DISTRIBUTION OF BACTERIA IN
THE VELOCITY GRADIENT CENTRIFUGE

ARTHUR L. KOCH and GERALD BLUMBERG

From the Department of Microbiology, Indiana University, Bloomington, Indiana 47401

ABSTRACT  Cells in different parts of the cell cycle can be separated by brief centrifuga-
tion in a density stabilized gradient: the Mitchison-Vincent technique. The position of
a cell in the tube depends upon its size, shape, and density, upon the gradients of
density, viscosity, and centrifugal force through which it sediments, and upon time.
A program to compute the velocities and integrate the velocity profile for particles of a
particular size class is presented. Because enteric bacteria are a form intermediate be-
tween right cylinders and prolate ellipsoids of revolution, the program uses values for
the frictional coefficient intermediate between those calculated for ellipsoids and for
cylinders. The formula f = 6xnb(a/b)'/* possesses this property and because of its
simplicity greatly speeds the calculations. A second program computes the distribu-
tion of masses and then of sedimentation constants for a bacterial population, ex-
pressed either as a frequency distribution or as total mass per s-class. The effect of
the known variation in cell size at division is included in these calculations, which
apply to organisms undergoing balanced, asynchronous growth in which mass increase
is proportional to cell size. The two programs in conjunction compute the mass or
cell-number profile in an arbitrary gradient. The programs have been used to design
gradients to maximize the resolution of the technique.

INTRODUCTION

A variety of technical improvements have recently been made in the sizing of bacteria
in balanced growth by use of the Mitchison and Vincent (1) velocity gradient cen-
trifugation method (Blumberg and Koch, in preparation). In conjunction with this
work we have developed the theoretical cell distributions appropriate to this technique.
The present treatment will deal first with the formulation of the mass distribution for
the simplest idealized case. Then, it will describe those modifications necessary to ac-
count satisfactorily for variation in cell size at division, deviation from exponential
cell mass increase, and the application to arbitrary nonisokinetic gradients.

IDEALIZED SIZE DISTRIBUTION
Workers too numerous to mention' have independently derived the limiting law de-

scribing the distribution of ages in an asynchronous population of exponentially grow-

11952, The Mitotic Cycle: The Cytoplasm and Nucleus during Interphase and Mitosis, Butterworth’s Scien-
tific Publication, 89; 1954, J. Exp. Biol. 31:8; 1955, Annual Report of Institute of Food Microbiology, 8:75;
1955, Biometrika. 24:16; 1957, Acta Pathol. Microbiol. Scand. 41:161; 1960, J. Biophys. Biochem. Cytol.

BioPHYSICAL JOURNAL VOLUME 16 1976 389



ing cells where all cells have precisely the same doubling time. The earliest published
paper with the seeds of this derivation appears to be that of J. G. Hoffman in 1949 (2).

The distribution which we shall call the canonical age distribution is shown in Fig. 1
as the solid line curve, and is mathematically expressed by:

@y(A) = 2re™™M; 0<A<In2/A=7
e(d) =0 ; A<0;7< A ’

the canonical form of the age distribution by cell numbers, where A is the age of the
cell, ¥,(A4) is the probability that a cell is of age 4, A is the specific growth rate con-
stant and 7 is the doubling time. This distribution accounts for the fact that there are
twice as many newborn cells as there are cells about to divide. Its exponential char-
acter is the consequence of the overall exponential increase in numbers of the popula-
tion as a whole, and is independent of the rate of growth of the individual cell within
the span of a single division cycle.

A parallel formulation has been derived by MacLean and Munson (3) and by Koch
and Schaechter (4) for the distribution of cell masses for the case of precise growth
and division in an asynchronous exponentially growing population. This distribution
which we shall call the zero variation, or canonical mass distribution is shown in Fig. 2
by the curve marked 09, and is mathematically described by:

On(m) = C/m?; fj2<m<e¢ }

Oy(m) =0 ; m< ¢f2;¢<m

the canonical form of the mass distribution by cell numbers, where 6, (m) is the num-
ber of cells of a particular mass, m is the wet mass of a single cell, C is a normalization
constant, and € is the mass at division. For the mass distribution, the physiology and
the details of macromolecular synthesis are important and it was assumed in the deri-
vation of this distribution that the mass, m, of each cell increases exponentially
throughout the cell cycle with the same growth rate constant, A, that characterizes all
extensive increases in the population, such as, for example, cell number. In addition,
it is assumed that the cell divides into equal halves—this usually seems to be the case
for enteric bacteria.’

The shape of this distribution is such that there are four times as many cells in a size
class just after division as there are in the class of cells about to divide. One factor of
two arises because there are two daughter cells resulting from the division of one

7:273; 1960, Ann. N.Y. Acad. Sci. 90:550; 1960, Biochim. Biophys. Acta, 37:406; 1960, J. Protozool. 7:362;
1962, Nature (Lond.), 193:555; 1967, J. Cell Biol. 37:729; 1968, Exp. Cell Res. 47:581. This list presents clear
evidence that biology as a discipline is markedly different than physics, where it would be inconceivable for
example that a dozen Pauli’s might discover, and publish as news, their exclusion principle in different jour-
nals over a 19-year period. The basic, more general principle that leads to this distribution was stated by
Euler in 1760 (see 1970, Theor. Pop. Biol. 1:307).

2This question is discussed in more detail in refs. 4, 22, 24.
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FiGURE | The age distribution by cell numbers. The solid line shows the age distribution by
numbers for a balanced population when all cells divide at the same age, while the dashed line
shows the corresponding distribution on the assumption that the distribution of ages in those
cells in the act of division has a 209 coefficient of variation and is Gaussian.

FIGURE 2 The mass distribution by cell numbers. The curve marked 0% shows the canonical
mass distribution, while the other curves correspond to various coefficients of variation for mass
at division as indicated. The computation of the latter is described in the text.

mother cell. The second factor of two arises because it takes twice as long for a newly
arisen cell to synthesize a given amount of protoplasm than it does a cell approaching
cell division, and to therefore graduate from their respective size classes. Although this
canonical mass distribution is not as well known as the canonical age distribution, it
has been found useful in computing a variety of average properties of cells from bal-
anced bacterial populations (4-7).

Strictly speaking, actual distributions should be used in which variations in the be-
havior of individual cells is accommodated. For actual populations (see ref. 4), it has
been determined that typically the coefficient of variation is 10-15%; for size at division
while for age at division it has a considerably larger value of 20-25%,. The actual
age distributions observed by many workers do not look like the canonical age dis-
tribution, but usually resemble the distribution shown by the dashed line in Fig. 1.
This latter distribution takes into account the biological variation in the cell division
process. The particular example shown was calculated on the assumption that the vari-
ation in ages of cells at division is normally distributed with a coefficient of variation
of 20%,. These choices are consistent with the findings of Schaechter et al. (8).

For some purposes (such as gene mapping) the canonical age distribution has been
used. Painter (9) argues that this procedure is justified even if the age at division varies,
as long as the length of time required for DNA chromosome replication is constant.
For most purposes the variation in age at division must be taken into account. But
aside from replacing the 20%, with a more precise value for each particular case, there
is little need to take the higher moments of the age at division distribution into account
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since they hardly effect the shape of ©5(A4). Actually the variation of age at division, in
much of the literature (10-12), has been observed to be somewhat non-normal and
moderately positively skewed. In our work (8) the skewing was not significantly differ-
ent from zero. The error involved in application of the canonical distribution of mass
may be sufficiently small unless the property under consideration varies greatly
throughout the cell cycle. Realistic cases correspond to the dashed line in Fig. 1
(coeff. var. = 20%) or to the curves marked 10% and 15%; in Fig. 2. An important
conclusion from the present work is that considerable error does result if this variation
is not taken into account in gradient centrifugation studies.

It is necessary to discuss briefly the assumption, specified above, that growth of
each cell is exponential. The claim that cell length increases exponentially (8) was re-
jected by Errington et al. (13) as not describing all cells in the population. It was re-
jected by Harvey et al. (14) because it did not describe the properties deduced using the
Collins and Richmond principle (15) of the very small and very large cells in the pop-
ulation. It was rejected by Kubitschek (16) who presented evidence that the volume
of cells increased linearly. None of these four studies are unequivocal when compared
with the autoradiographic experiments of Ecker and Kokaisl (17) which showed that
the rate of protein and RNA accumulation was proportional to cell length. This study
strongly implies exponential volume growth of Escherichia coli unless the protein con-
tent varies throughout the cycle. This latter possibility of variation in density will be
considered further below.

THE SEDIMENTATION OF CELLS IN ISOKINETIC GRADIENTS

Let us first consider the canonical mass distribution of cell numbers, 8,(m), together
with its assumptions, and ask how this distribution will transform when its abscissa is
not cell size or mass, but rather the sedimentation constant, s. This transformation will
be constructed by first deriving 6,,(m), then ,,(s). We will also describe 8,(s). Our
convention for identifying each distribution is that the abscissal variable appears in
the parentheses and the quantity measured appears as a subscript. Thus 4,,(s) would
be the amount of bacterial mass within the interval s to s + ds. 6,(s) and 8,(s) di-
rectly correspond to the distribution expected to be observed from examination of an
ideal “isokinetic” gradient, where each particle moves at a constant velocity through-
out the run and the total distance traveled is directly proportional to its sedimentation
constant, s, . In later sections we will describe methods to calculate distributions
that would be observed for actual experimental conditions with any type of gradient.

3The fact that age at division is less precisely regulated than is size at division strongly implies that the reg-
ulatory mechanism for cell division responds only indirectly to elapsed time since last division and more di-
rectly to the level of some biological function at some point in the cell cycle. We have shown previously (4)
that the almost two-fold difference in precision between age at division and size at division is quantitatively
in accord with a model in which the latter alone is regulated. If cell age alone were regulated, then cell size
at division would necessarily have a larger coefficient of variation than the 20-25%; found for age at division.
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The Frictional Coefficient
The Svedberg equation relates s to hydrodynamic parameters as follows:

s = dr/dt/w?r = m(1 - Vp)/f = m(p, — p)/p, f,

where r is the position of the particle measured from the center of rotation, w is the
speed of angular rotation, ¢ is time, ¥ is the partial specific volume of the cells, and p
and p, are the density of the medium and particle, respectively. Of special importance
here is f, the frictional coefficient, since it, like m, changes with size of the particle.
That is, in most of what is to follow we presume that as the cell grows, m and f change
but (1 — ¥p) or (p, — p) essentially does not. For prolate spheroids, Perrin (18)
showed in 1936 that:

f = 6mnbi(a/b)(1 — (b/@)*)'*/In[(1 + (1 - (b/a)*)"*)(a/b)}},

where 7 is the viscosity of the medium, a is the major semi-axis, and b is the minor
semi-axis of a prolate ellipsoid. Although this expression is quite complicated, it
happens that for ellipsoids with proportions in the range of many actual rod-shaped
bacteria this expression can be approximated quite precisely by f = 6wxn(a/b)'/2.
Fig. 3 shows that f/6mnb is very nearly equal to (a/b)'/* over a range of proportions
bracketing those of most enteric bacteria. Values of 2-6 for the axial ratio a/b are
typical for E. coli. (Compare curve designated Perrin with that marked root square.)
Most enteric bacteria resemble hemispherically capped cylindrical rods more than
they do ellipsoids. However, equations applicable to right cylinders are considerably
more difficult to derive, and no one has attempted an equation for a cylinder with
hemispherical ends. Fortunately, Bloomfield et al. (19) have derived an equation

v
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FIGURE 3 Theoretical dependency of the frictional coefficient on asymmetry. Shown are vari-
ously derived functions for f, where a and b are half-length and equatorial radius, respec-
tively, as described in the text. It can be seen that within the range of proportions typical of
enteric bacteria, i.e. 2-6, for a/b, all but the Broersma equation are closely approximated by
the square root expression.
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quite useful for short right cylinders. The method of calculation depends on treating
the case as an assembly of many small spheres. Their equation can be written:

S = 6mnbla/b/(In(2a/b) - v/2)],
where /2 is given by:
v/2 = 0301 — 2b/ma.

The equation is given in this format because other attempts at solution of this problem
by other techniques can be presented by using the same equation for f, but different
expressions for v/2. For example, Burger (20) derived an expression where v/2 =
0.11, and Broersma (21) has expressions for rods moving sidewise and endwise which
average to give v/2 = 0.825 — 2(1/In2a/b — 0.43)> — 4(1/In2a/b — 0.3)* for rods in
random orientation. These equations, too, are shown in Fig. 3 but are widely divergent
from f/6xnb = 1 at a/b = 1. Both the square root rule and the Perrin expression for
ellipsoids obey this necessary feature. In principle Broersma’s is the most accurate
expression for cylindrical rods more asymmetric than typical of enteric bacteria, but
the Bloomfield et al. expression, while it should not work as accurately for longer rods,
is the only treatment applicable to shorter rods in the range of interest here.

On the basis of the calculations of Fig. 3, we conclude that the value of f applicable
to enteric bacteria will be slightly above Perrin’s accurate expression for prolate ellip-
soids. The square root function is a good approximation since it splits the difference
with the Bloomfield et al. approximation, and therefore is probably more accurately
applicable to enteric bacteria than the exact expression for rod or prolate-ellipsoid.
Since the diameter of enteric bacteria during balanced growth is nearly constant (22),
a is proportional to m, and f is proportional to vVm. Consequently the sedimentation
constants of cells of different sizes in a zonal centrifuge run will be proportional to
m/~/m = v/m. The proportionality constant is [(p, — p)/n(p,)'?](b/3*m)"/* or
[0, — p)/n(p,)'*(b/6*x)'* depending on whether the bacterium is modeled as an
ellipsoid or a right cylinder.

Thus, on the assumption of this square root approximation, the s value of a cell
about to divide, 5., is only (V2 — 1) = 41% greater than either of the two cells
that result from the division. This compression of the two-fold range of mass between
50%; ¢ and 100%; ¢ into a range of 70.7% 5.~-100%; 5. means that velocity gradients must
be of high resolution if they are to be of much use in the separation of cells in different
parts of the cell cycle. The inventor of the gradient technique (Mitchison [23]) speaks
disparagingly of this technique largely, we believe, because of this compression of
range.

This is the appropriate point to return to the question of the suitable function to be
chosen for f. For an hypothetical bacterium of the shape of an ellipsoid of revolution,
the Perrin equation predicts that s for a cell about to divide will range from 52-31%
larger than that of either of the two progeny as the value of a/b of the newborn cells
ranged from 1 to 4 (b always constant). Over the same range of birth proportions the
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prediction of the Bloomfield et al. equation is 36-32%,. Consequently the square root
function which yields 419 for all sizes again. seems quite appropriate for structures of
an intermediate shape. As will be seen below the square root rule greatly simplifies
computation of distributions of bacteria in gradients.

Transformation to s-Distributions

At the beginning of this section, we asked how the mass distribution will transform
when the variable m is replaced with s. To transform 6y(m) into the distribution
function of sedimentation constants appropriate to the square root approximation, we
first note that 6,(m)dm was the fraction of the total number of cells in the mass
rangemtom + dm. So if 6, (m)dm is the fraction of the combined mass of cells in
the range m to m + dm, then this distribution can be derived from the @y(m) simply
by multiplying by m, and is given by:

0,(m) = C'm/m?* = C'/m;c/2 < m < ¢
8,,(m) = 0; m< ¢éf2;¢<m

the canonical form of the mass distribution by combined cell masses. To transform to

the function 6,,(s) (where 0,,(s) ds is the fraction of the cell mass in the range of sedi-

mentation constants s to s + ds) one substitutes ks? for m and 2ksds for dm where k is
a proportionality constant, yielding:

0,(s)ds = (C"/ks)ksds = C"ds

or
Om(s) = C"; 5/V2<s<5s.
0,() =0 ; 5 <5,/V25. < s}’

the canonical form of the sedimentation constant by combined cell masses. Thus
0,,(s) for this idealized case of precise cell division where the cells grow to reach
mass ¢ and sedimentation constant, 5, is a rectangular, flat-topped distribution that
we call the mesa distribution.

Another appropriate distribution, shown in Fig. 6, is that for cell numbers as a
function of s, i.e.,

Ou(s) = C""/s;5:/V2 < 5 < 5, }
Ou(s) =0; s<3/VZ%E5 <s)

the canonical form of the sedimentation constant by cell numbers. This would be the
appropriate form if analysis of isokinetic gradients were made with a particle counter.

For the distributions we have been considering, the normalization constants are
different and have different dimensions. The mass distribution by cell numbers,
0y (m), has:

C = ¢ (mass units).
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FIGURE 4 The inverse first power distribution: the mass distribution by combined cell masses.
See legend to Fig. 2.

The mass distribution by combined cell masses 6,,(m) has:
'C' = 1/In2 = 1.4427.
The sedimentation constant distribution by combined cell masses 6,,(s) has
C" = 1/(1 = 1/(V2 — 1) = 3.4142 (per Svedberg).
The sedimentation constant distribution by cell numbers 8 (s) has
C" = 2/In2 = 2.8854.

These canonical distributions are shown as the 09 cases in Fig. 2, 4, 5, and 6. These
figures also give the corresponding distributions assuming a 5, 10, and 15%, coefficient
of variation in critical size (size at cell division).

To calculate the curves in Fig. 2, 4, S, and 6 for the noncanonical cases, a computer
algorithm was set up. This computer program superimposes many canonical dis-
tributions, one for each different critical cell size ranging from 50 to 150% of the mean
critical size, in 100 steps. Then, each of these canonical distributions is subdivided
into intervals corresponding to 19 of the average size at division and their contribu-
tions summed. This summation method agrees numerically quite well for the 6,(m)
distribution with that presented by Koch (24) using numerical methods to evaluate an
integral expression in terms of mean, coefficient of variation, and skewness coefficient,

Y-
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FIGURE 5 The mesa distribution: the sedimentation constant distribution by combined cell
masses. Shown are curves for different coefficients of variation for mass at division as indicated.
For the canonical form, marked 0%, various skewing factors exactly cancel out, thus producing a
flat-topped, ‘““mesa”-like curve. This basic form only applies when the square root law for f
is valid.

It was assumed that the distribution of the critical sizes within the population in all
of these cases follows normal Gaussian distributions. This assumption can be justified
by the experimental finding from Marr’s Laboratory (personal communication) that
the size distribution of newly born cells eluted from membrane filters was normally
distributed. However, our calculations show that the distributions presented here are
relatively insensitive to the shape of assumed distributions of sizes at division.
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FIGURE 6 The sedimentation constant distribution by cell numbers. See legends to Figs. 2 and 5.
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CHOICE OF GRADIENT

Only with specially constructed ““isokinetic” gradients will particles sediment at con-
stant velocity throughout the gradient. The necessary condition for this sedimentation
behavior can be characterized as follows.

The Svedberg equation with the above approximation where m/f is replaced
by a constant times (2p,b%/9n)(a/b)"/* can be rearranged as shown below to separate
quantities that (/) vary across the population of particles, (2) vary along the time
course of sedimentation, and (3) do not vary at all in a particular centrifugation run.
Factor 3 has been evaluated on the assumption that the volume is $xab?. It is vari-
ation in the second factor that is solely responsible for variation in dr/dr during a
single centrifugation.

0] (2 3
dr/dt = 20?b*[(a/b)"*(p, — p)r/9m] = [(a/B)'*]l(p, — p)r/n][20?b%/9).

Noll (25, 26) describes nonlinear gradients that can be constructed to make the
second factor very nearly constant. He shows that for certain choices of gradient ma-
terials and centrifuge heads and tube lengths that an exponential gradient can ap-
proach within 19 of the desired values for an isokinetic gradient. Nevertheless, the
viscosity and density changes along the concentration gradient limit any particular
exponential gradient to isokineticity for only a small range of particle densities, tube
dimensions, etc. Moreover, isokinetic gradients are not necessarily the best solution
for prokaryotic cell-cycle fractionation. Other gradients can have desirable features
such as simplicity of construction, constant width of a band, etc. The merits of a
number of gradient designs are discussed by Price (27, 28).

For cell separation, as distinct from ribosomes, proteins, etc., there is a further kind
of restriction in the design of a density gradient because of the comparatively low
density of the cells. The density of the bacteria we have studied is 1.13, whereas pro-
teins typically range around 1.38 and ribosomes around 1.49. This means that the
most dense part of the gradient should not exceed 1.10, thus the gradients must be
much less steep and consequently less stable to convection. In part we have circum-
vented this difficulty by using gradients made of D,0. Because equilibration of water
across the plasma membrane is rapid the effective density of the cell increases as the
cell sediments.

Henry and Scheie (29) reported the density of E. coli to be 1.086, and Kubitschek
reported it to be 1.103-1.108 (30), well below our value of 1.13. In our experimental
paper these discrepancies are discussed (Blumberg and Koch, in preparation). Here
we need only note that extremely shallow gradients must be used for bacteria when
nonpermeating solvents are employed. This in itself precludes all but linear density
gradients, since a nonlinear gradient with the same concentrations at top and bottom
would contain at least one region yet shallower than its linear counterpart.
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MODELS OF ZONAL DISTRIBUTIONS

To aid in both the design of gradients and the interpretation of them we constructed a
computer program to compute the factor in the second bracket of the equation above.*
In combination with the program described above which calculates the mesa distribu-
tion function 6,,(s), the time course of the sedimentation of bacterial populations
can be calculated.

Figs. 7 and 8 show the computed outcome of the centrifugation of a hypothetical
population of bacteria in balanced growth whose critical size has a coefficient of varia-
tion of 10%, through two types of linear gradient used in this laboratory in the past.
We have chosen parameters to correspond to centrifugation in the HB-4 head of the
Sorvall centrifuge (DuPont Instruments, Sorvall Operations, Newtown, Conn.). Fig. 7
is for a linear gradient 0-100%, in D, 0O and with 5% sucrose throughout while Fig. 8
is for a linear 5-15%, Ficoll gradient. For convenience in comparing different theoret-
ical and experimental curves, we define a separation index as the ratio of tht{ distance
between the half maximal heights to the distance from the meniscus to the point of
maximal cell concentration. This is listed on the curves as a percentage. For an ideal
isokinetic gradient, cells of a population in balanced growth with a 109 variation of
size at division give a separation index of 36.4%, which, of course, does not change as
the sedimentation proceeds. Such a condition is closely approximated by the D,O
gradient of Fig. 7. The progressive compression seen in the Ficoll gradient of Fig. 8
arises because here the centrifugal force does not increase fast enough with the in-
creasing distance from the axis of rotation to offset the effects of Ficoll in decreasing
the bouyant force and increasing the viscosity. It is therefore the same phenomenon
as that designated *‘gradient-induced zone narrowing” by Price (28). (For this reason,
and because Ficoll tends to aggregate cells of our strain of E. coli as observed micro-
scopically, we have discontinued use of this type of gradient.) On the other hand, the
D, O gradient is relatively free of this compression effect and is in fact virtually iso-
kinetic. This is because the viscosity of pure D, O is much less than that of 15%; Ficoll
and because (1 — 7p) changes little as the result of D,O exchange with cell water as
the cells go down the gradient. The calculations presented in this case assume that the
equilibration is instantaneous.

LINEAR MODELS OF GROWTH

In an earlier paper (5), the problem of cells increasing in mass and size at a constant
rate throughout the cell cycle was considered. The canonical mass distribution of cell

4The computer must be given the volume, cross section, area, and distance from center of rotation to calcu-
late the quantities in the first two brackets, and parameters describing how viscosity and density change with
concentration of gradient material. The program can be easily altered to allow a variety of nonlinear gra-
dients. The computer can display the rate against distance along the gradient. In its current configuration,
it can chart also the course of a particle with a particular size and shape and also it can display distributions,
at a fixed time, of a population of particles as a function of their size (or shape).
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FIGURE 7 The theoretical course of centrifugation through a D,O gradient. These curves were
constructed from the computer output in which the sedimentation of an ideal population of cells
with a coefficient of variation for mass at division of 10% is modeled. Depicted are the distribu-
tions of combined cell mass after four successive time increments of equal duration. This ex-
ample and that of Fig. 8 were constructed to correspond to actual gradient runs made in our
laboratory in which fractions were measured turbidometrically for bacterial content. Constants
chosen were consistent with the loading of 40 ml gradients into 50 ml cellulose nitrate tubes
which were spun in an HB4 Sorvall rotor at room temperature (25°). The linear gradients are
0-100%; in D,O and constant in M-9 and 59 sucrose. Radial distances are 6.48 cm to the
meniscus and 12.97 cm to the gradient bottom. Constants assembled from the literature and the
assumption of average density and content of cell solids given in Table I leads to p, — p =
0.0844 — 0.0002909D and n = 1.045 + 0.0020522D where D is the percent of D,O in any por-
tion of the gradient. The percentage shown above each curve is the separation index described in
the text.

numbers for the case of constant rate of elongation is markedly different from that for
the exponential increase. In the former there is a two-fold increase in frequency for
the birth size relative to the cell-division size, instead of fourfold as in Fig. 2. This
major change in proportions causes essentially little change in the first and second
moments of the distribution while dramatically changing the third and higher
moments.

Inclusion of the effects of variability of individuals in the population in terms of
cell mass at division were also made in the original analysis (5) and later by Kubitschek
(16). The conclusion drawn from both these studies was that despite the two-fold
difference in frequency of smallest cells seen in the canonical models for linear vs.
exponential growth it would be extremely difficult to distinguish the two cases on the
basis of the size distributions. This is because there is little difference in the coefficient
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FIGURE 8 The theoretical course of centrifugation through a Ficoll gradient. This corresponds
to a 5-15Y% linear Ficoll gradient made in M-9, other conditions as specified in Fig. 7. Note the
gradual compression and slowing as the centrifugation proceeds. Each successive curve is for
twice the length of centrifugation time as the previous curve.

of variation of sizes, and the difference in the skewness statistic becomes very small if
there is appreciable variation in the size at division in balanced growth. For example,
if there is 109} variation in cell size in division, the coefficient of variation of 8,(m)
for the linear case is 22.09%, and for the exponential case is 22.719,. The skewness
statistics are 0.38 and 0.57, respectively.

Although a linear growth model for macromolecular synthesis seems excluded as
noted above, it seemed a possibility consistent with a number of experimental papers
that the mass growth is exponential while volume growth linear. For this model, the
cell is at maximum density at birth, shifts to a minimal density near the middle of the
cell cycle because the linear rate of volume increase had raced ahead of mass increase
and then returns to maximal density at the end of the cycle where exponential rate mass
growth overtakes linear increases in cell size.

To calculate the density changes assume that the dry weight of the cell’s constituents
increases exponentially according to w = (w;/2)24, and that the volume changes lin-
early according to v = (v;/2) + A(v;/2) as the age 4, ranges from O to 1. Thus for this
variable-density model, the dry weight concentration, w/v, must change proportionally
to24/(1 + A). The second difference from the model used in previous sections of
this paper is that the axial ratio, a/b is not proportional to w but to v.

The function 2# /(1 + A)isunity at A = 0 and 4 = 1; its maximum deviation from
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TABLE 1

SEDIMENTATION PROPERTIES OF CELLS BASED ON THE VARIABLE-
DENSITY MODEL OF ECKER FOR CELLS IN BALANCED GROWTH

Portion of Cell Cycle

Point of * Mean
* Minimum Cell Over
Birth Density Division Cycle
A. General Properties
Age 0 0.4427 1 0.4427
Dry Weight 0.5 ve 0.6796 we 1 ve 0.6931 vz
Volume 0.5 v= 0.7213 v- 1 v- 0.7213 v-
c c < c
Relative dry weight
Concentration 1 w/vo 0.9421 wo/v- 1 w-/v= 0.9609 w-A-
2A/(1+4) ¢ ¢ c 't c ¢ c'c
B. Applied to E, coli
B/r growing in
minimal medium
Dry weight . o o o
content 28.099% 26.4717% 28.0997% 27%
Cell densityll 1.1380 1.1143 1.1380 1.121

*
Birth and cell division are points of maximum density.

#Assuming mean over cycle : 27 g dry mass per 100 g wet weight.

IAssuming mean density of cellular dry solids measured in this
laboratory of 1.46. This and the 27% absolute dry weight content
corresponds to this average density.

unityisat 4 = (1/In2) — 1 = 0.4427 where its value is 0.9421. The mean of the func-
tion is 2 (In2)? = 0.96091. These values together with the assumptions that the or-
ganism is made up of 279, dry solids of density 1.46 suffice to compute the cell density.
These two numbers are consistent with our own unpublished observations with E. coli
B/r mentioned above and those of George Hegeman (personal communication), of the
density and dry weight content of cells grown in minimal culture medium.

The theoretical values for the 24/(1 + A) function are shown in Table I for the
parts of the cell cycle where it is a maximum or a minimum. In the bottom portion of
the table these theoretical calculations are applied to the E. coli B/r case. It can be
seen that the density is expected to vary 0.0237 g/ml through the cell cycle. Our ex-
perimental determination of the range of cell density (Blumberg and Koch, in prepara-
tion) is only 0.008 g/ml or 30 times less, so that this variable density model is experi-
mentally excluded in the case of E. coli B/r.

DISCUSSION

Synchrony experiments are evidently one of the most powerful approaches to ques-
tions involving the cell cycle of bacteria. Of the many methods used to achieve
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synchrony—amino-acid starvation, use of inhibitors, nutritional shifts, membrane
elution fractionation, etc.—we feel that the method of choice is zonal gradient sizing
of cells. When experiments are performed such that all critical events, e.g., incorpora-
tion of label or induction and biosynthesis of a gene product, occur during un-
disturbed balanced growth, and then fractionation is achieved rapidly in a way that
does not depend upon the subsequent physiological behavior of a perturbed cell pop-
ulation, then it seems to the authors that artifacts are minimal and experimental re-
sults amenable to clear and direct interpretation. In addition, since we believe (4)
that the determinants in the normal cell cycle which control key events are more di-
rectly related to cell size than to age, then an experimental method that generates size
classes will be a priori more tightly coupled to the event under study than a method
based upon age separation, such as the membrane elution technique.> This will be true
whether the goal is to select a population of cells for subsequent synchronous growth
or to separate cells at different stages in the cell cycle.

When the latter type of experiment is performed, it is usually necessary to determine
the amount of cellular mass per fraction, and this is typically done either by counting
cells electronically or by measuring cell mass turbidometrically. For either case it is
now possible to calculate, with the aid of a computer, what the expected distribution
should be for a given centrifuge run in which the cell population is sedimented and
fractionated in an infinitely precise manner. We have developed this modeling ap-
proach primarily as a tool for assessing the degree of resolution attained in an actual
run, through comparison of the experimentally obtained distribution with the ideal
expectation for that run. These comparisons will be presented in future experimental
papers. Thus the above derivations and computations were made in an attempt to
take into account all of the variables that could be rigorously treated, so that by com-
parison with actual experiments we could quantitate the effects of those other vari-
ables so far not taken into consideration. We have taken into account to the first
approximation the growth characteristics of the enteric bacteria and how these effect
sedimentation parameters such as particle density and the frictional coefficient; we
have also taken into account the design of the gradient. On the other hand, we have
not taken into account any convective stirring or any process that prevents the or-
ganisms from separating into hydrodynamically independent entities concomitantly
with cell division.

Of course, various species of microorganisms and various strains within a species
differ widely in their natural tendency to produce mini-cells, filaments, and chains and
to adhere to each other as aggregates. Most experimental studies have been carried
out with well-behaved strains in these respects. These possibilities can be checked by
microscopic examination of samples under analysis (although this should be done on a
sample that has been subjected to pelleting in a centrifuge, if this is part of the pro-
cedure). Alternatively they can also be checked or at least monitored by analyzing the
width of the size distribution measured in a particle counter. Recently Zimmerman
et al. (30) have presented data with a modified Coulter counter which should have a
greatly improved resolution. Measurements of these published figures show ratios in
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the neighborhood of 53%; of the width at half height to the modal value. This figure
corresponds to very precise cell division (fairly small coefficient of variation of the size
at division), and leaves no room for aggregates, etc. The theoretical mass distribution
by cell numbers shown in Fig. 2 predicts a range of 54-65% in the ratio of the width at
half maximal height to the modal value as the coefficient of variation of size at division
is increased from 5 to 15%.

Although our interest has been to isolate enteric microorganisms in various stages
of the cell cycle, we hope this approach will be found fruitful for application to other
systems as well.
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