— [ statistics ® stati'stique ]

BASIC STATISTICS FOR CLINICIANS:
1. HYPOTHESIS TESTING

Gordon Guyatt, * MD; Roman Jaeschke, *1 MD; Nancy Heddle, t MSc; Deborah Cook, *1 MD;
Harry Shannon, * PhD; Stephen Walter, * PhD

Abstract ® Résumeé

In the first of a series of four articles the authors explain the
statistical concepts of hypothesis testing and p values. In
many clinical trials investigators test a null hypothesis that
there is no difference between a new treatment and a placebo
or between two treatments. The result of a single experiment

will almost always show some difference between the experi-

mental and the control groups. Is the difference due to
chance, or is it large enough to reject the null hypothesis and
conclude that there is a true difference in treatment effects?
Statistical tests yield a p value: the probability that the exper-
iment would show a difference as great or greater than that
observed if the null hypothesis were true. By convention, p
values of less than 0.05 are considered statistically significant,
and investigators conclude that there is a real difference.
However, the smaller the sample size, the greater the chance
of erroneously concluding that the experimental treatment
does not differ from the control — in statistical terms, the
power of the test may be inadequate. Tests of several out-
comes from one set of data may lead to an erroneous conclu-
sion that an outcome is significant if the joint probability of
the outcomes is not taken into account. Hypothesis testing
has limitations, which will be discussed in the next article in
the series.

linicians are often told that they are supposed to not

only read journal articles, but also understand them
and make a critical assessment of their validity.'* Clinicians
may offer better care if they are able to appraise critically
the original literature and apply the results to their prac-
tice.** Criteria for assessing the strength of the methods
reported in medical articles can provide clinicians with
guidance in recognizing the strengths and weaknesses of

Dans ce premier article d'une série de quatre, les auteurs ex-
pliquent les concepts statistiques que sont les vérifications
des hypotheses et les valeurs p. Au cours de nombreux essais
cliniques, les enquéteurs font l'essai d'une hypothése nulle
selon laquelle il n'y a pas de différence entre un nouveau
traitement et un placebo, ou entre deux traitements. Le résul-
tat d'une seule expérience indiquera presque toujours un écart
entre les sujets de I'expérience et ceux des groupes témoins.
L'écart est-il attribuable au hasard ou est-il assez important
pour qu'on rejette I'hypothese nulle et conclue qu'il y a vrai-
ment un écart entre les effets des traitements? Les tests statis-
tiques donnent une valeur p : c'est la probabilité selon laquelle
l'expérience démontrera un écart aussi important ou plus im-
portant que celui qu'on observerait si I'hypothese nulle s'avé-
rait. Par convention, les valeurs p de moins de 0,05 sont con-
sidérées comme importantes sur le plan statistique et les
enquéteurs concluent qu'il y a un écart réel. Or, plus I'échan-
tillon est petit, plus grande est la chance de conclure a tort
que le traitement expérimental ne difféere pas du traitement
témoin — sur le plan statistique, la puissance du test peut étre
insuffisante. Des essais de plusieurs résultats d'une série de
données peuvent inciter a conclure a tort qu'un résultat est
important si I'on ne tient pas compte de la probabilité con-
jointe des résultats. Les vérifications des hypotheéses ont leurs
limites, sur lesquelles portera le prochain article de la série.

clinical research.*¢ However, such guidelines tend to make
only passing reference to statistical methods or interpreta-
tion of study conclusions based on statistics.

Some authors have attempted to fill this gap.™"" This se-
ries has modest goals. We do not intend, for instance, to
enable readers to identify or understand the statistical tests
used to calculate a p value, but we are interested in helping
them interpret the p values generated by such tests. We
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wish to allow readers to understand the conclusions derived
from statistical procedures that they find in clinical articles.
This series complements our guides to using the medical
literature, which focus on study design and application of
study results."

COMMONLY USED STATISTICAL TECHNIQUES

We chose to address only the techniques and ap-
proaches that clinicians most commonly face. To identify
these, we reviewed recent contributions to three major
medical journals: original, special and review articles in the
New England Journal of Medicine (1991, 324: 1-352); diagnosis
and treatment, review, and academia articles in the Annals of
Internal Medicine (1991, 114: 345-834), and original research,
current review, and clinical and community studies articles
in the Canadian Medical Association Journal (1991, 144.
623-1265). Two of us (N.H. and R]J.) independently re-
viewed 100 articles and noted the statistical techniques
used. Discrepancies between the findings of the two re-
viewers were resolved by consensus.

The results of this review (Table 1) are consistent with
those of a similar review.” Although a wide variety of sta-
tistical techniques were reported, hypothesis tests, confi-
dence intervals, p values and measures of association oc-
curred most frequently. On the basis of this information
our series will deal with hypothesis testing, estimation,
measures of association, survival analysis, and regression
and correlation. Examples will be drawn from the articles
surveyed and others.

HYPOTHESIS TESTING

When we conduct a trial of a new treatment we can as-
sume that there is a true, underlying effect of the treatment
that any single experiment can only estimate. Investigators
use statistical methods to help understand the true effect
from the results of one experiment. For some time the para-
digm for statistical inference has been hypothesis testing.

of statistical concepts
in 100 articles published in
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The investigator starts from what is called a “null hypothe-
sis”: the hypothesis that the statistical procedure is designed
to test and, possibly, disprove. Typically, the null hypothe-
sis is that there is no difference between outcomes as a re-
sult of the treatments being compared. In a randomized
controlled trial to compare an experimental treatment with
a placebo, the null hypothesis can be stated: “The true dif-
ference in the effects of the experimental and control treat-
ments on the outcome of interest is zero.”

For instance, in a comparison of two vasodilator treat-
ments for patients with heart failure, the proportion of pa-
tients treated with enalapril who survived was compared
with the proportion of survivors among patients given a
combination of hydralazine and nitrates."" We start with
the assumption that the treatments are equally eftective and
stick to this position unless the data make it untenable. The
null hypothesis in the vasodilator trial could be stated: “The
true difference in the proportion surviving between patients
treated with enalapril and those treated with hydralazine
and nitrates is zero."

In the hypothesis-testing framework we ask Are the ob-
served data consistent with this null hypothesis> The logic
behind this approach is the tollowing. Even if the true dif-
ference in effect is zero, the results observed will seldom be
exactly the same; that is, there will be some difference be-
tween outcomes for the experimental and control groups.
As the results diverge farther and farther from the finding
of no difterence, the null hypothesis that there is no differ-
ence between treatments becomes less and less credible. If
the difference between results in the treatment and control
groups becomes large enough, the investigator must aban-
don belief in the null hypothesis. An explanation of the role
of chance helps demonstrate this underlying logic.

THE ROLE OF CHANCE

Imagine a fair or “unbiased” coin in which the true prob-
ability of obtaining heads in any single coin toss is 0.5. If
we tossed such a coin 10 times we would be surprised it we
saw exactly five heads and five tails. Occasionally, we
would get results very divergent from the five-to-five split,
such as eight to two, or even nine to one. Very infrequently
10 coin tosses would result in 10 consecutive heads or tails.

Chance is responsible for this variation in results. Games
of chance illustrate the way chance operates. On occasion,
the roll of two unbiased dice (with an equal probability of
rolling any number between one and six) will yield two
ones, or two sixes. The dealer in a poker game will, on oc-
casion (and much to the delight of the recipient), dispense
a hand consisting of five cards of a single suit. Even less fre-
quently, the five cards will not only belong to a single suit
but will also be consecutive.

Chance is not restricted to the world of coin tosses, dice
and card games. If a sample of patients is selected from a
community, chance may result in unusual distributions of
disease in the sample. Chance may be responsible for a sub-



stantial imbalance in the rates of a particular event in two
groups of patients given different treatments that are, in
fact, equally effective. Statistical inquiry is geared to deter-
mining whether unbalanced distributions can be attributed
to chance or whether they should be attributed to another
cause (treatment effects, for example). As we will demon-
strate, the conclusions that may be drawn from statistical
inquiry are largely determined by the sample size of the
study.

THE P VALUE

One way that an investigator can go wrong is to con-
clude that there is a difference in outcomes between a treat-
ment and a control group when, in fact, no such difference
exists. In statistical terminology, erroneously concluding
that there is a difference is called a Type | error, and the
probability of making such an error is designated o. Imag-
ine a situation in which we are uncertain whether a coin is
biased. That is, we suspect (but do not know for sure) that a
coin toss is more likely to result in heads than tails. We
could construct a null hypothesis that the true proportions
of heads and tails are equal. That is, the probability of any
given toss landing heads is 0.5, and so is the probability of
any given toss landing tails. We could test this hypothesis
in an experiment in which the coin is tossed a number of
times. Statistical analysis of the results would address
whether the results observed were consistent with chance.

Let us conduct a thought experiment in which the sus-
pect coin is tossed 10 times, and on all 10 occasions the re-
sult is heads. How likely is this result if the coin is unbiased?
Most people would conclude that this extreme result is
highly unlikely to be explained by chance. They would
therefore reject the null hypothesis and conclude that the
coin is biased. Statistical methods allow us to be more pre-
cise and state just how unlikely it is that the result occurred
simply by chance if the null hypothesis is true. The proba-
bility of 10 consecutive heads can be found by multiplying
the probability of a single head (0.5) by itself 10 times: 0.5 X
0.5 % 0.5 and so on. Therefore, the probability is slightly
less than one in 1000. In an article we would likely see this
probability expressed as a p value: p < 0.001. What is the
precise meaning of this p value? If the null hypothesis were
true (that is, the coin was unbiased) and we were to repeat
the experiment of the 10 coin tosses many times, 10 consec-
utive heads would be expected to occur by chance less than
once in 1000 times. The probability of obtaining either 10
heads or 10 tails is approximately 0.002, or two in 1000.

In the framework of hypothesis testing the experiment
would not be over, for we have yet to make a decision. Are
we willing to reject the null hypothesis and conclude that
the coin is biased> How unlikely would an outcome have to
be before we were willing to dismiss the possibility that the
coin was unbiased? In other words, what chance of making
a Type | error are we willing to accept? This reasoning im-
plies that there is a threshold probability that marks a

boundary; on one side of the boundary we are unwilling to
reject the null hypothesis, but on the other we conclude
that chance is no longer a plausible explanation for the re-
sult. To return to the example of 10 consecutive heads,
most people would be ready to reject the null hypothesis
when the observed results would be expected to occur by
chance less than once in 1000 times.

Let us repeat the thought experiment with a new coin.
This time we obtain nine tails and one head. Once again, it
is unlikely that the result is due to chance alone. This time
the p value is 0.02. That is, if the null hypothesis were true
and the coin were unbiased, the results observed, or more
extreme than those observed, (10 heads or 10 tails, 9 heads
and 1 tail or 9 tails and 1 head) would be expected to occur
by chance twice in 100 repetitions of the experiment.

Given this result, are we willing to reject the null hy-
pothesis? The decision is arbitrary and a matter of judge-
ment. However, by statistical convention, the boundary or
threshold that separates the plausible and the implausible is
five times in 100 (p = 0.05). This boundary is dignified by
long tradition, although other choices of a boundary value
could be equally reasonable. The results that fall beyond
this boundary (i.e., p < 0.05) are considered “statistically
significant.” Statistical significance, therefore, means that a
result is “sufficiently unlikely to be due to chance that we
are ready to reject the null hypothesis.”

Let us repeat our experiment twice more with a new coin.
On the first repetition eight heads and two tails are obtained.
The p value associated with such a split tells us that, if the
coin were unbiased, a result as extreme as eight to two (or
two to eight), or more extreme, would occur by chance 11

times in 100 (p = 0.11). This result has crossed the conven-.

tional boundary between the plausible and implausible. If we
accept the convention, the results are not statistically signifi-
cant, and the null hypothesis is not rejected.

-On our final repetition of the experiment seven tails and
three heads are obtained. Experience tells us that such a re-
sult, although it is not the most common, would not be un-
usual even if the coin were unbiased. The p value confirms
our intuition: results as extreme as this split would occur
under the null hypothesis 34 times in 100 (p = 0.34). Again,
the null hypothesis is not rejected.

Although medical research is not concerned with deter-
mining whether coins are unbiased, the reasoning behind
the p values reported in articles is identical. When two
treatments are being compared, how likely is it that the ob-
served difference is due to chance alone? If we accept the
conventional boundary or threshold (p < 0.05), we will re-
ject the null hypothesis and conclude that the treatment
has some effect when the answer to this question is that
repetitions of the experiment would yield differences as ex-
treme as those we have observed less than 5% of the time.

In the randomized trial mentioned earlier, treatment
with enalapril was compared with treatment by a combina-
tion of hydralazine and nitrates in 804 male patients with
heart failure. This trial illustrates hypothesis testing when
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there is a dichotomous (Yes—No) outcome, in this case, life
or death." During the follow-up period, which ranged from
6 months to 5.7 years, 132 (33%) of the 403 patients as-
signed to the enalapril group died, as did 153 (38%) of the
401 assigned to the hydralazine and nitrates group. Appli-
cation of a statistical test that compares proportions (the >
test) shows that if there were actually no difference in mor-
tality between the two groups, differences as large as or
larger than those actually observed would be expected 11
times in 100 (}* = 0.11). We use the hypothesis-testing
framework and the conventional cut-off point of 0.05, and
we conclude that we cannot reject the null hypothesis —
the difference observed is compatible with chance.

RISK OF A FALSE-NEGATIVE RESULT

A clinician might comment on the results of the com-
parison of enalapril with hydralazine and nitrates as fol-
lows: "Although I accept the 0.05 threshold and therefore
agree that we cannot reject the null hypothesis, I still sus-
pect that treatment with enalapril results in a lower mortal-
ity rate than treatment with the combination of hydralazine
and nitrates. The experiment leaves me in a state of uncer-
tainty.” This clinician recognizes a second type of error that
an investigator can make: falsely concluding that an effec-
tive treatment is useless. A Type Il error occurs when we er-
roneously fail to reject the null hypothesis (and, therefore,
we dismiss a useful treatment).

In the comparison of treatment with enalapril and with
hydralazine and nitrates, the possibility of erroneously con-
cluding that there is no difference between the treatments
looms large. The investigators found that 5% fewer patients
receiving enalapril died than those receiving the alternative
vasodilator regimen. If the true difference in mortality re-
ally were 5%, we would readily conclude that patients ben-
efit from enalapril. Despite this result, however, we were
unable to reject the null hypothesis.

Why were the investigators unable to conclude that
enalapril is superior to hydralazine and nitrates despite hav-
ing observed an important difference between the mortality
rates? The study did not enrol enough patients for the in-
vestigators to be confident that the difference they ob-
served was real. The likelihood of missing an important dif-
ference (and making a Type Il error) decreases as the
sample gets larger. When there is a high risk of making a
Type 1 error, we say the study has inadequate power. The
larger the sample, the lower the risk of Type Il error and
the greater the power. Although 804 patients were re-
cruited by the investigators conducting the vasodilator trial,
for dichotomous outcomes such as life or death very large

-samples are often required to detect small differences in the

effects of treatment. For example, the trials that established
the optimal treatment of acute myocardial infarction with
acetylsalicylic acid and thrombolytic agents recruited thou-
sands of patients to ensure adequate power.

When a trial fails to reject the null hypothesis (p > 0.05)
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the investigators may have missed a true treatment effect,
and we should consider whether the power of the trial was
adequate. In such "negative” studies, the stronger the trend
in favour of the experimental treatment, the more likely the
trial missed a true treatment effect.”” We will explain more
about deciding whether a trial had adequate power in the
next article in this series.

Some studies are designed to determine not whether a
new treatment is better than the current one but whether a
treatment that is less expensive, easier to administer or less
toxic yields the same treatment effect as standard therapy.
In such studies (often called “equivalence studies") recruit-
ment of an adequate sample to ensure that small but impor-
tant treatment effects will not be missed is even more
important. If the sample size in an equivalence study is in-
adequate, the investigator risks concluding that the treat-
ments are equivalent when, in fact, patients given standard
therapy derive important benefits in comparison with those
given the easier, cheaper or less toxic alternative.

CONTINUOUS MEASURES OF OUTCOME

All of our examples so far have used outcomes such as
Yes or No, heads or tails, or dying or not dying, that can be
expressed as proportions. Often, investigators compare the
effects of two or more treatments using numeric or ordinal
variables such as spirometric measurement, cardiac output,
creatinine clearance or score on a quality-of-life question-
naire. These outcomes are continuous: a large number of
values are possible.

For example, in the study of enalapril versus hydralazine
and nitrates in the treatment of heart failure the investiga-
tors compared the effect of the two regimens on exercise
capacity (a continuous variable). In contrast with the effect
on mortality, which showed better results with enalapril
treatment, exercise capacity improved with hydralazine and
nitrates but not with enalapril. The investigators compared
the change in exercise capacity from baseline to 6 months
in the two treatment groups with the use of a statistical test
for continuous variables (Student's t-test). Exercise capacity
in the group receiving hydralazine and nitrates improved
more than it did in the other group, and the difference be-
tween the two groups was unlikely to have occurred by
chance (p = 0.02). P values for Students' t-test and others
like it are obtained from standard tables.

BASELINE DIFFERENCES

Authors of articles often state that hypothesis tests have
been “adjusted” for baseline differences in the groups stud-
ied. Random assignment, in which chance alone dictates to
which group a patient is allocated, generally produces com-
parable groups. However, if the investigator is unlucky, fac-
tors that determine outcome might be unequally distributed
between the two groups. For example, in a trial to compare
two treatments, let us say that it is known that older pa-



tients have a poorer outcome. After random assignment,
the investigator discovers that a larger proportion of the
older patients are assigned to one of the two treatments.
This age imbalance could threaten the validity of an analy-
sis that does not take age into account. So the investigator
performs an adjustment in the statistical test to yield a p
value corrected for differences in the age distribution of the
two groups. In this example, readers are presented with the
probability that would have been generated if the age dis-
tribution in the two groups had been the same. In general,
adjustments can be made for several variables at once, and
the p value can be interpreted in the regular way.

MULTIPLE TESTS

University students have long been popular subjects for
experiments. In keeping with this tradition, we have chosen
medical students as the subjects for our next thought exper-
iment.

Picture a medical school in which an introductory
course on medical statistics is taught by two instructors,
one of whom is more popular than the other. The dean of
the medical school has no substitute for the less popular
faculty member. She has a particular passion for fairness
and decides that she will deal with the situation by assign-
ing the 200 first-year medical students to one instructor or
the other by random assignment, in which each student has
an equal chance (0.5) of being allocated to one of the two
instructors.

The instructors decide to use this decision to illustrate
some important principles of medical statistics. They there-
fore ask Do any characteristics of the two groups of stu-
dents differ beyond a level that could be explained by
chance? The characteristics they choose are sex, eye
colour, height, grade-point average in the previous year of
university, socioeconomic status and favourite type of mu-
sic. The instructors formulate null hypotheses for each of
their tests. For instance, the null hypothesis associated with
sex distribution is as follows: the students are drawn from
the same group of people; therefore, the true proportion of
women in the two groups is identical. Since the investiga-
tors know in advance that the null hypothesis in each case
is true, any time the hypothesis is rejected represents a
false-positive result.

The instructors survey their students to determine their
status on each of the six variables of interest. For five of
these variables they find that the distributions are similar in
the two groups, and the p values associated with statistical
tests of the differences between groups are all greater than
0.10. They find that for eye colour, however, 25 of 100 stu-
dents in one group have blue eyes and 38 of 100 in the
other group have blue eyes. A statistical analysis reveals
that if the null hypothesis were true (which it is) then such
a difference in the proportion of people with blue eyes in
the two groups would occur slightly less than five times in
100 repetitions of the experiment. If the investigators used

the conventional boundary the null hypothesis would be
rejected.

How likely is it that, in six independent hypothesis tests
on two similar groups of students, at least one test would
have crossed the threshold of 0.05 by chance alone? (“Inde-
pendent” means that the result of a test of one hypothesis
does not, in any way, depend on the results of tests of any
of the other hypotheses.) This probability is calculated as
follows: the probability that we would not cross the 0.5
threshold in testing a single hypothesis is 0.95; in testing
two hypotheses the probability that neither one would
cross the threshold is 0.95 multiplied by 0.95 (the square of
0.95); in testing six hypotheses, the probability that not a
single one would cross the 0.5 threshold is 0.95 to the sixth
power, or 0.74. Therefore, when six independent hypothe-
ses are tested the probability that at least one result is statis-
tically significant is 0.265 or approximately 1 in 4, not 1 in
20. If we wish to maintain our overall boundary for statisti-
cal significance at 0.05, we have to divide the threshold p
value by six, so that each of the six tests uses a boundary
value of p = 0.008. That is, you would reject the null hy-
pothesis that none of the characteristics differed signifi-
cantly only if any one of the differences was significant at
b < 0.008.

There are two messages here. First, rare findings happen
on occasion by chance. Even with a single test, a finding
with a p value of 0.01 will happen 1% of the time. Second,
we should beware of multiple hypothesis testing, because it
may yield misleading results. Examples of this phenomenon
abound in the clinical literature. Pocock, Hughes and Lee
in a survey of 45 trials from three leading medical journals,
found that the median number of endpoints was 6, and
most results were tested for statistical significance. A spe-
cific example of the dangers of using multiple endpoints is
found in a randomized trial of the effect of rehabilitation
after myocardial infarction on quality of life.” The investi-
gators randomly assigned patients to standard care, an exer-
cise program or a counselling program and obtained patient
reports on work, leisure, sexual activity, satisfaction with
outcome, compliance with advice, quality of leisure and
work, psychiatric symptoms, cardiac symptoms and general
health. For almost all of these variables, there was no differ-
ence between the three groups. However, the patients were
more satisfied with exercise than with the other two regi-
mens, the families in the counselling group tried to protect
the patients less than those in the other groups, and work
hours and frequency of sexual activity were greater at 18
months' follow-up in the counselling group than in the
other groups. Does this mean that the exercise and coun-
selling programs should be implemented because of the
small number of outcomes in their favour, or that they
should be rejected because most of the outcomes showed
no difference? The authors concluded that their results did
not support the effectiveness of either exercise or coun-
selling programs in improving quality of life. However, a
program advocate might argue that, even if only a few of
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the results favoured such programs, they are worth while.
Hence, the use of multiple variables opens the door to con-
troversy.

There are several statistical strategies for dealing with
multiple hypothesis testing of the same data. We have illus-
trated one of these in a previous example: dividing the p
value by the number of tests. We can also specify, before
the study is undertaken, a single primary outcome on which
the main conclusions will hinge. A third approach is to de-
rive a global test statistic that combines the multiple out-
comes in a single measure. Full discussion of these strategies
for dealing with multiple outcomes is beyond the scope of
this article but is available elsewhere. ™

LIMITATIONS OF HYPOTHESIS TESTING

Some readers may, at this point, have questions that
leave them uneasy. Why use a single cut-off point when
the choice of such a point is arbitrary? Why make the ques-
tion of whether a treatment is effective a dichotomy (a
Yes—No decision) when it may be more appropriate to view
it as a continuum (from Very unlikely to be effective to Al-
most certain to be effective)?

We are extremely sympathetic to such readers; they are
on the right track. We will deal further with the limitations
of hypothesis testing in the next article, which will present
an alternative approach to testing for the presence of a

treatment effect and to estimating a range of plausible val-

ues of such an effect.

CONCLUSION

We avoided listing the statistical procedures used to test
the null hypotheses in the studies we have cited; we do not
expect readers to recognize the many methods available or
to question whether the appropriate test has been chosen.
Rather, we have provided a guide to interpreting p values
and a warning about their interpretation when multiple out-
come measures are examined. We have alluded to the limi-
tations of hypothesis testing and the resulting p values. In
the next article, which will deal with confidence intervals,
we will describe complementary techniques to address
some of these deficiencies.
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