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There is continuing controversy about the behavioral process or processes that underlie the major
regularities of free-operant choice such as molar matching and systematic deviations therefrom. A
recent interchange between Vaughan and Silberberg and Ziriax concerned the relative merits of
melioration, and a computer simulation of molecular maximizing. There are difficulties in evaluating
theories expressed as computer programs because many arbitrary decisions must often be made in
order to get the programs to operate. I therefore propose an alternative form of. model that I term
quasi-dynamic as a useful intermediate form of theory appropriate to our current state of knowledge
about free-operant choice. Quasi-dynamic models resemble the game-theoretic analyses now com-
monplace in biology in that they can predict stable and unstable equilibria but not dynamic properties
such as learning curves. It is possible to interpret melioration as a quasi-dynamic model. An alternative
quasi-dynamic model for probabilistic choice, ratio invariance, has been proposed by Horner and
Staddon. The present paper compares the predictions of melioration and ratio invariance for five
experimental situations: concurrent variable-interval variable-interval schedules, concurrent variable-
interval variable-ratio schedules, the two-armed bandit (concurrent random-ratio schedules), and two
types of frequency-dependent schedule. Neither approach easily explains all the data, but ratio in-
variance seems to provide a better picture of pigeons’ response to probabilistic choice procedures. Ratio
invariance is also more adaptive (less susceptible to “traps”) and closer to the original expression of
the law of effect than pure hill-climbing processes such as momentary maximizing and melioration,
although such processes may come in to play on more complex procedures that provide opportunities
for temporal discrimination. )
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The initial stimulus for this paper was Ste-
phen Lea’s request to the reviewers of a manu-
script by Will Vaughan that they prepare com-
mentaries suitable for independent publication
along with Vaughan’s paper, which is itself a
critical commentary on an earlier paper by
Silberberg and Ziriax (1985). The most im-
portant aspect of this controversy is about the
adequacy of different models for free-operant
choice, which is the major focus of this paper.

To decide between competing choice theo-
ries it is essential to frame them in a quanti-
tataive way that permits clear and definite pre-
dictions in complex situations. A common way
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to do this is computer simulation, the method
chosen by Silberberg and Ziriax (1985). But
the simulation route, though preferable to im-
precise verbal statements, has its drawbacks.
For example, it forces one to make specific
assumptions (e.g., about the temporal distri-
bution of responses or the size of short-term
memory) that are essential if the simulation is
to operate, but may be irrelevant to the critical
differences between theories. If one theory fails
and the other succeeds, it may be because one
is true and the other false—or because of some
unsuspected difference in the details of the sim-
ulations. When only one of the two theories is
in the form of a simulation, as in Silberberg
and Ziriax’s comparison between their simu-
lated theory and Vaughan’s (1981) verbally
stated one, these problems are enhanced. There
are also general objections to computer pro-
grams as a form of theory, having to do with
their complexity (see Richerson & Boyd, 1987,
for an excellent discussion of complexity vs.
simplicity in theory). Some quantitative form
that is both simpler and more general than a
computer program is preferable.

Vaughan (1985) has provided the basis for
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a formal analysis of melioration. With his sim-
plifying assumptions it is possible to write down
a formal model of melioration of a type some-
where between the simple static models tra-
ditional in operant psychology and the full-
blown dynamic models of physics. It seems
useful to have a name for models of this sort,
so I call them quasi-dynamic. A second model
of this type is one that John Horner and I
have worked on for the past 3 years that we
term ratio invariance (Horner & Staddon, 1985,
1987). Ratio invariance can usefully be com-
pared with melioration. Molecular maximiz-
ing, the computer-simulation model proposed
by Silberberg and Ziriax, does not lend itself
as easily to analysis in this way, however. This
paper therefore discusses in detail only me-
lioration and ratio invariance.

The paper is presented in four parts. The
first part is a brief general discussion of static,
dynamic, and quasi-dynamic choice theories.
The second part is a formal analysis of me-
lioration and ratio invariance in which pre-
dictions are derived for five types of experi-
mental situations (concurrent variable-interval
variable-interval schedules, concurrent vari-
able-interval variable-ratio schedules, the two-
armed bandit, the frequency-dependent pro-
cedure studied by Vaughan and Silberberg and
Ziriax, and a frequency-dependent ratio pro-
cedure studied by Horner and Staddon). The
third section compares these predictions with
standard experimental results from studies with
hungry pigeons and food reinforcement. In the
course of this comparison, I comment on some
of the methodological issues raised by the con-
troversy beween Vaughan and Silberberg and
Ziriax. The final section summarizes the rel-
ative merits of melioration and ratio invari-
ance.

Types of Choice Theory

Theories of behavior are of two main types:
end-state (static) theories and dynamic theories.
Examples of static theories of operant choice
behavior are the matching law (Herrnstein,
1961) and the various molar optimality models
such as minimum-distance (Staddon, 1979) or
economic accounts (e.g., Lea, 1981; Rachlin,
1978; Rachlin, Green, Kagel, & Battalio,
1976). Examples of dynamic theories are the
kinetic theory (Myerson & Miezin, 1980) and
learning theories derived from the classical
Bush and Mosteller (1955) linear-operator
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model (e.g., Sternberg, 1963; Vaughan, 1982).
Melioration (Herrnstein & Vaughan, 1980)
is a partially specified dynamic model.

End-state theories merely specify some
property of the behavioral steady state, such
as matching of response and reinforcement ra-
tios, or optimization of an objective function
(e.g., maximization of reinforcement rate).
These theories make no specification of the
process by which this end state is to be achieved.
Dynamic theories, on the other hand, specify
the underlying process, either moment-by-mo-
ment, trial-by-trial, or response-by-response.
Dynamic theories predict both the possible end
states and the paths by which the end states
are reached.

There is another type that appears not to
fit into either of these two categories, namely
decision-rule theories. Examples of decision-
rule theories are momentary maximizing
(Shimp, 1966; Staddon, Hinson, & Kram,
1981) and molecular maximization (Silber-
berg & Ziriax, 1985). These theories do make
predictions on a response-by-response basis:
momentary maximizing, for example, asserts
that when a response is made, it will be to the
alternative offering the highest reward prob-
ability. (It is not correct to define momentary
maximizing, as Vaughan (1987) does, as “. . .
the theory that a changeover occurs from one
side to the other when the latter has a higher
probability of reinforcement than the former
...” (p. 333), because this condition normally
obtains right after any response, so that mo-
mentary maximizing defined in this way would
always predict alternation at the highest pos-
sible response rate.) But decision-rule theories
are not true dynamic theories, because they do
not specify whether a response will or will not
occur. To simulate decision-rule theories, some
assumption must be made about the temporal
distribution of responses—but such an as-
sumption is necessarily arbitrary and not in-
tegral to the theory. Rather, these theories
specify a property that steady-state responding
must have. In this sense they are closer to static
theories than dynamic ones.

Dynamic processes can show a variety of
steady-state behavior patterns (the summary
here is much simplified; see Crutchfield,
Farmer, Packard, & Shaw, 1986, or Weis-
buch, 1986, for recent reviews of dynamic sys-
tems and related topics). (a) The simplest is
equilibrium behavior. For example, if water is
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poured steadily into a leaky bucket, the water
level eventually stabilizes at a point deter-
mined by the rate of inflow and the size of the
hole. This is an example of a stable equilib-
rium, because the effect of a small perturbation
(such as taking some water out of the bucket)
is eventually corrected. Equilibria can also be
unstable (the usual example is a ball balanced
on an upturned hemisphere): such equilibria
are almost never observed, of course, because
even a slight perturbation causes a self-rein-
forcing movement away from the equilibrium
point. Occasionally, an equilibrium is neutral,
that is, any perturbation has an effect that is
retained (the usual example is a ball resting
on a horizontal plane). (b) Many dynamic sys-
tems also show periodic behavior (i.e., simple
or complex oscillation) that may eventually die
out (think of a ball dropped into a hemispher-
ical bowl, for example) or may persist indef-
initely. (c) Perhaps the most interesting be-
havior of dynamic systems (one studied only
relatively recently) is chaos, that is, apparently
irregular, aperiodic behavior that nevertheless
has a completely deterministic basis (e.g.,
Crutchfield et al., 1986; May, 1976).

I will argue that our understanding of free-
operant choice is at present limited to models
that may be termed quasi-dynamic: they allow
us to say something about equilibrium behav-
ior—whether there are equilibria or not, and
whether or not they are stable—but lack fea-
tures necessary for a full dynamic analysis.
Models of this sort are not found in physics,
where true dynamic analyses are nearly always
possible, and as far as I know they have not
been specifically discussed in psychology. The
distinctive feature of such models is that they
are not specified well enough to permit pre-
dictions about trajectories or periodic behavior,
that is, about learning curves, sequential sta-
tistics, or responses to rapidly changing con-
ditions. (It is perhaps worth remembering that
predictions of learning and extinction curves
preoccupied early mathematical learning
theorists. The difficulty of predicting highly
variable data of this type may account for the
decline of interest in that approach.) Never-
theless, I hope to show that despite their lim-
iations, quasi-dynamic models can yield pre-
dictions that are surprisingly detailed and
permit powerful experimental tests.

Quasi-dynamic models, as I discuss them

here, are Markovian, that is, they define the
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expected change in the dependent variable
(usually, but not necessarily, response prob-
ability) as a function solely of its current level;
there is no dependence on earlier values. In
common with the great majority of learning
models, they are first-order only.

Quasi-dynamic analysis is closely related to
the game-theoretic modeling now common-
place in biology (see, e.g., Maynard Smith,
1982), in which the objective is to discover
evolutionanily stable strategies (ESS). An ESS
is an equilibrium characterized by local sta-
bility, that is, immunity to small perturbations
(“An ESS is a strategy such that . . . no mutant
strategy could invade the population under the
influence of natural selection’: Maynard
Smith, 1982, p. 10). For example, if the ESS
is a mixed strategy consisting of proportion s
of Strategy A and 1 — s of Strategy B, then a
small increase in the frequency of A (say)
creates a restoring increase in the ‘fitness of
individuals following Strategy B. ESS theory
is concerned with finding equilibria; it is not
directly concerned with the dynamic behavior
of the system (e.g., the details of the changes
in gene frequencies from one generation to the
next). ESS analysis arises naturally once we
consider patterns of animal behavior as the
outcome of constrained competition among be-
havioral strategies. In the same way, quasi-
dynamic analyses of individual behavior are
best tested by experimental situations in which
the schedule has game-like properties.

The frequency-dependent schedules re-
cently studied by Herrnstein and Vaughan
(1980) and Horner and Staddon (1985, 1987),
and discussed in more detail below, closely
resemble what Schelling (1978) has termed the
multiperson prisoner’s dilemma (MPD), and
are formally identical to the population biol-
ogist’s frequency-dependent selection. Schelling
(1978, p. 218) defines the MPD in terms of
four properties: (a) There are N people (here,
responses) each of whom has the same two
choices and payoffs (rewards). (b) Each person
(response) has a preferred choice, which is the
same for all. This is an arbitrary feature, which
is that at any choice proportion one side is
always paid off at a higher rate than the other.
Translated to the schedule situation it is equiv-
alent to saying that at any level of preference,
one side is always associated with a higher
reward probability than the other. Horner and
I have studied nontrivial frequency-dependent



306

schedules in which both alternatives are al-
ways paid off at the same reward probability
and others in which the probability difference
reverses from one choice proportion to another,
so I see no need for this constraint. (c) Benefit
to each individual increases the more individ-
uals choose the unpreferred alternative. In other
words, on frequency-dependent schedules the
reward probability for a given choice is directly
related to the frequency of the other choice.
This is also an arbitrary constraint: the essence
of these procedures is just some kind of de-
pendence of the payoff for one or both choices
on the relative frequency of each choice. The
fourth defining property concerns coalition
formation as it is determined by the arbitrary
feature (b), above. It is not directly relevant to
the single-individual frequency-dependent
schedule, both because (b) need not hold there
and because we assume that the animal’s choice
set is just the two response alternatives—it
cannot directly select a given choice proportion.

The analogy with frequency-dependent se-
lection is even more direct. The simplest ex-
ample is the oldest, selection for the 50:50 sex
ratio, which Fisher (1930) years ago explained
by the increased fitness of individuals whose
progeny were of the minority phenotype. This
is a frequency-dependent schedule in which
the “probability of reward” for each pheno-
type is inversely related to its frequency, with
the curves crossing at the 50:50 point.

Stable points (i.e., steady-state sex ratio, or
proportion of individuals choosing each alter-
native) for frequency-dependent selection or
MPD situations are derived using the kind of
quasi-dynamic analyses I describe here.

Melioration

Melioration was originally described in a
purely verbal way (Herrnstein & Vaughan,
1980; see Rachlin, 1973, for a very similar
idea applied to successive discrimination), but
recently has received a more formal develop-
ment at the hands of Vaughan (1985). The
present analysis uses some of the same sim-
plifications as Vaughan used. The theory of
melioration has two parts, a causal variable
and a behavior-change rule. The causal vari-
able is local reinforcement rate, that is, the rate
of reinforcement (reward) obtained during the
time when a subject is actually responding to
a given alternative. There are some uncer-
tainties about precisely how to measure this
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period, but for present purposes it is suffi-
ciently defined by the constraint that the more
time the animal spends on one alternative, the
less time will be available for the other. The
behavior-change rule is that “If the local [re-
inforcement] rate on one side is higher than
on the other ... more time will be spent on
the better side” (Vaughan, 1985, p. 385). This
is a principle that resembles gas pressure (in
which pressures in deformable compartments
tend to equalize; see Staddon, 1982, for formal
exploration of this resemblance) or heat trans-
fer (in which heat flows from higher temper-
ature to low).

It is possible to construe melioration in a
way that allows us to predict much while as-
suming little. Consider the standard two-choice
free-operant situation, with variable-(random)
interval (VI) schedules associated with each
choice. If the values of the VI schedules are
chosen so that total reward rate is approxi-
mately constant (see Herrnstein, 1961), then
total response rate is approximately constant
(this is true over quite a wide range even if
total reward rate varies; cf. Catania & Reyn-
olds, 1968). Measurements have also shown
that local response rate is approximately con-
stant under these conditions (see discussion in
Heyman, 1979, and Staddon & Motheral,
1979), so that the relevant dependent variable
is the amount of time the animal spends re-
sponding to each alternative. For simplicity I
assume a session of unit length, so that the
times spent working on each side are ¢ (on the
right: R) and 1 — ¢ (on the left: L). Local
reward rates will then be functions of these
local times: 7g(¢) (on the right) and r.(1 — ¢)
(on the left). 7z (¢) and r (1 — t) are feedback
functions computed with respect to local rates;
they are very different from the familiar molar
feedback functions computed with respect to
overall (i.e., whole-session) response and re-
ward rates.

Notice that if ¢ is very small, rg(¢) can be-
come very large; for example, if the animal
makes only a single, rewarded, response on the
right during an experimental session and
spends the rest of his time responding on the
left, then his local reward rate on the right
will be extremely high—much greater than the
VI rate (1/VI value).

Melioration says that delta(¢), the expected
tendency for choice proportion (relative time),
t, to change, is some function, G, of the pre-
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vailing difference between local reward rates
(see Appendix for symbol definitions). For-
mally (Vaughan, 1985, Equation 8),

delta(t) = G[rg(t) — (1 — ?)].

In other words, if local reward rate on the
right is higher than local reward rate on the
left, the animal spends a bit more time on the
right.

To derive predictions from this principle we
need to know more about function G, which
tells us how much more time is allocated for a
given difference in local reward rates. Two
things about G are specified in Vaughan’s ver-
bal theory: (a) G is positive and monotonic;
that is, the larger the difference between the
local reward rates, the greater the tendency to
allocate more time to the higher rate alter-
native, and (b) G(0) = 0 (i.e., G is zero when
the rate difference is zero).

By themselves, these two assumptions do not
seem to be sufficient to allow us either to solve
or (more modestly) to find the equilibria for
the basic melioration equation. It is possible
to proceed by picking a particular class of func-
tions for which (a) and (b) are true, however.
I will therefore only consider the case in which
G is some positive multiplier, which also pro-
vides a simple way to deal with the effects of
time window (i.e., the period over which re-
ward rates are computed by the animal). When
the time window is short (local rates are com-
puted by the animal only for the recent past),
then any change in reward conditions has a
rapid effect on behavior. This corresponds to
a large value for G. When the time window
is long, however, any change takes some time
to have an effect. This corresponds to a small
value for G. It turns out to be easy to arrive
at equilibrium predictions that are invariant
across any positive value for G. G may be any
positive (not necessarily monotonic) function
of ¢, for example. (Consider the general case
in which delta(¢t) = G(¢)g(¢, v), where G is a
positive function of ¢ alone and g is some other
function of ¢ and a vector of parameters, v,
such that when the difference between rg(¢)
and r (1 — ¢) is zero, g is also zero (here g =
[rr(@®) — (1 — t)]). By the rule for products,
the derivative of delta(t) is therefore
d/dt[delta(t)] = G(¢)d /dt{g(t, v)] + g(t,
v)d/dt[G(¢)]. When g is zero, the second term
vanishes, because g(t, v) is equal to zero; hence,
so long as G(¢) is positive, the sign of the de-

307

rivative depends entirely upon the sign of the
derivative of g(¢, v). Hence, the equilibrium
properties of the process are independent of
any positive multiplier.) Note that G must be
some function of ¢, so that progressive incre-
ments or decrements in ¢ do not drive ¢ above
one or below zero.

If we are interested only in equilibria, then
two properties of delta(¢) are of interest: the
t-values for which it is zero and the slope of
the function at those points. Because for these
purposes G can be any positive multiplier, we
can without loss of generality let G = 1 in the
subsequent analysis, so that the quasi-dynamic
version of the melioration hypothesis amounts
to

delta(t) = rg(t) — rn(1 — ¢, (1)

which is similar to the dynamic version of me-
lioration proposed by Myerson and Hale
(1984).

Concurrent variable-interval schedule. To de-
rive predictions from this version of meliora-
tion it is necessary to define the (local) feedback
function r(¢), which may not be a trivial matter
because r(t) will depend not just on ¢, but on
how time is distributed across the experimental
session. For example, on a concurrent VI VI
schedule, if the animal spends only 3 s (say)
out of an hour responding on the right, its
value for 7(¢) will be much higher if the 3s
occur as three 1-s blocks evenly spaced
throughout the hour than if they occur as a
single 3-s block. Despite this limitation, in
common with other theorists I will assume that
the temporal-distribution variable has similar
effects on both choices and can therefore be
neglected. The most salient property of r(¢) is
that as ¢ increases, r(¢) must decrease: as the
animal allocates a larger fraction of the total
time to one alternative, the more rewards it
gets, but, because the schedule is time-based,
the lower the (local) rate at which it gets them.
But r(¢) will not normally decrease much be-
low the value of the VI schedule (pigeons are
quite efficient on VI). A simple possibility,
therefore, is

rr(t) = a/t, 0=<t=1, 2)

where a is the scheduled rate (1/VI value) of
the VI schedule on the right (this is the sim-
plification adopted by Vaughan, 1985). In this
situation, therefore, 7(¢) = a when the animal
spends the entire unit session responding to
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the right choice. (Note that this feedback func-
tion assumes that animals respond fast enough,
and allocate their responses between the two
alternatives efficiently enough, that rewards
are delayed a negligible amount of time after
“setup.” When this is the case, the overall
(whole-session) reinforcement rate for each
choice always equals the scheduled rate, as
Equation 2 implies.) When ¢ < 1, rg(¢) will
always be >a. Substituting Equation 2 in
Equation 1 yields

delta(t) = a/t — b/(1 — ¢), 3)

where a and b are the scheduled VI rates for
left and right choices, respectively. Equation
3 is the fundamental equation for melioration
in the concurrent VI VI situation.

To find equilibria, we need to look at the
values of ¢ for which delta(¢) = 0, if such values
exist; and we need to know the slope of the
delta(¢) function at those points. From Equa-
tion 3,

delta(t)-t(1 — t) =a — t(a + b), (4)

so that when delta(f) = 0, £, the equilibrium
value for ¢, is

f=a/(a + b). (5)

From Equation 4 it is obvious that the slope
of the function is negative at the equilibrium
point, so that this is a stable equilibrium (be-
cause deviations from the equilibrium point
cause opposing changes in delta(t)). Because ¢
is proportion of total time, Equation 5 cor-
responds to perfect matching of time propor-
tions to both obtained and scheduled reward
proportions.

Concurrent variable-interval variable-ratio
schedule. It is relatively easy to extend this
analysis to concurrent VI VR schedules, with
the right remaining a VI schedule, as before,
but left now dispensing reward according to a
random-ratio schedule with probability g (=1/
ratio value). We assume the same basic delta(t)
relation as before (Equation 3), but substitute
a different expression for the local reward rate
on the ratio (left) side:

r(t) = qyL,

where y, is the local rate of ratio responding
(assumed a constant) and q is the payoff prob-
ability. Substituting in Equation 1 then yields
delta(¢) = a/t — qy., which has a stable equi-
librium at £ = a/gy.. Given that the local
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response rate on the ratio alternativeis y,, then
the obtained overall reward rate on that side,
R(y), is just R(y) = gy.(1 — ¢), so that gy, =
R(y)/(1 — t), where y is overall response rate
on the ratio side; substituting for gy, in the
equation for ¢ and rearranging yields

t/(1 = i) = a/R@) = R@x)/R(y), (6)

that is, simple matching of time-allocation ra-
tios to obtained (overall) reward ratios.

Note that this prediction depends only on
the assumption that the local response rate on
the ratio side is constant, and not that it is the
same as the local response rate on the variable-
interval side. Because local response rate will
usually be higher on the ratio than on the
interval side (Herrnstein & Heyman, 1979),
Equation 6 predicts biased matching in terms
of response ratios, with more responses going
to the ratio alternative. For example, suppose
that the left-hand side of Equation 6 equals
one ({ = 1 — t), then in terms of relative
responses the ratio will be <1, because local
response rate on the ratio side is higher, so
that Equation 6 implies a relation of the form

s/(1 — 5) = kR(x)/R(y), 0<k<1,

where s is the proportion of choice responses
on the interval alternative.

Simple as they are, these derivations may
seem unnecessarily laborious, because it is ob-
vious from Equation 1 that delta() = 0 when
local reward rates are equal. We cannot know
whether this equality is permitted (i.e., whether
it is possible to obtain equal local reward rates
on both sides), or, even if permitted, whether
the equilibrium is stable, without knowing the
feedback functions.

Two-armed bandit. To illustrate, consider as
a third example the case of concurrent vari-
able-(random)ratio schedules (the two-armed
bandit problem). Here, local reward rates can
be made equal only by responding more slowly
on the higher probability (lower ratio) sched-
ule, something not implied by any version of
melioration. We can arrive at a more reason-
able prediction by assuming that local response
rates are equal, and the relevant dependent
variable is then the proportion of responses, s,
made to each alternative (s = R/(R + L)). If
local response rate is equal to x on both sides,
and the reward probabilities are p and g on
R and L (p > g, by convention), then the local
feedback functions are
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rr(s) = px, and 7 (1 — 5) = gx.
Substituting in Equation 1 yields

delta(s) = px — gqx, (7

which is always positive. Hence, s increases
until all responding is to the majority (here R)
side, so that exclusive choice of the majority is
the melioration prediction.

Asymmetrical frequency-dependent ratio
schedules. As a fourth example, consider an
asymmetrical frequency-dependent (AFD)
random-ratio schedule studied by Horner and
Staddon (1985, 1987). In this schedule, reward
probability for each alternative depends on the
animal’s preference, S (where S = R/(R +
L), as before). In these experiments, the value
of choice proportion, S, is computed response
by response in a moving “window” of M re-
sponses (see later discussion). The value of M,
the averaging window, has some effects on the
performance of the model (and the animal)
but they are not relevant for the argument
made here. For both alternatives the depen-
dency is linear: on the right, for example, p(S) =
kS, where k is a constant. But at any S-value,
the reward probability on the left (the majority
side) is always twice that on the right (the
minority side) (i.e., ¢(S) = 2p(S) = 2%S). Un-
der these conditions, the overall payoff prob-
ability is highest when § = 1.0 (exclusive choice
of the minority side); that is, when in any run
of M choices M are right and none are left.
Overall payoff probability approaches zero as
the animal tends toward exclusive choice of
the left (majority) choice.

If S, the measured choice proportion, is an
unbiased measure of s, choice probability, the
melioration prediction here can be derived at
once from Equation 7, by substituting S for s,
kS for p, and 2kS for q: delta(s) = £Sx — 2kSx,
which is always negative. Hence melioration
predicts fixation on the majority side (S = 0),
which is highly suboptimal behavior.

Frequency-dependent interval schedule. As a
final example, consider the frequency-depen-
dent variable-interval schedule studied by Sil-
berberg and Ziriax (1985) in their Condition
1. In this schedule the prevailing VI value on
each side depends on the allocation of respond-
ing between sides. When responding is pre-
dominantly on the right, defined in a block-
by-block window of either 6-s or 4-min du-
ration (time proportion, ¢ > a critical value,
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Fig. 1. Expected change in time allocation, delta(t),
predicted by the quasi-dynamic version of melioration for
the type of interdependent variable-interval schedule stud-
ied by Silberberg and Ziriax (1985, Condition 1): high VI
value is twice the low value. Top panel: VI value as a
function of time-allocation proportion, ¢ (=R/(L + R)),
for left and right responses. Middle panel: Three-part
delta(¢) function predicted by melioration (derived from
Equation 4 in the text). Bottom panel: delta(t) function
without #(1 — ¢) multiplier (see text). Indifference (¢ =
0.5) is the stable point.
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delta(t)

treir), there is a low VI schedule for R re-
sponses and a high one for L; when responding
is predominantly on the left (¢! < 1 — fg)
there is a low VI schedule for L responses and
a high one for R. Otherwise (in the middle
region, when tg.; > ¢ > 1 — fz.), the same
low VI operates for both choices. This pro-
cedure is illustrated in the top panel of Fig-
ure 1.

Formally, the feedback function for this
schedule is defined by two values of the VI
parameter:

rR(t) = a/t: for t < tRcrit
and
TR(t) = b/t

where ¢ and b are maximum-scheduled re-

fOI‘t > tRcrin
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ward rates (i.e., 1/VIvalues),a > b, and tg ., =
%’ Perie = Ya.

Because the VI schedule values in this pro-
cedure change depending on the prevailing
preference (¢-value), the delta(¢) function de-
rived from Equation 1 will have three different
regions. For the middle region, in which both
VI values are the same, from Equation 4

delta(?)-t(1 — t) = b — t(b + b),
so that, ignoring the positive multiplier,
delta(?) = b(1 — 21), (8)

a stable equilibrium at ¢ = 1%, indifference. For
the region 0 < ¢ < tg.y, delta(?)-t(1 — ¢) =
a — t(a + b), which has an equilibrium at
f=a/(a + b), as in Equation 5 above. This
equilibrium s not realizable, however, because
a > b, so that ¢ is not within the region 0 <
t < trai OVer which this delta(¢) function holds;
this is similar for the symmetrical equilibrium
atf{=b/(a + b). The three-part delta(¢) func-
tion associated with this procedure is illus-
trated in the bottom two panels in Figure 1.
The middle panel shows the three parts, using
Equation 4: delta(t) = [a — t(a + b)]/t(1 —
t); the bottom panel shows the function with-
out the {(1 — ¢) multiplier. Both graphs give
the same information about equilibria. It is
clear from Figure 1 that indifference, ¢t = 13,
is the only stable point in this procedure, and
is therefore the melioration prediction.

Ratio Invariance

John Horner and I have recently elaborated
and tested experimentally a theoretical ap-
proach to probabilistic choice that we term
ratio-invariant reward following (ratio invari-
ance (RI); see Horner & Staddon, 1987, for
the full analysis, which is merely summarized
here). The approach is based upon relatively
short-term experiments in a symmetrical two-
choice situation (i.e., two physically identical
responses, with a contingency that equates the
effort of “staying” vs. “switching”) reinforced
according to similar, probabilistic schedules.
We are fairly sure that RI is not the dominant
process operating in well-trained animals in
more complex situations—such as VI sched-
ules—in which the existence of temporal dis-
crimination, in the form of momentary max-
imizing or a related process, is well established.
Nor will it apply (at least in the simple, sym-
metrical version discussed here) when there
are more than two possible responses or when
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the two responses are not equivalent—in par-
ticular, when one “response” is a nonresponse,
as in a single-choice situation (an asymmet-
rical version that might apply here is briefly
described in connection with concurrent VI
VR schedules). Nevertheless, because it is im-
portant to define the failures of a model as well
as its successes, I discuss temporal as well as
nontemporal situations.

Ratio invariance is an elementary stochastic
implementation of the classical law of effect in
a situation with two equivalent mutually ex-
clusive and exhaustive response classes, with
two constraints, source independence and ef-
fect-ratio invariance, that are explained below.
The law of effect asserts that rewarded re-
sponses increase in probability and unre-
warded responses decrease. Thus, the delta(s)
(expected change in choice proportion) func-
tion has the general form delta(s) =
F(reward) — G(nonreward), where F is some
positive function of the expected probability of
reward and G is some positive function of the
expected probability of nonreward. Because
our dependent variable is choice proportion,
to the extent that rewards for responses on the
left increase left responses, they must also re-
duce the probability of responses on the right,
and conversely. If the dependent variable is
right-choice proportion, s (i.e., R/(R + L)),
therefore, the effects of L-rewards add in with
a negative sign, L-nonrewards with a positive
sign.

In the two-choice situation there are ob-
viously four possibilities: reward and nonre-
ward on L and R. For the two-armed bandit
with payoff probabilities p (on the right) and
g (on the left), the expectations are shown as:

Outcome
R
oot | =99 [A =91 =g
R
on right s s(1 = p)
Reward Nonreward

Functions F and G are defined very simply:

Outcome
Response [y [ b9
Response _
on right als) b(s)
Reward Nonreward
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The idea is simply that each reward incre-
ments s by an amount a(s) (i.e., by an amount
that is some function of the current choice pref-
erence) and nonreward decrements s by a gen-
erally smaller amount b(s). a(s) and b(s) must
obviously be such as to limit s to the range
0-1.

We term the assumption that the absolute
magnitudes of the changes in s due to reward
and nonreward are independent of the source
(a left or right response) source independence.
It is this feature that distinguishes this model
from linear-operator models such as those of
Bush and Mosteller (1955; see Horner & Stad-
don, 1987, for more detailed comparisons).

Combining the quantities in the boxes above
and simplifying yields the following expression
for delta(s), the expected change in s, in the
two-armed bandit situation:

delta(s) = s[(a(s) + b(s))(® + g) — 2b(s)]
+ b(s) — gla(s) + b(s)]. )

In words, Equation 9 simply says that delta(s)
is the sum of the probabilities of the four out-
comes each multiplied by the appropriate
change in s (a(s) or b(s)), with the appropriate
sign (positive for reward on R and nonreward
on L, negative for reward on L and nonreward
on R).

Without knowing the forms for the reward
and nonreward increments, a(s) and b(s), little
can be deduced from Equation 9. But if we
admit the constraint that the ratio of reward
and nonreward effects is constant (we term
this assumption ratio invariance), Equation 9
can easily be reduced to a useful form. If a(s)/
b(s) is constant, then so is a quantity we term
the effect ratio, w = b(s)/[a(s) + b(s)]. Divid-
ing Equation 9 by the quantity a(s) + b(s)
and making the appropriate substitutions yields

[1/(a(s) + b(s))]delta(s) = s(p + g — 2w)
+w —q.

(Note that the positive multiplier, a(s) + b(s),
has the property of a window, as in the me-
lioration discussion. If this quantity is large,
then the model acts as if p, g, and s are com-
puted over a small number of previous re-
sponses; if it is small, the model acts as if they
are computed over a large number of re-
sponses.) Setting the multiplier equal to unity
for reasons already given yields the following
quasi-dynamic model:

delta(s) = s(p + ¢ — 2w) + w — q. (10)
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Fig. 2. Predictions of ratio invariance for the two-
armed bandit problem: expected change in choice propor-
tion, delta(s), versus choice proportion (s = R/(R + L)).
Upper line: p = 2w, ¢ = w/2: no equilibrium—prediction:
exclusive choice of R; positive-slope line through abscissa:
p = 2w, ¢ = 3w/2: s = 2/3 is unstable equilibrium—
prediction: exclusive choice of L or R, depending on start-
ing point; negative-slope line through center: p = ¢ = w/2:
s = 1/2 is stable equilibrium—prediction: partial pref-
erence at indifference. For this graph, w = 0.03.
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We can use Equation 10 to make predictions
about the experimental situations discussed in
the previous section.

Two-armed bandit. Consider first the two-
armed bandit situation. Equation 10 is linear
in s. Equating to zero yields the solution

§=(@-w/lp+q—2w), (1)

which must lie in the interval 0 = s = 1 if the
equilibrium is to be realizable, so that p < w
(and, by symmetry, ¢ < w). If p and g are
both <w), then the slope of the right-hand side
of Equation 10 is negative, so that this partial
preference is stable. If p or g are >w, then the
only solution is exclusive choice of R or L; if
both are >w, then exclusive choice of either
L or R is possible, depending upon the initial
value of 5. If p = g, these three (which define
the possible limit points of the theory in this
situation) are the only possibilities. They are
summarized in Figure 2, which shows delta(s)
functions corresponding to the three possibil-
ities.

These predictions determine the possible lo-
cations of what might be termed preference
modes, which are measured as follows: Imag-
ine that we record for each choice the pre-
vailing choice proportion, computed over that
choice and the M — 1 preceding choices. (I
use the symbol § for this value, but it is im-
portant to realize that S here refers to an em-
pirical quantity. In discussions of models, s
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refers to a theoretical quantity: the animal’s
current preference. Whether or not § is in
general the same as, or at least an unbiased
estimate of, s depends on the animal’s time
window, which is not usually known. Never-
theless, there seems to be no harm in treating
the two as in general equivalent, as long as
the difference between them is recognized.)
For example, if M is 16, then if the most recent
choice is R, and the preceding 15 are 11 R
and 4 L, the current value for choice propor-
tion, S, is 0.75. The distribution of S-values
across an experimental session or, more usu-
ally, a block of sessions, is the dependent vari-
able for our analysis.

Ratio invariance then makes three kinds of
predictions for the two-armed bandit situation:
either a partial preference (if p, ¢ < w), a
single exclusive-choice mode on the majority
side (if p > w > q), or possible exclusive-
choice modes on either or both sides (if p, ¢ >
w).

It is important to be aware here of the limits
of a quasi-dynamic analysis, which can tell
where (i.e., at what s-value) a preference mode
might occur, but cannot tell us whether it will
occur there, or at some other permissible lo-
cation, or at both. Nor can it tell us the variance
of a preference distribution, or how long the
process will take to stabilize (or how big a
sample of data we need to be sure that all
possible modes have been populated—in prac-
tice, this does not seem to be a serious prob-
lem). Despite these limitations, such models
are easily disproved by persistence of a mode
at an impermissible location. Absence of a mode
at a permitted location is uninformative, how-
ever.

Asymmetrical frequency-dependent ratio
schedule. As a second example, consider the
AFD schedule discussed earlier. Recall that in
this procedure, p and g are functions of (mea-
sured) choice proportion, S. In this case, p(§) =
kS, and q(S) = 2kS (i.e., payoff probability
increases for both responses as the proportion
of R responses increases) but payoff proba-
bility on the left is always twice that on the
right. Substituting £ for p and 2§ for ¢ in
Equation 10 and simplifying yields

delta(s) = 3k$? — 2S(w + k) + w. (12)
The two roots of this equation represent po-
tential equilibria. Horner and Staddon (1987)

show that it permits only two possibilities: (a)
a partial-preference mode that must always be
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in the region 0 < § < %2, and (b) a possible
second mode, at exclusive minority choice (§ =
1), when the partial-preference mode is at an
S-value less than 5.

Concurrent VI VI schedule. To derive pre-
dictions, we need to arrive at an expression for
p and g as a function of the relative amount
of responding, s and 1 — s, allocated to right
and left. (I used ¢, relative time allocation, as
the dependent variable in the discussion of me-
lioration, but with the simplifications I have
made, ¢ (relative time allocation) and s (relative
response allocation) have exactly the same
properties on concurrent VI VI schedules. 1
use s here for continuity with the other pub-
lished discussions of ratio invariance.) With
the same assumptions as before (constant over-
all reward rate, constant overall response rate,
response rate and allocation sufficient to make
obtained reward rates equal to scheduled) we
can simplify the molar feedback function for
random responding (Staddon & Motheral,
1978) to arrive at a reasonable approximation:
R(x) = ax/(a + x), where R(x) is obtained
reward rate, x is (overall, not local) response
rate on the right, and a is VI rate (1/VIvalue),
as before. If x > a (i.e., high response rate)
we can neglect ¢ in the denominator, so that
R(x) = a. Because reward probability, p, is
just R(x)/x, we arrive at p = a/x as a rea-
sonable approximation. If overall response rate
is constant and equal to C, then p = (a/C)/

,(x/C); but x/C = s, the proportion of right
responses, so if we define a new variable, 4,
the ratio of scheduled reward rate to total re-
sponse rate, A = a/C, then p = A4/s and, by
symmetry, ¢ = B/(1 — ). Substituting in
Equation 10 yields

delta(s) = s(A/s + B/(1 — s5) — 2w)
+ w— B/(1 —s),

=A— B —2ws + w, (13)
which has a stable root at
§s=(A - B+ w)/2w, (14)

which is within the closed interval 0-1 if —w <
A—- B =w.

Equation 14 approximates matching when
the difference between scheduled reward rates
is low and response rates are relatively high
(which is usually the case on VI schedules).
For example, suppose that 4 + B is constant,
K (which will be true if VIs are chosen so that
total reward rate is approximately constant
and overall response rate is also constant). If



QUASI-DYNAMIC CHOICE MODELS

K is approximately equal to w, then Equation
14 becomes s = (A — B + A + B)/2(A +
B)= A/(A + B) = a/(a + b) (i.e., perfect
matching). From Equation 14 it is easy to see
that as K (total reward rate) decreases below
w (so that A — B also decreases if A and B
are in constant ratio), the relation between s
and a/(a + b) approaches indifference (i.e.,
increasing undermatching): as K - 0, s — 1.
Conversely, if A + B > w, Equation 14 pre-
dicts overmatching. Perfect matching is there-
fore to be expected only at an intermediate
range of reward frequencies.

Concurrent VI VR schedule. Again, I assume
VI on the right, random-ratio (VR) on the
left. Equation 9 cannot be directly applied here,
because it assumes symmetry between the two
choices (i.e., source independence: the idea that
reward or nonreward have the same absolute-
magnitude effect on choice proportion, inde-
pendently of which response produced them).
Because animals typically respond faster, with
a different topography, on the ratio than the
interval alternative, adapting to temporal dif-
ferences between the schedules (reward prob-
ability increases with interresponse time on
VI, but not on VR), it is unlikely that R and
N will have the same effects on both alter-
natives in the concurrent VI VR situation. Re-
ward for a ratio response is likely to have a
different effect (call it A(s)) on choice pro-
portion than will reward for an interval re-
sponse (a(s)), and similarly for the effects of
nonreward. With these changes, the delta(s)
function (analogous to Equation 9) becomes

delta(s) = s[p(a(s) + b(s)) + g(A(s) + B(s))
= (b(s) + B(s))]
= q(A(s) + B(s)) + B(s).  (15)

Equation 15 cannot be simplified as easily as
Equation 9. Yet even if a(s) # A(s), it is not
unreasonable to assume that a(s) = 2A(s) (and
b(s) = AB(s)), where A is a positive constant
less than one that represents the slope of the
linear constraint that typically relates the re-
sponse rates on the two alternatives (see be-
low). If we again assume ratio invariance, so
thatb(s)/[a(s) + b(s)] =B(s)/[A(s) + B(s)] =
w, then, after dispensing with positive multi-
pliers as before, Equation 15 reduces to

delta(s) = s[p + hg — 2w)] + A(w — g). (16)

From the earlier discussion of concurrent VI
VI, we can assume that p = a/x, where x is
overall (not local) response rate. From pub-
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Fig. 3. Matching predictions of ratio invariance for
concurrent VI VR schedules. Straight line is simple match-
ing (proportion of VI responses equal to proportion of VI
rewards). Curved line is the relation predicted by the
asymmetrical version of ratio invariance in the text. Ratio
value was held constant at 100 (g = 0.01), and VI rate
(a = 1/VI value) was varied over the range 0.1-5.05. The
other parameter values (see text) were: A = 0.5, w = 0.03,
K = 100.

lished data on concurrent schedules we can also
assume that rates of responding to the two
alternatives are constrained by the linear re-
lation x + Ay = K, where 0 < A < 1 (i.e,
response rate to the ratio side, vy, is generally
higher, cf. Bacotti, 1977); given that s = x/
(x + y), we can eliminate s from Equation 16
to yield the following stable solution for x as
a function of ¢ and a:

x=[a - Klg—w)l/[w@ —h) —q] (17)

Equation 17 is linear in a if g, reward prob-
ability on the left, is held constant. We can
easily see if it is compatible with matching by
varying a, obtaining x from Equation 17 and
y from the linear constraint, and then plotting
s against relative reward rate, a/(a + gy). A
typical function is shown in Figure 3: it is
strongly nonlinear, and biased in favor of the
ratio alternative for most values of reward pro-
portion. A plot of the logarithms of reinforce-
ment ratios versus response ratios (i.e.,
In(R(x)/R(y)) vs. In(x/y)) is also strongly
nonlinear.

Frequency-dependent VI schedule. The pre-
dictions for this procedure can be derived from
the VI analysis, above. Because the VI sched-
ule values in this procedure change depending
on the prevailing preference (s-value), the
delta(s) function, based on Equation 13, will
have three different regions. The feedback
function for this schedule is defined by two
values of the VI parameter:
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Fig. 4. Predictions of ratio invariance for the inter-
dependent concurrent VI VI schedules shown in the top
panel of Figure 1: delta(s) versus choice proportion (s =
R/(R + L)). Changing the relative values of the two VI
schedules affects only the height of the left and right “limbs”
of the delta(s) function, which have no bearing on the
equilibrium point. Indifference (s = 0.5) is always the only
stable equilibrium.

0.0

for s < sgeie
for s> SRerits

r(s) = a/s,
rR(s) = b/S,

where @ and b are maximum-scheduled re-
ward rates (i.e., 1/VI values),a > b, and sg.;, =
%, and similarly for r (s). That is, when re-
sponding is predominantly on the right (s >
Srariv), there is a low VI schedule for R re-
sponses and a high VI for L responses; when
responding is predominantly on the left (s <
1 — Sgei) there is a low VI schedule for L
responses and a high VI for R. Otherwise (in
the middle region, when sg.;, < s <1 — sgai),
the same low VI operates for both choices.

Figure 4 shows a plot of the three-partratio-
invariance delta(s) function for the Silberberg-
Ziriax frequency-dependent schedule. It is
similar to the melioration function for this pro-
cedure, shown in the two bottom panels of
Figure 1: there are discontinuities at the two
region boundaries, and a stable partial pref-
erence at indifference.

Comparisons with Data

Two-armed bandit. Horner and Staddon
(1987) report and review data showing (a) that
under some conditions, with equal payoff
probabilities (p = g), higher absolute values
for p lead to exclusive choice of one alternative,
low values to indifference (i.e., a partial pref-
erence); (b) animals will often fixate, if not
permanently at least for long periods, on the
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minority (lower probability alternative); that
is, there seem to be preference modes at both
exclusive-choice options under many condi-
tions. (c) most commonly, with p # ¢, animals
show a single preference mode at exclusive
choice of the majority (i.e., higher probability)
alternative. Although the necessary and suf-
ficient conditions for these various patterns are
yet to be defined, the existence of three possible
patterns—exclusive choice of the majority and,
occasionally, minority alternative, and partial
preference—seems to be reasonably well es-
tablished.

Melioration predicts reliable choice of the
majority alternative and no effect of absolute
reward probability. Melioration never predicts
a partial preference (as long as the two prob-
abilities are unequal), or any systematic choice
of the minority alternative. Ratio invariance,
however, predicts all the patterns that have
been observed. For example, when the effect
ratio, w, the relative effect of nonreward and
reward, is greater than both p and ¢, ratio
invariance predicts a partial preference—in-
difference if p = ¢. If p, ¢ > w, the animal
may show a preference mode at the minority
alternative as well as at the majority. Ratio
invariance predicts reliable, exclusive majority
choice only when g < w < p.

Concurrent VI VI. On concurrent variable-
interval schedules, animals very often vary the
spacing between responses to take account of
the way that payoff probability changes with
postresponse time (momentary maximizing:
Hinson & Staddon, 1983; Shimp, 1966). It is
not clear how momentary maximizing inter-
acts with other processes, such as melioration
or ratio invariance. Hence, a failure of either
theory to agree with data from choice proce-
dures involving VI schedules may reflect in-
adequacy of the theory or some unknown effect
of momentary maximizing. Nevertheless, it is
of interest to see how well our two theories do
in predicting choice between VI schedules, even
if lack of correspondence between theory and
data is at present hard to interpret.

Melioration predicts simple matching of re-
sponse ratios to obtained reward ratios: x/y =
R(x)/R(y), which is a common outcome in
these experiments. Not infrequently, however,
there are deviations in the direction of under-
matching: x/y = [R(x)/R(y)]’, 0 < v < 1 (cf.
review in Baum, 1979) that are not predicted
by melioration. Fantino, Squires, Delbriick and
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Peterson (1972) have also shown a dependence
of matching on the absolute value of the VI
schedules. When the VI values are small (i.e.,
high scheduled reward rates), animals tend to
overmatch (i.e., v > 1, in the power form of
the matching equation) with respect to sched-
uled reward rates. Choice proportions are more
extreme than scheduled reward proportions at
high absolute reward rates (see also Alsop &
Elliffe, 1988).

As I showed earlier, ratio invariance pre-
dicts matching as long as the sum of the reward
rates, divided by response rate (scaled reward
rate), is on the same order as the effect ratio
w. When scaled total reward rate declines be-
low w, however, there is increasing under-
matching; when it is greater than w, there
should be overmatching. Undermatching is the
most common systematic deviation from
matching (Baum, 1979). There are also data
from Fantino et al. (1972) showing that the
tendency to overmatch to scheduled reward ra-
tios increases with absolute reward rate. Al-
though the conditions under which these
changes take place are not yet perfectly de-
fined, it is apparent that ratio invariance pre-
dicts both matching and the usual deviation
from matching, whereas melioration predicts
matching alone. It might appear that the de-
gree of undermatching should increase as
scheduled VI rate decreases, but there is some
evidence for a countervailing decrease in w as
absolute reward rate decreases (cf. Horner &
Staddon, 1987), so that a decrease in reward
rate does not necessarily increase the difference
between |A — B| and w. Hence, it is not clear
exactly when we should expect undermatching
and overmatching, although it is clear that ra-
tio invariance permits matching, as well as
both types of systematic deviation therefrom,
on concurrent VI VI schedules.

Concurrent VI VR. Because this procedure
also involves VI, the same caveat about mo-
mentary maximizing applies. This complica-
tion apart, melioration predicts simple match-
ing with respect to time but biased matching
with respect to responses. Herrnstein and
Heyman (1979), in a careful analysis, report
biased matching with respect to both time and
responses; specifically

s/(1 = s) = 0.718[R(x)/R(y)]'o4
and

t/(1 — t) = 1.291[R(x)/R(y)]"*%,
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where R(x) and R(y) are obtained reward rates
on the interval and ratio sides, respectively,
and ¢ and s are time and response proportions.
The exponent here is not significantly different
from unity, so there is no tendency to over- or
undermatch, which is consistent with meliora-
tion, as is the bias in response allocation. But
simple time-allocation melioration cannot ac-
count for the time-matching bias.

Ratio invariance cannot account for any kind
of matching on VI VR schedules. It predicts
a strong, nonlinear bias in favor of the ratio
alternative over much of the range, which is
not reflected in published data.

It is worth noting that the asymmetrical ver-
sion of RI that fails to account for concurrent
VI VR schedules (perhaps because of the
asymmetrical involvement of temporal factors)
may nevertheless prove useful in application
to the single-response case. For example, con-
sider a single-response probabilistic schedule
in which the two responses are pecking and
not-pecking for some brief period of time; if
this brief period is chosen to be short enough
that no more than one response can occur, then
choice proportion, s, is proportional to re-
sponse rate. If the changes produced by R or
N (A(s), B(s)) are larger for pecking than for
not-pecking (i.e., A(s) > a(s), etc.), then when
pecking is no longer reinforced, it will decline
to a negligible level. The argument is as fol-
lows: From Equation 16, the equilibrium value
of choice proportion, §, is

§=[r(g — w))/lp + hq — 2w), (18)

where A = a(s)/A(s), and so on, as before. If
p =g =0 (i.e, extinction), then § = £ /2, which
will be small if 4 is small (i.e., if A(s) > a(s)).
Spaced-responding schedules can be looked at
as a variety of frequency-dependent schedule,
because the probability of reward for pecking
is inversely related to its frequency and directly
related to the frequency of not-pecking. It is
easy to show that RI predicts quite unstable
performance under these conditions, although
the details of the argument would take us be-
yond the topic of this paper.

Asymmetric frequency-dependent ratio sched-
ule. The results of this procedure are described
in Horner and Staddon (1987): When payoff
probability on the left is twice that on the right,
and both increase linearly with the proportion
of right choices (i.e., with §), the usual result
is a preference mode on the majority (left) side.
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Fig. 5. Choice proportion (§ = R/(R + L)), averaged

in a moving window of 32 responses across 10 experi-
mental sessions for a single pigeon, on the asymmetrical
interdependent schedule described in the text. The solid
line shows the payoff probability on the right key (payoff
on the left was always twice this). The dotted line shows
the overall reward probability, which is maximal at ex-
clusive choice of the right key (from Horner & Staddon,
1987, Figure 7).

Some animals, with modes far to the left, oc-
casionally show a second mode at exclusive
minority (right) choice. Both results are con-
sistent with ratio invariance, neither with me-
lioration, which predicts exclusive majority
(left) choice (hence, a very low payoff proba-
bility). Figure 5 shows typical data from one
pigeon.

Frequency-dependent VI schedule (Silber-
berg & Ziriax, 1985). Both melioration and
ratio invariance predict a stable equilibrium
at indifference (s = 0.5) on this procedure,
which rewards both responses according to the
same VI schedule in the middle range of s-
values, but rewards the less frequent response
at a higher level at extreme s-values. Silber-
berg and Ziriax report this result—indiffer-
ence—when the ¢-value (time proportion) is
computed with a long time window (4 min),
but report modes at both extremes when they
used a short (6-s) time window (their Figure
4). Their simulation of molecular maximizing
shows similar results: indifference when the
time window is long, modes at the extremes
when it is short.

The Silberberg-Ziriax results raise an in-
teresting methodological point, which is noted
by Vaughan (1987) and illustrated with data,
but can also be made a priori: The preference
distribution must depend to some extent on the
time or response window on which it is based.
For example, in the limit, if we use a window
so short that no more than one response can
occur within, the choice distribution will nec-
essarily be bimodal, because only S-values of
0 or 1 are possible. In other words, if the time
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window is shorter than the typical “stay” time
(interchangeover time), then a bimodal choice
distribution will likely result, no matter what
the animal’s “true” preference. It is possible
to argue, therefore, that Silberberg and Ziri-
ax’s finding, with a short time window, of a
bimodal choice distribution is an artifact, and
that their data really show a mode at indif-
ference at both time windows, a result consis-
tent with both melioration and ratio invari-
ance. This argument is also consistent with
Silberberg and Ziriax’s finding of a negative
correlation between successive time propor-
tions at the short time window (their Figures
5 and 7). Suppose, for example, that animals
switch at a roughly constant rate, with a typical
“stay time” slightly longer than the averaging
window. Then a high time proportion (¢-value)
will mean that the averaging window almost
coincided with a stay on the right, so that the
following window must almost coincide with
a stay on the left (low t-value). Hence, high
t-values will invariably be followed by low
ones, intermediate values will consistently be
followed by intermediate ones, and so on,
yielding a linear function with negative slope
slightly less than unity, similar to the ones
reported. Using a moving window rather than
a block-by-block window eliminates this alias-
ing problem and much reduces the bimodality
artifact, which is further reduced by basing the
window on response count, rather than time,
s0 as to maintain the same sample size for every
measurement. The data shown in Figure 5
were obtained in this way: Note that if this
artifact was operative there, we would expect
to see a mode at least at an S-value of zero
(i.e., on the left) where most S-values lie. Hence
the absence of a mode on the left gives us
confidence that these data are not artifactual.

This problem is not solved by assuming that
the entire session duration is the appropriate
time window—this decision is as arbitrary as
any other. The only real solution is a true
dynamic model, whose properties would tell
us the proper window. Lacking that, we are
forced back to generalities, namely to judge
any theory by its ability to explain a body of
data gathered in some consistent and repro-
ducible way.

Conclusion

In this review I have distinguished two main
types of theory, static and dynamic, and iden-
tified a third type, which I term quasi-dy-
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namic. Quasi-dynamic theories are dynamic
in form, that is, they define the expected change
in behavior at a given point, but they are spec-
ified only to the level that they permit predic-
tions of stable and unstable equilibria, not to
the point where they permit true dynamic pre-
dictions of learning curves and the like.

It turns out to be fairly straightforward to
describe the hypothesis of melioration in a
quasi-dynamic form, and to use this formu-
lation to derive predictions for five kinds of
choice situations: concurrent VI VI schedules,
concurrent VI VR schedules, the two-armed
bandit (concurrent random-ratio schedules),
frequency-dependent VI VI schedules, and
asymmetrical frequency-dependent random-
ratio schedules. Melioration predicts reason-
ably well only the matching data from the two
interval procedures. Yet even there it fails to
predict most of the orderly departures from
matching, such as undermatching and over-
matching to scheduled values on concurrent
VI VI schedules. Melioration predicts the
matching outcome on concurrent VI VR and
the typical response bias towards the ratio side,
but fails to predict the time bias towards the
interval side.

Melioration predicts only one of the three
patterns that have been reported in the two-
armed bandit situation, and fails completely to
predict performance on the asymmetrical fre-
quency-dependent ratio schedule studied by
Horner and Staddon (1987; they show that it
also fails to predict performance on a sym-
metrical frequency-dependent ratio schedule).

Ratio invariance, the alternative quasi-dy-
namic model proposed by Horner and Stad-
don, predicts the different patterns observed
in the two-armed bandit situation, it predicts
matching, undermatching and overmatching
on concurrent variable-interval schedules, and
it predicts in detail, and in a way that accom-
modates individual differences, the preference
patterns on asymmetrical (and symmetrical)
frequency-dependentratio schedules. Ratio in-
variance clearly fails only in the VI VR case,
which violates its assumption of symmetry, and
involves temporal factors that are explicitly
excluded from the theory.

The major uncertainty about ratio invari-
ance is the factors that determine w, the effect
ratio, because the behavior of the model often
depends critically on it. For example, it is es-
sential that w be appropriately related to typ-
ical reward-probability values for correct pre-
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dictions of concurrent VI VI performance. Yet
there is nothing in the theory as it stands that
requires w to be in the appropriate range.
Nevertheless, in situations specifically de-
signed to test the theory in ways that do not
depend upon particular values for w, and in
direct competition with other accounts such as
melioration and molar and momentary max-
imizing, it has so far been strongly confirmed.
It seems fair to conclude that ratio invariance
is a more accurate model than its competitors
to explain how pigeons adapt in the short term
to purely probabilistic situations, but that other
processes—momentary maximizing, meliora-
tion—come in to play when temporal factors
are involved, especially when the situation is
asymmetrical. I do not make much of the abil-
ity of RI to make good predictions in the sym-
metrical concurrent VI VI case, because almost
any reward-following process is adequate to
explain matching under these conditions (cf.
Hinson & Staddon, 1983; Staddon et al., 1981).

The melioration hypothesis was originally
derived by assuming that matching at the mo-
lar (whole-session) level is a consequence of a
matching-like process at the molecular (sec-
ond-by-second) level. This kind of reasoning
can be dangerous, because regularity at the
molar level may reflect any one (or more) of
a number of local processes. The larger the
aggregate that enters into any lawful relation-
ship, the less sure we can be of the local process
or processes that underlie it—there is a con-
vergence from the molecular to the molar. This
is demonstrably true for concurrent-interval
schedules, in which several theoretical studies
have shown that a variety of choice rules, from
momentary maximizing to reward following,
produce molar matching. The present review
shows that reasoning directly from the molar
to the molecular may have failed in the case
of melioration, because the hypothesis is prob-
ably false as a universal model for free-operant
choice, at least in the simple form tested here.

The validity of this conclusion depends, of
course, on the validity of my quasi-dynamic
version of melioration, which is admittedly
highly simplified, especially in terms of the
local feedback functions I have used for vari-
able-interval schedules. Simplified or not, the
model is adequate to arrive at the correct pre-
diction for concurrent VI VI schedules, the
situation for which, and from which, meliora-
tion was originally derived. Equally clearly, it
fails in situations such as the asymmetrical and
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symmetrical frequency-dependent ratio sched-
ules, where there can be little doubt about the
local feedback function.

Ratio invariance has a number of attractive
features as an elementary reward-following
process. It is truer to the original law of effect
than comparative principles such as matching
and melioration that are nominally derived
from it (Herrnstein, 1970) because unlike me-
lioration (for example) it includes a real
“strengthening” principle: individual rewards
actually increase the probability of the re-
warded action, and nonrewards decrease its
probability. A purely comparative rule like
melioration is silent on the effect of particular
rewards and nonrewards and deals only with
some property of their aggregate difference.

The very indefiniteness of RI is an asset
because it predicts only those features of the
data, steady-state patterns, that seem to be or-
derly, and is noncommittal about transitional
patterns and details of sequential relationships
that seem to be highly variable.

Ratio invariance has some resemblance to
the old idea of a reflex reserve (Skinner, 1938),
with the effect ratio, w, having some of the
properties of the extinction ratio. The extinc-
tion ratio is the number of responses (in a
single-response situation) that are generated
by a single reinforced instance. In practice, this
number does not seem to be constant so the
idea was abandoned, but the idea that respond-
ing on ratio schedules typically changes its form
above a certain ratio value (ratio “strain’’) does
have some factual basis. The parallel with w
can be seen if we extend the tentative devel-
opment I gave earlier for the single-response
case (i.e., the two-response situation with the
second response a brief period of nonrespond-
ing that is never reinforced). Equation 16, with
g = 0, becomes

delta(s) = s[p — 2w)] + hw,

which implies exclusive choice (slope positive)
when p > 2w, and partial preference, with
§=—hw/(p — 2w), otherwise. Thus, the ratio
of size 1/2w has properties similar to the old
extinction ratio although the transition implied
is not from responding to extinction but from
exclusive choice (normal, high-rate respond-
ing) to partial preference (“strain”).

Ratio invariance is more adaptive than hill-
climbing processes such as melioration and
momentary maximizing because it is less sus-
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ceptible to obvious “traps.” A simple hill-
climber that finds itself in a poor situation that
nevertheless contains relatively good and bad
alternatives is constrained to fixate on the best
of this particular bad lot. This is because hill-
climbing only compares alternatives with each
other, not with an internal standard. Ratio
invariance, on the other hand, compares al-
ternatives both with each other and with an
internal standard, and does so in the simplest
possible way. An RI-type organism in a poor
situation (i.e., no payoff probability >w) will
devote more responding to the better alterna-
tives, but will continue to sample all, and so
will detect a change for the better should one
occur. Conversely, in a rich situation, an RI
organism may fixate on any alternative. RI is
a process that satisfies (Simon, 1956) rather
than optimizes a sensible strategy in an un-
certain world where achieving the best is often
less important than avoiding the worst.
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APPENDIX
DEFINITIONS FOR SYMBOLS USED IN THE TEXT

s = probability of a response on the right (a theoretical variable).

S = proportion of right responses, measured in a moving window of size M
(empirical variable).

M = window size.

delta(s) = expected value for the change in s associated with a given s-value and
known schedule parameters.

a, b = scheduled VI reinforcement rates (=1/VI value) on the right and left.

A, B = scheduled VI reinforcement rates on the right and left, scaled in terms of
overall response rate, C = x + y: A =a/C, B =b/C.

b, ¢; p(S), q(S) = reinforcement probabilities on the right and left.

x, y = overall response rates on the right and left.

R(x), R(y) = obtained overall reinforcement rates on the right and left.

xr, YL = local response rates on the right and left.

¢t = proportion of time spent responding on the right (theoretical variable).

7R, 7L TR(2), (1 — t); rr(xR), 7L(yL) = local reinforcement rates on the right and
left.

delta(t) = expected value for the change in ¢ associated with a given ¢-value and
known schedule parameters.

a(s), b(s); A(s), B(s); a(¢), b(¢) = increments or decrements in response proportion
or proportion of time spent caused by reward or nonreward according to a
reward-following model.



