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ABSTRACT

Cis-acting elements in post-transcriptional regula-
tion of gene expression are often correlated with
distinct local RNA secondary structure. These struc-
tures are expected to be signi®cantly more ordered
than those anticipated at random because of evolu-
tionary constraints and intrinsic structural prop-
erties. In this study, we introduce a computing
method to calculate two quantitative measures, NRd
and Stscr, for estimating the uniqueness of an RNA
secondary structure. NRd is a normalized score
based on evaluating how different a natural RNA
structure is from those predicted for its randomly
shuf¯ed variants. The lower the score NRd the more
well ordered is the natural RNA structure. The statis-
tical signi®cance of NRd compared with that com-
puted from structural comparisons among large
numbers of randomly permuted sequences is repre-
sented by a standardized score, Stscr. We tested
the method on the trans-activation response
element and Rev response element of HIV-1 mRNA,
internal ribosome entry sequence of hepatitis C
virus, Tetrahymena thermophila rRNA intron,
100 tRNAs and 14 RNase P RNAs. Our data indicate
that functional RNA structures have high Stscr,
while other structures have low Stscr. We conclude
that RNA functional molecules and/or cis-acting
elements with structure dependent functions
possess well ordered conformations and they are
uniquely folded as measured by this technique.

INTRODUCTION

Numerous experimental results have shown that RNA mol-
ecules perform a wide range of functions in biological
systems. The known biological functions of RNAs continue
to grow and its important role in the regulation control of gene
expression is evident in many different biological ®elds (1,2).
Though single-stranded regions exist in most RNAs, distinct
well ordered structure in local segments of single-stranded
RNA sequences often correlates with functions such as control

of replication, transcription, mRNA processing, translation
and metabolism (1±4) making it desirable to understand the
conformation of associated local RNA structures.

Some combinations of base pairings in stem±loops and
some distinct loop sequences are more abundant in functional
structural RNAs (FSRs) (5±8). Therefore, the prediction of
distinct folding patterns in RNA sequences is an important
goal of genomic sequence analysis. It has been suggested that
the FSRs possess well ordered conformations that are both
thermodynamically stable and uniquely folded (9,10). This is
because the functional elements must be optimized both in the
conformational properties and sequence patterns where the
interactions between RNA and RNA, as well as RNA and
protein, play a crucial role in their functions (11). In the study
of energy landscapes of RNA folding, we have demonstrated
that the FSR elements are often thermodynamically more
stable than anticipated in their corresponding random struc-
tures (12,13). This implies that evolution has constrained the
structural properties of FSR elements to be thermodynamic-
ally stable. However, no available methods have been
developed for estimating the structural uniqueness of the
well ordered RNA structures based on the structural compari-
son in detail.

There are a few RNA motifs whose three-dimensional
structures are known. It is also true that even random RNA
sequences can be folded so that their complementary
sequences form double helical stems. Functional RNA mol-
ecules found in modern organisms are evolutionary products
(11). Evolution would increase the thermodynamic stability of
the folded structure and reduce the possibility of alternative
folding forms. Although we do not fully understand how to
measure the structural uniqueness of distinct RNA structures
accurately, it is reasonable to suppose FSRs have evolved
morphologies or distinct conformations that are not expected
to be found by chance. We expect that the more different a
natural evolved RNA structure is from a large number of
random and unevolved structures, the more unique is the
natural RNA structure.

In this study we present a novel method to determine the
uniqueness of well ordered RNA secondary structures. We test
100 tRNA molecules, 14 ribonuclease P (RNase P) RNA
molecules, Tetrahymena thermophila rRNA intron, internal
ribosome entry sequence (IRES) of hepatitis C virus, trans-
activation response (TAR) element and Rev response element
(RRE) of HIV-1. We ®nd that most RNA structures derived by
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phylogenetic methods and some structures from minimal
energy dynamic programming algorithm have well ordered
conformations.

MATERIALS AND METHODS

Quantitative measures for the uniqueness of RNA
structures

It has been suggested that RNA folding is hierarchical and
sequential (14). The primary sequence of a natural RNA
determines its secondary structure and the secondary structure
determines its tertiary structure. Since RNA secondary
structure is supposed to change slightly by the additional
tertiary interactions (14), it is a crucial step to characterize the
RNA secondary structure for our understanding of the
uniqueness of the RNA three-dimensional structure. In this
study we focus our attention on the uniqueness of secondary
structures folded by RNA molecules.

To de®ne the uniqueness of RNA secondary structures
quantitatively we hypothesize that the well ordered conform-
ation of functional RNA molecules is expected to be rare in the
conformation space formed from a population of random
sequences with the same base compositions and same length
as the sequence of natural RNAs. For a given natural RNA
sequence, we generate 300 randomly shuf¯ed sequences. In
the random shuf¯ing, nucleotides at all sites of the natural
sequence are sequentially swapped with a randomly chosen
site elsewhere in the sequence (15). If the secondary structure
of the natural RNA was established experimentally or by
phylogenetic comparisons, the established structure is used.
Otherwise, the lowest free energy structure predicted by
Zuker's mfold with Turner energy rules (16,17) is used. The
secondary structures of the random sequences (termed random
structures) are also assumed to be folded with the lowest free
energy computed by mfold. In consideration of the fact that
the predicted optimized structure by mfold does not include
any tertiary interactions, the tertiary interactions conserved in
the inferred structure by phylogenetic comparisons are not
taken into account in the structure comparison.

In order to facilitate the structural comparison, we de®ne a
maximal matching score (MMS) to represent the maximal
structural similarity between two RNA structures. The MMS is
computed by the program rna_match (see below). Therefore we
have 300 MMS observations computed between the structure
of the natural RNA and the 300 random structures. The sample
mean of the 300 MMS observations is termed as NR. A
quantitative measure of the uniqueness of RNA secondary
structures is then de®ned as the average NR per nucleotide,
which is a normalized score and denoted by NRd. It represents
the density of MMS between the structure of a natural RNA and
a large number of the random structures. NRd is taken as a
measure of the uniqueness of the structural morphology folded
by an RNA molecule. The lower the NRd, the more unique is
the well ordered structure of an RNA molecule.

What is the average of MMS values between any two
random structures? Is the score NRd (or NR) computed from a
natural RNA molecule statistically signi®cant? To address
these questions, we perform a statistical test for a set of
randomly shuf¯ed sequences by the same procedure as we
used in the computation of NR. We generally collect a set of 25

random sequences that are also generated by random permu-
tations as mentioned above. For each of the 25 random
sequences we compute the MMS repeatedly by comparing the
folded structure with the each of the 300 random structures as
used previously. As a result, we have 25 3 300 observations of
MMS for these random structures. The sample mean and
sample standard deviation of the 7500 random versus random
MMS observations are termed as RR and std, respectively.
Consequently, we can de®ne Stscr as a signi®cance score of
the uniqueness of RNA secondary structures. The Stscr is
de®ned as

Stscr = (RR ± NR)/std.

The greater Stscr, the statistically more signi®cant is the well
ordered structure of the natural RNA. If score Stscr is treated
as a normal variable with zero mean and unit standard
deviation, the signi®cance level achieved can be determined
by the normal distribution. Thus, the probability of observing
a departure from the mean of >1.96 standard deviations
(Stscr > 1.96) is 0.05.

Computing similarity between two RNA structures

In our approach (18,19) of RNA molecule comparison, we
de®ne three edit operations, substitute, delete and insert. For a
given RNA molecule, each operation can be applied to either a
base pair or an unpaired base. When applied to unpaired bases,
these operations are exactly the same as in sequence matching.
To substitute paired bases is to replace one base pair with
another. This means that at the sequence level, two bases are
changed at the same time. To delete a base pair is to delete the
two bases of the base pair. At the sequence level, this means to
delete two bases at the same time. To insert a base pair is
to insert a new base pair. At the sequence level, this means to
insert two bases at the same time. Note that there is no
substitute operation that can change a base pair to an unpaired
base or vice versa.

We assume that there is a score function associated with
the operations. The score function for base pairs is de®ned on
S 3 S È {l}, and the score function for unpaired bases is
de®ned on S È {l} (20). With these de®nitions, we can
consider how to translate one RNA into another using the
optimal number of weighted operations. With appropriate
score functions, this can give us either a similarity or a distance
measure between two RNA structures. We take into account
both the sequence and the structural information of RNA
molecules. Our measure treats a base pair as a unit and does not
allow it to match to two unpaired bases. This is closer to the
spirit of the comparative analysis method currently used in the
analysis of RNA secondary structures. When one base of a
base pair changes, we usually ®nd that its complementary base
also changes so as to conserve that base pair in RNA structures.

The algorithm (18±20) of structure comparison (rna_match)
is brie¯y described here. For any RNA R, we use r[i] to
represent the ith base in R and we use R[i´´´j] to represent the
substructure formed by bases from r[i] to r[j]. Let R1[1´´´m]
and R2[1´´´n] be the two given RNA structures. We use
M(i1, i2; j1, j2) to represent MMS between R[i1´´´i2] and
R2[j1´´´j2]. Suppose that we want to compute the MMS
between R1[1´´´i] and R2[1´´´j]. If both r1[i] and r2[j] are
unpaired bases, then it is clear that
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M�1; i; 1; j� � max
M�1; iÿ 1; 1; j� � del�r1�i��
M�1; i; 1; jÿ 1� � ins�r2� j��
M�1; iÿ 1; 1; jÿ 1� � sub�r1�i�; r2� j��

8><>:
Where del(r1[i]), ins(r2[j]) and sub(r1[i], r2[j]) are cost scores
associated with the operations of deletion, insertion and
substitution, respectively.

If i¢ < i and (r1[i¢], r1[i]) is a base pair and j¢ < j and
(r2[ j¢], r2[ j]) is a base pair, then we can show the following if
in M(1, i ± 1; 1, j) r1[i¢] is deleted and in M(1, i; 1, j ± 1) r2[j¢] is
inserted.

M(1, i; 1, j) =

max
M�1; iÿ 1; 1; j� � del��r1�i0�; r1�i���
M�1; i; 1; jÿ 1� � ins��r2� j0�; r2� j���
M�1; i0 ÿ 1; 1; j0 ÿ 1� �M�i0 � 1; iÿ 1; j0 � 1; jÿ 1�
�sub��r1�i0�; r1�i��; �r2� j0�; r2� j���

8>>>><>>>>:
The above are the two main cases and the other cases can be

handled similarly. Because of the second formula, we know

that in order to compute MMS between R1 and R2, M(1, m; 1, n),
we need to have MMS between some substructures, namely
M(i¢ + 1, i ± 1; j¢ + 1, j ± 1) where (r1[i¢], r1[i]) and (r2[j¢], r2[j])
are both base pairs, available. This suggests a bottom-up
dynamic programming algorithm to ®nd MMS between R1

and R2. We consider the smaller substructures ®rst and
eventually consider the whole structures R1 and R2. The worst
case time complexity of the algorithm is O(m 3 n 3 stem(R1)
3 stem(R2)), where stem(R1) and stem(R2) are the number of
stems in R1 and R2, respectively. In practice the time
complexity is roughly O(m 3 n 3 log(m) 3 log(n)). The
space complexity of the algorithm is O(m 3 n).

RESULTS

In our computational experiments, we tested the sequences of
100 tRNAs that had been used by Eddy and Durbin (21). The
secondary structures of cloverleaf models of the 100 tRNAs
were extracted from the tRNA database (22). The common
secondary structure models derived by phylogenetically
comparative analysis are all well established for RNase P
RNAs (23) and group I introns (24). The conserved secondary

Figure 1. Conserved secondary structure of RRE sequence of HIV-1. The RRE sequence is located at the region of 7149±7485 of the mRNA of HIV-1
(isolate U455).
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structures of TAR (25) of HIV-1 and IRES of HCV (26) are
from previous publications. The phylogenetically conserved
secondary structure of RRE of HIV-1 (isolate U455) is derived
from 151 HIV-1 sequences (Fig. 1).

tRNA molecules possess well ordered conformations

The results detailed in Table 1 (columns 6±8) demonstrate that
the MMS between the classical cloverleaf structure of natural
tRNA derived from phylogenetic and experimental means and

corresponding random structures is signi®cantly less than
MMS for random versus random sequences in general. Only
10 out of 100 tRNAs have the density of MMS, NRd > 0.60.
The calculated NRd ranges from ±0.19 to 0.70 in the 100
tested tRNA molecules with an average of 0.38 6 0.18. The
calculated RRd among permuted random sequences of the
tRNAs are ranged from 0.73 to 1.22 and averaged to
0.96 6 0.11. The average RRd from random sequences is
~5.3 standard deviations higher than the average NRd

Table 1. Signi®cance scores (Stscr) of the uniqueness of RNA secondary structures from 100 tRNA molecules
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indicating that the structural conformations of the natural
tRNAs are signi®cantly different from those of corresponding
random structures. The signi®cance scores of the uniqueness
of the common tRNA secondary structure computed from 100
wild-type tRNAs are high and the Stscr values average to 2.94
6 1.02. Only 3 out of 100 wild-type tRNAs have Stscr values
<1.96. It indicates that the uniqueness of the common tRNA

secondary structure of cloverleaf representations is statistic-
ally signi®cant.

Table 1 (columns 3±5) also shows the results of repeating
the procedure described above using the optimized structures,
rather than the common cloverleaf structures. Our data show
that 26 tRNA sequences are correctly predicted to be the
classical cloverleaf structure by mfold with the Turner energy

Table 1. Continued
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rules (16,17) and that they all have high Stscr values.
However, the signi®cance scores Stscr of the optimized
structures computed from most of the other 74 wild-type
tRNAs are much lower and their average value is 0.36 6 1.22.
The average value of Stscr of the corresponding 74 cloverleaf
structures is 3.02 6 1.12. It is evident that for tRNAs the
structural morphologies of phylogenetically inferred struc-
tures are more ordered than those observed in the predicted
minimal free energy structures.

Among the 74 tRNAs, three predicted optimized structures
have Stscr a little higher than that computed by the common
cloverleaf structures. The three tRNAs are coded by DW4360,
DF5220 and DX4960. The optimized structures of these three
tRNAs are very close to the corresponding cloverleaf struc-
tures. Four out of the 74 lowest free energy structures have
Stscr scores >1.96 in which the optimized structures are quite
different from the functional cloverleaf structures. They are
tRNAs DS1230, DY6743, DN4620 and DG2921. The Stscr
values computed by the optimized structure are 2.75, 2.66,
2.46 and 2.31, respectively. But the corresponding scores of
Stscr computed by the common functional structures are 3.46,
2.76, 7.59 and 2.61, which are greater than those computed
from the optimized structures. The structural difference
between the well ordered conformation of the phylogenetic
cloverleaf structures and the predicted minimal energy struc-
tures is statistically signi®cant. The bulk distribution of NRd of
natural tRNA structures is different from the random structures
as shown in Figure 2. Also the Stscr distribution computed
from the classical cloverleaf structures is different and separate
from that of the corresponding lowest free energy structures.

RNase P RNAs are also uniquely folded

NRd and Stscr of secondary structures of 14 RNase P RNAs
are listed in Table 2. NRd values from the phylogenetically
inferred secondary structures range from 0.04 to 0.31 and
average to 0.16 6 0.08. The NRd from the optimized
structures predicted by mfold ranges from 0.06 to 0.54 and
average to 0.37 6 0.13. RRd calculated from permuted
random sequences ranged from 0.38 to 0.61 and averaged to
0.48 6 0.05. Well ordered conformations in the phylogenetic-
ally conserved structures of RNase P RNAs are easily
distinguished from those of permuted random sequences by
the NRd and RRd. Stscr of 14 phylogenetically inferred
structures range from 2.15 to 5.84 and average to 3.73 6 1.25.
All 14 Stscr values are >2.10. Clearly the phylogenetically
inferred structure of RNase P RNAs are distinct from random.

In contrast only three optimized structures computed by
mfold have high Stscr values >2.10. Only for Thermus
aquaticus RNase P RNA Stscr computed from the predicted
optimized structure is greater than that from the phylogenetic-
ally inferred structure. The Stscr scores of the 14 optimized
structures average to 1.42 6 1.59. The sample mean of 14
observations of Stscr is far less than the average Stscr (Stscr =
3.73) computed from the well-established structures. Our data
clearly indicate that the phylogenetically conserved structures
of RNase P RNAs have more ordered conformations than
those in the optimized structures. The difference of structural
morphology observed between the phylogenetically inferred
and optimized structures is statistically signi®cant. Figure 3
shows that NRd and RRd cluster completes separately for
phylogenetic structures and that Stscr cluster differently but

not completely separate between phylogenetic and lowest free
energy structures.

Some other known RNA elements have well ordered
conformations

The results detailed in Table 3 show that FSR elements of
Tetrahymena rRNA intron, HCV IRES, TAR and RRE of
HIV-1 have high values of Stscr for the phylogenetically
inferred structures. However, the signi®cance score, Stscr
computed from the optimized, lowest free energy structure is
less than that computed from the phylogenetically inferred
structures. For example, the signi®cance scores Stscr com-
puted from the inferred common structure and the optimized
structure by mfold are 4.75 and 0.45, respectively, for the
RNA sequence of Tetrahymena intron. Similar to tRNAs and
RNase P RNAs, the phylogenetic structure of Tetrahymena
intron has a more ordered conformation than the optimized
structure. The computationally optimized structure of TAR
functional element predicted by mfold is identical to the
phylogenetically inferred structure and the optimized RRE
structure is close to the common structure inferred by
phylogenetic comparisons. Thus, both the inferred conserved
structures and the optimized structures of functional TAR and
RRE molecules have high Stscr values.

Figure 2. Density values (top) of maximal matching scores, NRd and RRd,
as well as signi®cance scores, Stscr (bottom) of the uniqueness of phylo-
genetically conserved secondary structures and the lowest free energy struc-
tures computed from 100 tRNAs. The score NRd was computed from
structure comparisons between the conserved tRNA secondary structure and
300 random structures that were computed from 300 randomly shuf¯ed
sequences of the natural tRNA by mfold and Turner energy rules. The score
RRd was computed from structure comparisons among 25 random structures
and the 300 random structures mentioned above. The 25 random structures
were computed from the other 25 randomly shuf¯ed sequences of the
natural tRNA by mfold and Turner energy rules. The phylogenetically con-
served tRNA secondary structures have small NRd and large Stscr values.
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DISCUSSION

The results presented in this paper indicate that FSRs have
small NRd and large Stscr. The distinct structural conform-
ations found in the functional RNA sequences are unlikely to
occur by chance. Our data strongly support the hypothesis that
RNA molecules, such as tRNAs and RNase P mRNAs, possess
well ordered conformations that play a crucial role in their
biological functions.

The sequences of FSRs are evolutionary products that have
survived because they execute the biological function quite
ef®ciently. It is reasonable to hypothesize that the thermo-
dynamic stability contributed by base pair stacking constrains
the extent of possible ordered conformations in RNA evolu-
tion. It has been suggested that the evolved conformations of
functional RNAs are signi®cantly more ordered than con-
formations of randomly shuf¯ed sequences (10). Our compu-
tational experiment suggests that the sequences of tRNAs,
RNase P mRNAs, Tetrahymena group I intron and the cis-
acting elements TAR, RRE and IRES of HCV are optimized
with respect to their conformational properties. The sequences
of these FSRs have speci®c structural morphologies to adapt to
their particular functions. Multistem junctions are a common
morphology in the functional structures of tRNAs, RNase P
RNAs, group I intron, IRES of HCV and RRE of HIV, and are

also abundant in ribosomal RNAs and small ribonucleoprotein
RNAs.

Complete understanding of the role of structured RNAs
requires knowledge at the three-dimensional, atomic level.
However, we know little about the atomic-level details
except what is available for a few tRNAs, the structure core
of Tetrahymena group I intron and a few RNA fragments.
Tinoco and Bustamante (14) proposed that RNA folding is
hierarchical and sequential and RNA secondary structure
often determines tertiary structure. This implies that correct
prediction of RNA secondary structure is a key step for
predicting RNA structure from sequence. RNA secondary
structures are currently predicted by phylogenetic com-
parisons and free energy minimization. In calculation of
NRd and Stscr of the test RNAs we use the RNA structures
inferred by both methods. Our results show that almost all
RNA structures inferred by phylogenetic comparisons
tested in this study possess well ordered conformations that
are statistically signi®cant. Their distinct conformations are
rare features that are not anticipated in randomly permuted
sequences. The predicted minimum free energy structures,
however, are typically only moderately well ordered. In
some cases of extensively studied structures such as HIV TAR
and RRE the optimized structures are statistically well
ordered.

Table 2. Signi®cance scores (Stscr) of the uniqueness of RNA secondary structures from 14 RNase P RNA
molecules
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The two quantitative scores of NRd and Stscr are dependent
on score functions associated with the three operations in RNA
structure comparison. Two matrices of score functions asso-
ciated with operations on unpaired bases and paired bases
were used in this study. They were derived empirically and
arbitrarily. More reasonable score functions need to be
developed in future. However, we expect that the signi®cance
score Stscr of RNA secondary structures may not be sensitive
to the score functions used for structure comparison. A test for
34 tRNAs indicates that the difference between Stscr scores
computed using the two different sets of score functions is not
signi®cant.

In the calculation of the measure RR, we collect a set of 25
random sequences arbitrarily and compare their folded
structures with other 300 random structures. It is also worth
choosing those random sequences whose folded energy is less
than or close to the lowest free energy computed from the
natural sequence in the structure comparison between random
versus random sequences. The preliminary results for four
tRNAs show that the sample standard deviation computed
from random versus random MMS is decreased by the
approach. It seems that the approach will slightly improve our
method; however, further detailed investigation is needed.

Schultes et al. (10) recently proposed three measures to
de®ne the stability and uniqueness of RNA secondary
structures based on the mean length of stems and total number
of base pairs in the computed structure from RNAfold (27)
and/or VIENNA (28). The difference between two structure
morphologies was not considered throughly in their method.
Various similarity measures between two RNA secondary
structures have also been discussed by three classes of
secondary structure metrics (29). The method used here is
related to the `tree' metrics mentioned in their paper, but does
the comparison at a more detailed level. It should be noted that
in the work described here only the optimized stable one is
selected to represent the random structure and any RNA
molecules whose secondary structure was not well estab-
lished. As a result, conformations used in the structure
comparison between natural and randomly shuf¯ed sequences
are limited. We know that alternative computed structures
with higher free energies can also be computed from the
program mfold (16). It is also likely that these alternative
structures may be as good as the optimized structure because
of uncertainty in the energy parameters and the assumptions
used in the mfold algorithm. Nevertheless, our method is the
®rst computational method to examine the detailed difference
of structure morphologies throughout between natural RNA
molecules and the corresponding randomly shuf¯ed sequen-
ces. The results presented in this paper demonstrate that we
need a quantitative measure to estimate the uniqueness of the
folded RNA structures. The quantitative measure of free
energies of RNA folding alone is not enough for us to make a
good judgment of a functional RNA structure based on the
current energy rules (16).

We previously proposed a computational method using the
programs SIGSTB and SEGFOLD (13) to search for unusual
folding regions that are thermodynamically more stable than
the average of other local segments in the sequence, and more
stable than random. The method described here adds the
criteria of uniqueness of folding morphologies. We anticipate

Figure 3. Density values (top) of maximal matching scores, NRd and RRd,
as well as scores Stscr (bottom) of the uniqueness of phylogenetically con-
served secondary structures and the lowest free energy structures computed
from the 14 RNase P RNAs. The phylogenetically conserved secondary
structures of RNase P RNAs have small NRd and large Stscr values. For
further details see the legend to Figure 2.

Table 3. Signi®cance scores (Stscr) of the uniqueness of RNA secondary structures from the functional RNA elements
of T.thermophilia rRNA intron (T. ther), IRES of HCV, TAR and RRE of HIV-1
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that the combined approach will enhance the ability for data
mining of functional RNA elements in mRNAs. However,
even with enhanced statistical signi®cance we still need
additional biological information to evaluate if a local RNA
segment with a well ordered conformation is a functional
element. Nevertheless, past experience shows that the
approach of computational discovery of structural features is
very helpful in the determination of local RNA elements with
structure dependent functions in mRNAs. This is especially
applicable to knowledge discovery in the post-genomic age.
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