronic servo system. The absolute reference intensity level for each experiment was set
by suitable combinations of neutral density filters and by adjustment of the laser intensity.
The wedge was calibrated with silicon photodiodes, types PIN-IOUV and PIN-040a (United

Detector Technology, Santa Monica, Calif.), and a PAR Model 134 Electrometer (Princeton
Applied Research, Princeton, N.J.). Absolute calibrations of the light sources and of the photo-
diodes were performed with a Hewlett-Packard Model 8335A Radiant Fluxmeter (Hewlett-
Packard Co., Palo Alto, Calif.).

Noise Generator and Noise Parameters

An electronic pseudorandom noise generator was constructed' to produce band-limited white
gaussian noise. Its mixed digital-analog design permitted maximal freedom in selecting the
noise parameters and in particular allowed operation at the very low frequencies corresponding
to the response of Phycomyces.

In this series of papers, the same noise pattern was used for almost all experiments. The only
exception was a series of experiments in this paper using three additional noise programs for
comparison. For all four patterns the bandwidth (cutoff frequency) was 0.3 min- 1, a factor of
two beyond the bandwidth of the growth response. Restriction of the noise bandwidth is neces-
sary to reduce the statistical variance of the kernel estimates (Marmarelis and Naka, 1973).
The repetition period of the noise patterns was 5.69 h, which exceeded slightly the analysis
length of the experiments.
The voltage output of the noise generator was fed to the wedge servo to control the wedge

angle. As a result the logarithm of intensity, log,lo, was proportional to the white gaussian
noise signal. The standard deviation of the gaussian amplitude distribution was a = 0.57

' Lipson, E. D., K. W. Foster, and M. P. Walsh. 1975. A versatile pseudorandom noise generator. Sub-
mitted for publication.
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decades (log10 units). To specify the reference intensity level for each experiment, define the
"log-mean intensity" I0 by

log010 - (1og10I>

where the brackets indicate a temporal average over the noise pattern.

Experimental Variables and Procedures

The raw data for each run consisted simply of the time series for the white noise stimulus and
that of the velocity response. Both were available as voltages, the former from the wedge
servo and the latter from the tracking machine servo. These voltages were digitized simul-
taneously at 10-s intervals and stored in the memory of a Fabri-Tek Model 1062 Instrument
Computer (Nicolet Instruments, Madison, Wis.). Timing signals from the Instrument Com-
puter were used to control the noise generator. Every 43 min the memory contents were
dumped on magnetic tape. In addition, the stimulus and response were recorded on a strip
chart recorder for examination during and after the run.

During the setup of each experiment (about 10 min) the wedge was held at its mean position
so that the specimen would start adapting to the log-mean intensity. The experiment proper
began when the Instrument Computer and noise generator were started. To permit the system
to adapt further the first 45 min of the data records were ignored during analysis. During
analysis the data records were truncated at 6.25 h. Therefore the portion analyzed was 5.5 h.

Data Analysis
The data were analyzed with the help of an IBM 2250 display terminal coupled to either an
IBM 370/135 or more recently an IBM 370/158 computer. All programs were executed under
control of a unique interactive software system at the Caltech Computer Center (McCann,
1973). Most of the programs used for the white noise analysis were the same as those in
Marmarelis and Naka (1973).

Before the actual computation of the kernels the raw data records were preprocessed as fol-
lows. First several runs performed under identical conditions were averaged together. To
reduce computation time the sampling (of the averaged data) was reduced to 20-s intervals.
The runs were then truncated as mentioned above. Then both the stimulus and response were
processed for removal of base-line trends by subtracting out a best fit quadratic function of
time. For computational convenience the white noise stimulus amplitude was renormalized
such that its power spectral density K was unity. The Wiener kernels were computed according
to Eq. 2.
To evaluate how well the mathematical model provided by the empirical kernels was describ-

ing the system, the following tests were performed. The white noise stimulus and the kernels
were applied to Eq. 1. The result was the prediction of the model for the same experiment.
Mean square errors were computed between the Phycomyces response and the model response as
a measure of the goodness of fit of the kernels. This procedure is analogous to evaluating a
least-squares fit to a set of data points by examining the mean square deviation of the points
from the fitted line.

Besides this time domain analysis, a complementary analysis was performed in the frequency
domain. Power spectra were computed for the processed response data and the model response
records. In addition the Fast Fourier Transform algorithm (Cooley and Tukey, 1965) was
applied to the first order kernel to permit transfer function analysis.

In the course of analyzing the data it was discovered that specimens that happened to grow
faster than average gave proportionately larger responses and, in turn, larger kernels. To
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reduce systematic errors in comparing results, the response records and kernels in all three
papers have been renormalized to a standard growth velocity of 45 gm/min. Specifically, the
responses and kernels have been scaled by a factor 45/ V where V is the mean growth velocity for
the given series of experiments. The values of V are available in tables in all three papers
(here in Table I).

Analog Electronics

Electronic circuits were designed to simulate the system transfer function and adaptation
dynamics. They were constructed using inexpensive integrated circuit components (Texas
Instruments, Dallas, Tex.). The AD755P antilog amplifier was purchased from Analog Devices
(Norwood, Mass.). To generate pulse, step, and sinusoidal test waveforms, a model 144 HF
Sweep Generator (Wavetek, San Diego, Calif.) was used. A supplemental circuit was con-
structed to generate dark adaptation programs, which include a test pulse of variable delay,
width, and amplitude.
The signals were conveniently observed together on an oscilloscope. The illustrations of

circuit responses shown here were produced via the Fabri-Tek Instrument Computer and an
X- Y recorder.

RESULTS

Time Domain Analysis

The standard white noise stimulus program is shown in Fig. 1 a. The experimental
response, averaged for six runs and already processed for removal of base-line trends,
is shown in Fig. 1 b. The records have been truncated at both ends as described earlier.
One can readily see pronounced correlations between peaks and valleys in the stimulus
and response records, with a time delay of a few minutes.
The Wiener kernels h,(T) and h2(T,, T2) computed from these data via Eq. 2 are

(.1 *T24uD,S 12 d-sde
(IEXPRIMENTAL

MO

FIRST -OR0ER

*SCOND OTDER
60o 120 180 240 zo0

TIME (mls)

FIGURE I (a) The white noise stimulus program, which was applied to the input variable log1o
(1(t)/10). (b) Response of Phycomyces to above stimulus, averaged over seven experiments.
(c) Response of second-order Wiener model to above stimulus, using derived h, and h2 shown in
Fig. 2. (d) Response of first-order Wiener model. (e) Contribution of second-order kernel to
model response. Curve c is the sum of curves d and e.
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FIGURE 2 Wiener kernels of first order (a) and second order (b), derived by cross-correla-
tions (Eq. 2) between the data in Fig. I curves a and b. The second-order kernel is represented
as a contour plot. The units of the contour values are indicated below the plot. Because
h2(rl, 'r2) is a symmetrical function the contours are labeled only in the bottom left half of the
figure. The values in the upper right half are relative extrema. These conventions are followed for
all second-order kernels illustrated in these papers.

displayed in Fig. 2. For any degree of nonlinearity, the first order kernel h,(T) is
essentially the response to small pulse stimuli. As such it may be compared to the
pulse response data of Foster and Lipson (1973). The asymmetrical biphasic response
after a latent period of a few minutes is evident in Fig. 2a. For the kernel h, the
latency appears to be about 3 min. The positive peak occurs at 5.3 min. The small
undershoot during the latent period is attributable largely to the limited bandwidth of
the white noise; that limitation was imposed to reduce the statistical variance of the
kernels at the expense of this slight distortion. The net area of h,(r) is approximately
zero. This feature is an expression of adaptation, as discussed below. The dominant
feature of the kernel h2 in Fig. 2 b is the positive peak on the diagonal at T, = T2 =
5.8 min. This particular structure of the h2 reflects the property of rectification, i.e.
favoring positive stimuli over negative ones. For example, for the response to a posi-
tive pulse, the h2 reinforces the peak contribution from the hl, whereas for a nega-
tive pulse the h2 diminishes the (negative) peak.
The kernels h, and h2 together with Eq. 1 constitute a mathematical model of the

light growth response of Phycomyces. The range of validity of the model is defined by
the amplitude and time-frequency range of the white noise input employed in deriving
it. A simple yet strong test of the goodness of the model (i.e. of the dispensability of
kernels of higher order) is achieved by subjecting the model to the white noise stimulus
(Fig. 1 a) and comparing the model response (Fig. 1 c) to the Phycomyces response
(Fig. 1 b). In Fig. 1 d and Fig. 1 e are shown the respective contributions of h, and
h2. The mean square errors (MSE) listed in Table I permit a numerical comparison of
the Wiener models of each order.
The agreement between the Phycomyces and model responses is quite good. The

first-order model is nearly as good as the second-order model. The smallness of the
h2 contribution and the quality of the first-order model indicate rapid convergence
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TABLE I

COMPARISON OF RESULTS FOR FOUR WHITE NOISE STIMULUS PROGRAMS

Kernels White noise No. of Mean MSE of model rsponse Time of Peak amplitude
in Fig. program exp. velocity Zero First Second h, peak h

order order order 2

jsm/min (jm/min)2 % % min Am/min2 gm/min3

decade decade2
2,3 a Standard 7 52 108 22.0 19.3 5.3 7.7 0.52
3a No. 2 4 47 96 28.7 21.1 5.5 6.7 0.88
3a No. 3 4 45 84 26.6 20.3 5.4 7.0 1.16
3a No. 4 4 47 93 34.5 28.8 5.6 6.5 1.70
3 b Mean - 48 - - - 5.4 7.0 1.02

*Mean square errors between experimental and model response records. MSE for zero-order model
(ho) is in absolute units. MSEs for first-order (h) and second-order (hl, h2) models are given as per-
centages of zero-order MSE.

of the Wiener series over the range tested. Thus in terms of log I the light growth
response is reasonably linear.

In Fig. 1 the model slightly overpredicts the response amplitude for the first half
of the experiment and underpredicts for the second half. This trend results from the
gradual increase in the Phycomyces response during the course of the experiment,
associated with the gradually increasing growth velocity. The effect of this trend on
the kernel evaluation is not serious because of the averaging nature of the cross-
correlation analysis. The Wiener functional series is unable to incorporate this slight
nonstationarity. Thus the kernels may be thought of as representing the response
characteristics at the mean time of the experiment, or alternatively the average
throughout the experiment.
With the exception of the following, all experiments in this series of papers were per-

formed with the standard white noise stimulus program shown in Fig. 1 a. Thus
kernels obtained under different experimental conditions can be compared to those of
Fig. 2 without errors due to variations between the noise programs. However, to
determine the degree to which the kernels depend on the choice of noise program
three additional programs were employed under otherwise identical conditions. For
each program four identical experiments were performed and averaged prior to kernel
computation. The first-order kernels for the four independent programs are shown in
Fig. 3 a. The average of the four kernels is shown in Fig. 3 b along with the average
of the corresponding second-order kernels in Fig. 3 c. Because of the averaging nature
of the Lee-Schetzen correlation analysis, these averaged kernels are statistically equiva-
lent to kernels from a single experiment with the four stimulus programs concatenated.
Moreover the average kernels provide a more accurate representation of the light
growth response functional. Comparing the standard and average kernels hl(r) one
sees slight differences in both amplitude and shape. In particular the oscillations
occurring late in the standard kernel appear less significant in the more accurate aver-
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FIGURE 3 (a) Comparison of first-order kernels for four independent, but stochastically equiva-
lent, white-noise stimulus programs. The upper-most kernel is the standard kernel of Fig. 2 a.
The average of the four kernels is shown in b. For brevity the individual second-order kernels
are not shown. Their average, shown in c, may be compared with the standard kernel in Fig. 2 b.

age kernel. In the system analysis which follows, the average kernel h, will be used
because of its high accuracy. Results for the standard kernel will be needed for com-
parison with results in papers II and III. However the results obtained from the aver-
age kernel, which is available only for the present experimental conditions, are pre-
ferred over those for the standard kernel.

Frequency Domain Analysis
In studying systems it is profitable to examine features in both the time and frequency
domains with the aid of Fourier or Laplace transforms. In particular, systems are
usually simpler to recognize and combine with one another in the frequency domain.
Since the first order kernel h,(T) alone offers a reasonably accurate description of the
light growth response system, the analysis here will be presented mainly within the
framework of linear system theory. The response characteristics in the frequency
domain will be presented in two closely related forms: (a) the power spectrum of the
response to a white noise stimulus and (b) the linear model "transfer function."
For a linear system with input x(t) and output y(t), the transfer function HL(f) is

defined (Goldman, 1953) as the ratio of the respective complex Fourier transforms
X(f) and Y(f):

HL(f) = Y(f)/X(f)

assuming initial conditions of zero. The Fourier transform of HL(f), denoted by
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hL(t), is the "impulse response" of the linear system (Goldman, 1953). White noise
analysis of any linear system would give a first order Wiener kernel h,(t) hL(t)
and all higher order kernels would vanish.

If Px(f) and PY,L(f) are the respective power spectra for x(t) and y(t) then it can
be shown (Blackman and Tukey, 1958) that

PY,L(f) = IHL(f)j1Px(f). (3)

Now, if x(t) is a white noise signal then Px(f) = K, a constant. Therefore

PY,L(f) = K IHL(f)12,

or

20 log10 IHL(f)l = 10log1OPY.L(f) - l0loglOK, (4)

where each term is written explicitly in "units" of decibels (dB). Thus, within the
approximation that the system is linear with log I, the power spectrum of the linear
model response to white noise may be viewed also as a Bode plot (Milsum, 1966) of the
transfer function HL(f). It is simpler and more common to express transfer functions
in terms of the Laplace transform variable s = j27rf, where j = (_ 1)1/2.

In Fig. 4 are shown double-logarithmic plots of the power spectra for the top four
curves of Fig. 1, namely the stimulus, Phycomyces response, second-order model re-

25 _

0~~~~~~~~~~~~~~~2

co -20 - Nonlinear Model 20.-
-Lie Model

° 0.3 0.05 0.1 0.2 0.5 0T 01 0.2 0.3 0.4
FREQUENCY, f (min-') FREQUENCY, f (mi,f1)

FIGURE 4 FIGURE 5

FIGURE 4 Power spectral densities for stimulus and response records of Fig. 1 (a-d). The

0~~~~~~~~~

units corressonding to 0 dB are, respectively, 1 decade /min for the stimulus power spectrum
and 730 1sm /min for the response power spectra. Slopes of +20 dB/decade and -80 dB/decade
are indicated as aids in the transfer function analysis (see text).
FIGURE 5 Frequency domain analysis of first-order kernel, treated as a linear model transfer
function. The amplitude of the Fourier transform of the averaged kernel of Figure 3 b is shown
by the dots. The values have been fit to the amplitude (Eq. 7) of the fifth-order system repre-
sented by Eq. 6. The curve is the result of the fit, i.e. a plot of Eq. 7 with the deduced param-
eters as given in the text.
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sponse, and first-order model response. Note that only the latter two depend on the
kernel computation. The deviations at low and high frequencies of the Phycomyces
power spectrum from the model response spectra may be attributed to random fluctua-
tions, drift, and to a lesser extent to truncation of the kernels and to neglect of higher
order kernels. For the present experiments at Io = 10-6 W/cm2, the response has a
cutoff frequency (defined by 3 dB attenuation relative to the peak) of 0.15 min-'.
Focusing on the model response power spectra of first and second order, one observes
at low frequency a gradual rise of about 20 dB/decade and beyond the cutoff frequency
a precipitous rolloff of 80 dB/decade or greater. These log-log slopes suggest a linear
model transfer function of the general form:

HADJ = HLI S7 = 3 (5)\L7riJ aO + aIs + a2s' + a3s' + a4s4 + a5s'

where 0(s) is a "nonminimum phase" term with magnitude unity and the a, are con-
stants. Thus the system is roughly fifth order, i.e. described by a fifth-order linear
differential equation. As will be shown in the next section and the Appendix, the long-
term dark adaptation experiments of Delbruck and Reichardt (1956) suggest a similar
adaptive element of the form s/(s + l/b), corresponding to a first-order high-pass
filter with a time constant b. Assuming such an element occurs first, the rest of the
pathway could then be expressed as a fourth-order low-pass filter following the adap-
tive (high-pass) element. A preliminary Bode analysis (Milsum, 1966) of Fig. 4 sug-
gested the following form:

HA(f) = e- o[;2 [7f2 ] (6)

with s = 27rjf; i.e. a first-order high-pass filter with cutoff frequency f1 followed
by two identical second-order low-pass filters with undamped natural frequency f2
and damping ratio a. The adaptation time constant b is related to the adaptation
cutoff frequency f, by b = 1/27rfl. The constant ,, which sets the gain of the
system, is in the same units as HL(f). The phase term e-s'o is included to allow for
the latency of the light growth response and will be evaluated separately below.

For the estimation of the parameters f,. f2, a and fB, the average kernel h,(t) of
Fig. 3 b was used. The Fast Fourier Transform algorithm (Cooley and Tukey, 1965)
was applied to the first 64 points (21.3 min) of h,(t) to obtain the Fourier transform
HI (f). Then the amplitude |HI (f)I . shown by black dots in Fig. 5, was fit by a non-
linear least squares procedure (Hamilton, 1964) to the following form for the ampli-
tude ofHL(f)

IHL(f)_ f+ff (7)
(f2 + f 2)'12[(f2 -f2)2+(2ff]
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The resulting parameter values are

= (20 i 3) sm/min. decade,

= (0.037 4 0.013)min-',

A = (0.156 0.004) min',
a = 0.54 + 0.04.

In Fig. 5 the curve of Eq. 7 with these parameter estimates agrees well with the data
points for IH (f). The value of f1 corresponds to an adaptation time constant b =
(4.2 i 1.5) min. The undamped natural frequencyf2 is very close to the system cut-
off frequency of 0. 15 min-'. The result that a is less than unity implies that the second-
order systems are underdamped. The resonant frequency of each second-order system
isf2(1 - 2 a2)1/2 = (0.10i 0.01) min', close to the peak of the system transfer func-
tion. The decay time constant of each system is l/(2irf2a) = (1.9 + 0.2) min, some-
what shorter than the adaptation time constant.
The electronic circuit shown schematically in Fig. 6 a was constructed to simulate the

linear transfer function of Eq. 6. The time delay to appearing in the phase term e-"O
has been evaluated with the help of the circuit. The impulse response of the circuit,
shown in Fig. 6b, aligns well with the kernel h, for a latency value of to = 2.5 min.
The agreement supports the assumption implicit in Eq. 6 that the nonminimum phase
of the system can be expressed simply as k(s) = e`o0. For comparison, to was
determined directly from the frequency domain data; X was taken as the difference be-

SON 17.5K 1.3-K
S1MULATOI

0 S O Is 20
op., LP4 T(9 1

FIGURE 6 Linear electronic simulation of light growth response. (a) Elcronic representation
of linear-model transfer function of Eq. 6. The dynamics of the system are contained in the first-
order high-pass filter (HPI) and the fourth-order low-pass filter (LP4). The latter is composed
of two identical second-order low-pass filters in cascade. The inverting amplifier -restores the
polarity and sets the overall gain of the system to correspond to the value of the gain parameter
#l. For convenience the time units have been scaled 1 is: 1 mi. The conversion factors for the
voltages are 1 V:2 decades for VI, and 1 V: 10 jim/mni for V0. The delay is achieved artificially by
redefining the time origin of the output. (b) Response of the circuit (lower curve) to a unit
pulse (1 decade for 1 mm) compared to the average kernel from Fig. 3 b. The curves correspond
best temporally with a delay of 2.5 min, applied to the circuit response, as shown. The time and
amplitude units of the circuit response have been converted to match the kernel units.
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tween the phase of H, (f ) (data not shown) and the minimum phase corresponding to
the amplitude IHL(f)I in Eq. 7. A straight-line fit of ¢(s) vs. frequency gave a slope
to = (2.6 ± 0. 1) min in good agreement with the above value.

In Fig. 4 the characteristics of the nonlinear model response power spectrum do not
differ greatly from those for the linear model. In particular the rising slope is also
20 dB/decade and the roll-off is also about 80 dB/decade. Thus one would expect the
general features elaborated above to apply to the nonlinear system with the allowance
that some of the reactions must be somewhat nonlinear.

Adaptation

The light response system of Phycomyces exhibits adaptation over about nine decades
of light intensity, comparable to the adaptation range of vertebrate vision. DelbrUck
and Reichardt (1956) conducted dark adaptation experiments which they interpreted
with the following model. They defined an internal state variable A, the "level of
adaptation," as either the constant intensity to which the system had been adapted
or more generally the virtual intensity to which the system seemed (by responses to test
pulses) to have been adapted at a given time. The growth response then depended
functionally only on the "subjective intensity" I/A (or equivalently (I - A)/A,
which is preferred here). Their experiments suggested that the dynamics of adaptation
are contained in the differential equation

dA/dt = (I - A)/b (8)

where b is the time constant of adaptation. According to Eq. 8, A follows I with a
first-order low-pass filter characteristic.
Although Delbruick and Reichardt recognized the existence of a functional (a func-

tional is a function of a function) relating the growth velocity output to I/A they did
not calculate it explicitly. It will be calculated below using nonlinear functional analy-
sis (Barrett, 1963). First define the following variables

x = log,0(I/1o),
z = (I - A)/A,

y V - VO (9)

where 1 is a reference intensity, V(t) is the growth velocity and V0 is its steady-state
level. In terms of these variables the model is expressed in Fig. 7 a. The light growth
response system, indicated by the functional H is decomposed conceptually into two
subsystems F and G operating in cascade. The "adaptation functional" F operates on
the input x to produce z. The "output functional" G in turn operates on z to pro-
ducey.

In the Appendix expressions are derived for the kernels of first and second order of
the adaptation functional F. The first-order kernel f, acts as a first-order high-pass
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FIGURE 7 (a) Decomposition of functional H for the light growth response pathway into func-
tionals F and G in cascade. The adaptation model is represented by F. The internal variable
z is the subjective intensity. (b) Kernels gl,(T) and 92(TI, TO) for G, derived from those for F and
H.

filter with time constant b. The second-order kernel f2 behaves as a nonlinear high-
pass filter. The transform of f, (t), namely F, (s) = abs/(l + bs), was anticipated in
the transfer function analysis in the previous section. Using the first-order kernel of
Fig. 3 b, the transfer function fit produced the value b = (4.2 :1 1.5) min, consistent
with the value b = 3.8 min reported by Delbruck and Reichardt (1956) for dark
adaptation experiments.

It is shown in the Appendix how the output functional G may be unfolded from
the empirical H and theoretical F. The kernels g,(T) and g2(r,, r2) derived using Eq.
17 are shown in Fig. 7 b, c assuming b = 4.2 min. In the linear approximation, the
kernel g,(T) is essentially the impulse response of the fourth-order low-pass filter
described in the previous section. Sincef, andf2 are practically monotonic functions
the fine structures of h, and h2 are carried over in part to g, and g2. However one
notices in g, the absence of further high-pass filtering. This is consistent with the
20 dB/decade initial rise of the response power spectrum (Fig. 3), which indicates but
a single order of high-pass filtering. The consequence of this feature is that if the input
to G, namely z = (I - A )/A, is held constant, then the growth velocity should remain
elevated. The input condition that would make z constant (in the steady-state) is that
x(t) be a ramp function, or that I(t) be an exponential function, as in the so-called
"sunrise experiments" (Bergman et al., 1969). Indeed it is found in these sunrise
experiments that the growth velocity does remain elevated.

It should be pointed out that dark adaptation programs are very different in charac-
ter from the white noise stimulus programs used to obtain the kernels. As will be dis-
cussed in the following paper, the dynamic range of the gaussian white noise stimuli is
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FIGURE 8 (a) Representation of adaptation functional as a feedback system, based on Eq. 10.
The relations in parentheses are obtained using Eq. 8 and Eq. 9. The design is implemented in
an electronic circuit (b), which serves as a nonlinear generalization of the high-pass filter in
Fig. 6 a. As before, the time scale has been compressed I ms: I min. The conversion factors for
the voltages (in volts) are shown on the figure. Note that x, u, w, and z are dimensionless
variables. The components within the dashed rectangle constitute an Analog Devices 755P log/
antilog amplifier. The other amplifiers are SN72741 operational amplifiers. The relation between
V2 and V3 is V2 = -0.1 (_103/2_ 1).

comparatively small. Within the range of a few decades, adaptation has been asso-
ciated here with a high-pass filter with a time constant of roughly 4 min. As part of its
role in the system dynamics this adaptation filter accounts for the phenomenon that
the steady-state response to a step change in intensity is zero; in other words, the
steady-state growth velocity is independent of intensity (except at very high intensity;
Foster and Lipson, 1973).
The adaptation functional F can be represented exactly by the simple feedback cir-

cuit shown in Fig. 8 b. The design of the circuit was based on the observation that the
differential equation 11 has a simple inverse solution for x in terms of z, namely

x= ab zdt + loglO(l + z). (10)

Using the relations in the explanatory block diagram of Fig. 8 a, it is easy to show
that the circuit satisfies this equation. Note that the nonlinearity and the "mem-
ory" are isolated respectively in the offset exponentiator and in the integrator. As
a bonus the circuit provides two important signals within the feedback loop: w(t)
and u(t) are logarithmic measures respectively of the "level of adaptation" A and
the "subjective intensity" I/A (Delbruck and Reichardt, 1956).
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FIGURE 9 (a) Pulse responses (solid curves) of generalized analog circuit, with adaptation ele-
ment of Fig. 8 a substituted for high-pass filter in Fig. 6 a. The magnitude of the unit pulses
corresponds to I OD for I min, of either polarity. The dashed curves show the responses of the
original linear circuit of Fig. 6 a for comparison. The nonlinearity of the adaptation element
manifests itself as rectification. (b) Response of generalized simulator circuit to four dark
adaptation programs (lower curve) shown in composite. In the description of the circuit here, the
units from the circuit have been converted to those appropriate for Phycomyces. At t = 0, the
"intensity" was dropped 2 OD and at t = 60 min it was restored to the initial level. Test
pulses of width I min and amplitude 1.5 OD were given alternatively at t = 10, 20, 30, or 40 min.
For brevity the pulses and their effects are superposed on the one figure. The three middle curves
show signals from the adaptation network: respectively, A/l0 and I/A, both logarithmically, and
(I - A )/A. The result of applying the last signal to the fourth-order low-pass filter in Fig. 6 a is
shown by the upper curve (output).

In the linear circuit of Fig. 6 a, the high-pass filter at the input represented the
first-order approximation of the adaptation functional F. Indeed for small signals
the adaptation circuit just presented becomes functionally equivalent to that filter.
Thus the simulator circuit of Fig. 6a may be generalized to large-scale signals by
substituting the nonlinear adaptation element for the linear high-pass filter. Resid-
ual nonlinearities, in the remainder of the circuit of Fig. 6 (functional G of Fig. 7),
are not incorporated into the refined circuit. However the circuit, with only the non-
linearity of the adaptation model, does quite well at simulating the large-scale non-
linear behavior of Phycomyces.

E. D. LIPSON White Noise Analysis ofPhycomyces Light Growth Response. I.

_a .-I -1'i -d' * L i -r|I4i-. I'l. I..

'. l

1003



v; - Iog 4)

VDO OVO log(-;)+ +

+ 1.LA c
V= aOVXv
uavoIog(L)

FIGURE 10 Alternative representation of adaptation functional, using passive components. The
circuit contains a voltage source, which is related logarithmically to light intensity as shown.
The parameters io and vo pertain to the diode i-v characteristic, according to i = io (exp (vD /
vo) - 1). The relationships shown on the figure are derivable from Eqs. 8 and 9 and are analogous
to those shown in Fig. 8 a. The adaptation time constant is given by b = Cvo/io. The output z of
the functional is represented by the loop current i.

The response of the generalized circuit to positive and negative pulses is shown
in Fig. 9 a. The nonlinearity of the adaptation element has the effect of enhancing
the response to the positive pulse and diminishing it for the negative pulse. Thus
the adaptation model incorporates the property of rectification, which was recog-
nized in the second-order kernel h2 (Fig. 2 b).

Fig. 9 b is a composite of responses of the circuit for four dark adaptation test
programs (Delbruck and Reichardt, 1956). Each repetition of the program consists
of a step down, a test pulse, and a step up. The solid curves represent the behavior
in the absence of a test pulse. The negative step at t = 0 is seen to produce a shallow
but prolonged response (upper curve) compared with the positive step at t = 60 min.
The source of the difference can be found in the intermediate curves, which show very
different time courses for the steps down and up. Comparing the effects of the test
pulses, one sees the system is effectively readapted by t = 30 or 40 min, since the
responses for those times are practically the same. The reduction of the responses for
t = 10 min and 20 min can be traced to the intermediate curves, in particular the adap-
tation output (I - A )/A. The simulator will be helpful in planning and interpreting
experiments to test the adaptation model with these and other adaptation programs at
various intensity ranges as well as sunrise programs, mentioned earlier.

In the adaptation system described in Fig. 8, the offset exponentiator has an input-
output relation similar to the current-voltage (i-v) characteristic of a solid-state
rectifier, namely i = io (exp (v/vo) - 1) where io is the reverse bias current and vo =
kT/e = 25 mV. For consistency the feedback integrator would then have a current
input and voltage output and be representable simply by a capacitor. Indeed the
adaptation functional may be represented alternatively by the simple passive circuit of
Fig. 10. While the circuit of Fig. 8 a is preferred for precise simulation of adaptation,
the present circuit is of interest because it suggests a possible biological context for
Phycomyces adaptation, as will be discussed below.
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DISCUSSION

It was Wiener (1958) who first recognized white gaussian noise as the optimum test
signal for the identification of nonlinear systems. Stimulation with white noise best
approaches the ideal of testing a system uniformly with all possible variations of the
input. The measurement time is exploited much more efficiently with white noise than
with occasional pulses or repetitive sinusoidal stimuli. The white noise analysis method
strongly rejects random fluctuations appearing in the response record.

In papers II and III results will be compared for a number of experimental condi-
tions and strains. For this purpose, the kernels provide a compact, objective, and
accurate representation of the characteristics in each circumstance. Compared with
conventional stimuli, white gaussian noise offers an important additional advantage.
In pulse experiments, for example, one is tempted to use a large standard stimulus to
produce significant responses. As a result one tends to drive the system into satura-
tion and lose the small-scale aspects of the response which are usually simpler (i.e.
linear) and more representative of the natural behavior of the system. The gaussian-
ness of the white noise on the other hand gives emphasis to the small-scale behavior.
Thus while the method is equipped to characterize nonlinearities, it is also well suited
to extracting the small-signal characteristics of the system.
On the other hand the white noise method is subject to several practical limitations.

The white noise stimulus must always be restricted in its bandwidth, duration, and
amplitude range. These constraints limit the accuracy and generality of the results.
Moreover restrictions on computation time and computer memory limit the order to
which kernels may be calculated. In the present work, the analysis was carried to
second order. Even when computation of higher order kernels becomes necessary,
kernels of higher than second order are awkward to display. A frequency domain
method for computing Wiener kernels has been proposed by French and Butz (1973).
The increased computation efficiency of this method relative to time-domain correla-
tion analysis may permit a few more kernels to be computed when necessary. Trunca-
tion of the Wiener series at low order limits application of the white noise method to
systems that are nearly linear within the range studied. This condition was fulfilled in
the present study.
The first order kernel h(r) accounts for most of the response to the white noise

stimulus. Since the input variable was log I, one concludes that the system is approxi-
mately linear with log I over the tested range of a few decades. This lends support to
the conjecture that there is a logarithmic transducer early in the light response pathway
(Foster and Lipson, 1973; Bergman et al., 1973). Such logarithmic range compression
is a common feature of sensory systems and is often expressed in terms of the Weber-
Fechner relation.
The shape of h,(T) in Fig. 2a, as expected, resembles that of responses to pulse

stimuli, particularly smaller stimuli which do not saturate the response (Foster and
Lipson, 1973). In particular one observes the pronounced biphasic response after a
latent period of about 2.5 min. The approximate equality of the areas of the positive
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and negative phases of h,(r) ties in closely with the phenomenon of adaptation. The
structure of the second-order Wiener kernel h2(r,, r2) in Fig. 2 b is dominated by a
diagonal peak which corresponds temporally to the peak of h,(T). As such the h2
reveals the static nonlinearity of rectification, i.e. the property that positive stimuli
elicit larger responses than do negative stimuli.

Further insight into the system dynamics was gained by examination of characteris-
tics in the frequency domain. The approximate linearity of the system (with respect
to the input variable log I) permitted the application of linear system theory. The
power spectra of the experimental and model responses to white noise revealed that the
slow dynamics of the system are of about fifth order. In other words the system is de-
scribable approximately by a fifth-order linear differential equation. In the frequency
domain the input-output relation, defined by the linear differential equation, may be
represented as a transfer function. The transfer function amplitude is closely related
to the power spectrum of the response to white noise. Alternatively the transfer func-
tion can be obtained as the Fourier transform of h&(r). The first-order rise of the
power spectrum at low frequency indicated the feature of adaptation, or high-pass fil-
tering. The sharp roll-off above the cutoff frequency of 0.15 min-' established the
high order of the system.
A representative analytical form (Eq. 6) was taken for the system transfer function

and fit to the Fourier transform of h,(T). The parameters evaluated from the fit in-
clude an adaptation time constant of about 4 min for the first-order high-pass filter, in
agreement with the value of 3.8 min deduced from dark adaptation experiments (Del-
briick and Reichardt, 1956). The remainder of the transfer function was described by
an underdamped fourth-order low-pass filter. This linear model transfer function was
implemented into an analog circuit (Fig. 6 a) which simulates well the small-signal
response characteristics. The high-pass filter at the input represents the linear aspect
of adaptation corresponding to the kernel fi(r) of the adaptation functional F. The
fourth-order low-pass filter corresponds to the kernel g,(r) of the output functional
G. The high-pass filter was generalized to a nonlinear feedback network which incor-
porated the nonlinear adaptation model exactly. The functional of this adaptation
model could also be represented by a simple circuit including a passive rectifier and
capacitor (Fig. 10). The circuit elements suggest the possibility that adaptation
might be governed by the currents and potentials of a biological membrane containing
the photoreceptor. Biomembranes are well known for their high capacitance of about
1 tf/cm2. Moreover rectification is a major nonlinearity of biomembranes (Cole,
1968) and of suitable model membranes (MUller and Rudin, 1968). However, in the
case of membrane rectification, the i-v characteristics tend to be steeper than those
for solid-state rectifiers. Instead of vo = 25 mV one finds typically vo = 4 mV (Eisen-
berg et al., 1973), presumably because of cooperativity of about six charges in the mole-
cules which constitute membrane channels.

Imagine then that the circuit of Fig. 10 represents the electrical properties of a patch
of some membrane in Phycomyces that houses the photoreceptor. The capacitance of
the patch as a whole would be C and the membrane potential would be vc, which is
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proportional to the logarithm of the level of adaptation. Note, incidentally, that if
vo = 4 mV, then v, would change by avo = 10 mV for each decade of A. Thus for the
range of about 10 decades over which Phycomyces adapts, v, would span about 100
mV, comfortably within the voltage range of biomembranes.

In parallel with the capacitance is a series combination of a rectifier and a light-
dependent voltage source. In terms of the hypothetical membrane, this combination
could represent the net effect of a set of specialized ion channels. For example, one
could imagine that (a) the photoreceptor molecules are membrane-bound proteins that
comprise gateable ion channels, (b) the passive electrical properties of the channel can
be represented by a rectifier, and (c) the photoreceptors can generate a potential which
depends logarithmically on the light intensity. (The last property is just how solid-state
photodiodes behave in their photovoltaic mode.)
The model, which is purely speculative, is presented with the hope that serious

attempts will be undertaken to measure light-dependent membrane potentials in
Phycomyces with this tentative concept in mind. Such a finding would have important
implications for the role of Phycomyces as a model system for sensory processes.
For unsymmetric stimuli the light growth response is believed to be responsible

also for phototropism. Other phenomena which play a part in phototropism include
(a) focusing of light by the cylindrical optics of the sporangiophore, (b) local adapta-
tion around the photosensitive growing zone, and (c) spiral growth, which causes the
photoreceptors to rotate through a nonuniform light field and to induce local
growth responses (Dennison and Bozof, 1973).2
The large adaptation range of the light growth response permits the sporangio-

phore to adjust its sensitivity to the ambient light level from twilight to bright sun-
light. In the presence of unilateral light, the variations in intensity induced internally
span a relatively narrow range. Therefore, the linear model transfer function and
simulator circuit are presumably valid for describing the relative range for which the
light growth response dynamics have been "designed." The first-order kernel and the
derived models should be useful for deeper study of the relationship between the light
growth response and phototropism. Furthermore the nonlinear circuit which repre-
sents the exact adaptation model serves as a guide for the planning and interpretation
of specialized experiments to investigate the large scale adaptation capability of the
light response system.
At this point it is worth reviewing the proposed elements of the system and speculat-

ing on their order in the stimulus-response pathway. Both the logarithmic transducer
and the nonlinear adaptation element are presumed to lie early in the pathway. In
paper II a model will be presented that ties adaptation to the photochemical kinetics
of the photoreceptor; that is the earliest possible step where adaptation might occur.
Conceivably the logarithmic transducer may be an integral part of the adaptation ele-
ment since both are concerned with range compression. There must be at least one

2Dennison, D. S., and K. W. Foster. 1975. Intracellular rotation and the phototropic response of
Phycomyces. In preparation.
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linear step prior to the logarithmic transducer, for the very absorption of light by the
photoreceptor molecules is a linear process, i.e., quantum counting by the pool of pig-
ment molecules. The primary transduction step whereby the energy of the excited
chromophore is converted into biochemical energy is likely to be where the processes of
logarithmic transduction and adaptation reside. These processes may well involve
either membranes or enzyme control or both. There is good reason to believe that the
delay element and low-pass filter occur near the output of the pathway. The avoidance
response, which has been shown by mutants to feed into a common growth control
pathway (Bergman et al., 1973) shows a similar latency and time course (Cohen et al.,
1975). In addition the stretch response (Bergman et al., 1969) shows a similar latency.
The high dynamic order of the system implies a moderate number of rate-limiting

reactions with time constants of a few minutes, tailored through evolution to produce
suitable local growth responses. Ultimately the dynamics studied here should be
explicable in terms of molecular processes including, for example, membrane gating
and enzyme control.
The slowness of the growth response of Phycomyces permits the time course of asso-

ciated biochemical variables to be studied in real time, following an exposure to light.
For example, Cohen (1974) has observed a transient decrease in cAMP concentration
within the first 2 min following a step-up of light intensity. As another example, Jan,
Forgac, and Lipson (unpublished observations) found a sustained increase in chitin
synthetase activity by about 20% at high intensity (20 mW/cm2 at A = 488 nm), at
which the growth velocity of sporangiophores remains elevated by a comparable
amount (Foster and Lipson, 1973). That finding supports the hypothesis that control
of chitin synthesis is the output of the light response pathway.
Toward the ultimate goal of defining the biochemical steps of the stimulus-response

pathway, it is important to relate such biochemical effects to the dynamics of the light
response. Thus for Cohen's results, the transient nature of the effect after a step in-
crease in light suggests that cAMP is associated with the pathway at a later point than
the adaptation step. The time span of the effect is shorter and earlier than a growth
response. Thus the putative cAMP step cannot occur very late in the pathway. In the
linear circuit analog (Fig. 6 a), this step would correspond best with the output of the
high-pass filter, thus preceding the low-pass filters and delay element. Indeed the time
course of the cAMP effect is remarkably similar to the response (I - A )/A of the non-
linear adaptation circuit to a step-up in intensity (Fig. 9 b). It is hoped that additional
biochemical correlates will be discovered and analyzed to elucidate the molecular pro-
cesses responsible for the light response characteristics.

APPENDIX

Functionalsfor Delbruck-Reichardt Adaptation Model
In Fig. 7 the light growth response system H was decomposed hypothetically into two subsys-
tems F and G in cascade. The system functionals considered as mathematical operators
(Barrett, 1963) are related by
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H = G * F,

where the asterisk denotes operator multiplication. If we denote the inverse of F by K -
F- l then G may be unfolded formally as

G = H * K.

In this appendix we will derive expressions for the first and second order Wiener kernels for the
functionals F, K, and G.

Using Eq. 9, Eq. 8 may be converted to the equivalent nonlinear differential equation

bz + Z2 + z - abzx- abx=O, ( 11)

where the dots denote time derivatives and a = In 10 = 2.303. Note that the definitions of x,
z, and y ensure that all constant terms vanish for the associated Wiener series.
For the evaluation of and operations with the kernels it is advantageous to work in the fre-

quency domain using Laplace transforms (Barrett, 1963; Brilliant, 1958). The solution of the
above differential equation for the transformed kernels of F is

F,(s) = abs/(l + bs),

F2 (SI, S2) =a2b's,S2(SI + S2)12
2(1 + bs,)(l + bs2)(1 + bs, + bs2) (12)

The corresponding time-domain kernels are

fl(t) = a(b(t) - [11/b]e-/b)
f (, t2) = a2([1/b2] e(*1 +'2)/b + 1/2[(t1)6(t2) - [1/b]e 21b6(t22 t)

- [1/b]eh/b 60(t2) - [1/b]e-12/b6(t,)]) (13)

where b(t) is the Dirac delta function.
The relation of the kernels of F to those of its inverse K are (Brilliant, 1958)

K, (s) = I IF, (s),

K2(s1,s2) = -F2(s1,s2)/F1(s1)F1(s2)Fj(s, + S2).

Therefore

K,(s) = (1 + I/bs)/a,

K2(s,,s2) = - 1/2a, (14)

and in the time domain

kl(t) = (a(t) + 1/b)/a,

k2(t,, t2) = -6(t ) 6(t2)/2a. (15)
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The relations for the cascade G = H * K are (Brilliant, 1958)

G,(s) = HI(s)K,(s),
G2(sI,s2) = H1(s, + S2)K2(S,,S2) + H2(SI,S2)K,(s,)K,(S2)-

Thus

GI(s) = (1 + 1/bs)HI(s)/a,
G2(s1,s2) = -HI(s, + s2)/2a + (1 + l/bs,)(l + l/bs2)H2(s,,s2)/a2. (16)

Transforming the latter expressions to the time domain gives

gl(t) = (hl(t) + b f hl(p)dp)/a,

92(tl, t2) = (h2(t t2) + b- [ h2(t,,P2)dP2 + h2(P1t2) dpi]

+ J2 ]2 h2(PI,P2)dPdP2)/a2 -hI()062 - t,)/2a. (17)

In the actual computation Of g2(t1, t2) the diagonal singularity in the last term was broadened
with the substitution for 6(02 - t,) of the normalized sampling function (Goldman, 1953) sin
(2WT(t2 - tV))/0(12 - tl). The value used for the bandwidth W was I min1, which is well
beyond the cutoff frequency of Phycomyces (0.15 min-') and the white noise stimulus (0.30
min'1). As such the sampling function has the same effect as the 6-function.
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