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Abstract
Almost all protein database search methods use amino acid substitution matrices for scoring,
optimizing, and assessing the statistical significance of sequence alignments. Much care and effort
has therefore gone into constructing substitution matrices, and the quality of search results can depend
strongly upon the choice of the proper matrix. A long-standing problem has been the comparison of
sequences with biased amino acid compositions, for which standard substitution matrices are not
optimal. To address this problem, we have recently developed a general procedure for transforming
a standard matrix into one appropriate for the comparison of two sequences with arbitrary, and
possibly differing compositions. Such adjusted matrices yield, on average, improved alignments and
alignment scores when applied to the comparison of proteins with markedly biased compositions.

Here we review the application of compositionally adjusted matrices and consider whether they may
also be applied fruitfully to general purpose protein sequence database searches, in which related
sequence pairs do not necessarily have strong compositional biases. Although it is not advisable to
apply compositional adjustment indiscriminately, we describe several simple criteria under which
invoking such adjustment is on average beneficial. In a typical database search, at least one of these
criteria is satisfied by over half the related sequence pairs. Compositional substitution matrix
adjustment is now available in NCBI's protein-protein version of BLAST.
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Introduction
With the introduction in 1970 of protein alignment algorithms [1], a need was created for
matrices of amino acid substitution scores. Over time, many different rationales were advanced
for constructing such matrices [2–8], based on a variety of considerations, such as the genetic
code and amino acid physico-chemical properties. However, for many years the log-odds
matrices [4] derived from the PAM model of protein evolution [3] gained the widest use. These
matrices were generally employed as well, unaltered, with the local alignment methods
introduced in the 1980s [9], which largely supplanted the earlier global alignment algorithms.

The statistical theory of ungapped local alignment scores described in the early 1990s [10,
11] demonstrated that all local alignment matrices are implicitly of the log-odds form, and are
optimized for the recognition of alignments characterized by certain amino-acid-pair target
frequencies [12]. It could then be recognized that what had given the PAM matrices an edge
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was their explicit and purposeful, rather than implicit, specification of target frequencies.
Accordingly, the subsequently described BLOSUM matrices [13] retained the log-odds
formalism for constructing substitution scores, and replaced only the PAM model for
estimating target frequencies. This has been true as well of other approaches to constructing
substitution matrices [14–17].

The sensitivity of a protein database search can depend strongly on the choice of a substitution
matrix [18,19]. The BLOSUM and other commonly used matrices, constructed from particular
sets of related proteins, are tailored to target frequencies in the context of implied standard
background amino acid compositions. When used to compare proteins with markedly non-
standard compositions, these matrices have new target frequencies which are incompatible
with the new compositional context, implying non-optimal performance [20].

Proteins with non-standard compositions are far from rare. They may arise in specialized (e.g.
hydrophobic or cysteine-rich) protein families, or wholesale in organisms with AT- or GC-rich
genomes [21,22]. For the analysis of such proteins, we have previously described a rationale
and an efficient algorithm, improved here, for transforming a standard matrix into one
appropriate for any specified non-standard compositional context [20,23]. This procedure is
fully applicable to the comparison of proteins with differing compositions, in that case yielding
asymmetric substitution matrices. On average, when used to compare proteins with markedly
biased compositions, the adjusted matrices yield alignments that are in better agreement with
structural evidence and that have higher scores [20].

An important factor in the effectiveness of protein database programs is the evolutionary
distance for which the substitution matrix employed is tailored. This is conveniently measured
by the matrix's relative entropy [12,24]. When adjusting a standard matrix for compositional
bias, one may simultaneously control its relative entropy [20,23], and we here discuss various
rationales for doing so. Among the relative entropy strategies we consider, the best on average
is to fix the relative entropy of adjusted matrices at a standard value.

Finally, we study the effectiveness of compositional adjustment in the context of general
purpose protein database searches, in which there is no expectation of pervasive strong
compositional biases. Although it is not advisable to employ compositional adjustment
universally, we describe several simple criteria for invoking such adjustment, which predict
its utility for a majority of pairwise comparisons of related proteins. Compositional score matrix
adjustment has been added as an option to NCBI's protein-query protein-database BLAST
program [25,26].

Statistical Underpinnings
For ungapped local alignments, a statistical theory of substitution matrices has been developed,
which assumes a random protein model in which the twenty amino acids appear independently
with background probabilities p→  [10,11]. A substitution matrix should have negative expected
score, and can then always be written in the form

sij =
1
λ ln

qij
pi p j

(1)

where the implicit qij are positive target frequencies that sum to 1, and the positive parameter
λ provides a natural scale for the matrix. This matrix is optimal for distinguishing from chance
those local alignments whose aligned amino acid pairs appear with frequencies characterized
by q. In practice, equation (1) is widely used to construct log-odds matrices after estimating
target and background frequencies directly from carefully curated sets of “true” biological
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alignments. The target frequencies generally are estimated as symmetric, with qij =qji , and the
background frequencies are then generally chosen to be consistent with the target frequencies,
with pi = ∑ j qij.

Because different evolutionary distances imply different target frequencies, sets of substitution
matrices, such as the PAM [3,4] and BLOSUM [13] series, have been optimized for differing
degrees of evolutionary divergence. The relative entropy of a matrix [12], defined as
H = ∑

ij
qijln(qij / pip j), with the unit of nats, is a convenient parameter for characterizing the

evolutionary distance to which the matrix corresponds; the higher H, the lesser the degree of
evolutionary divergence.

Compositionally Adjusted Matrices
Generalizing to the comparison of sequences with possibly unequal background compositions
P→  and P→ ′, it is reasonable to assume that the target frequencies Q best characterizing true
alignments will be consistent with these background frequencies, so that

∑
j
Qij = Pi; ∑

i
Qij = P j′. (2)

We call a substitution matrix valid in the context of the background frequencies P→  and P→ ′ if its
implicit target frequencies satisfy equations (2). Except for certain degenerate cases
unimportant in practice, a substitution matrix can be valid in only a unique context [20, 23].
This implies that it is not ideal to use a substitution matrix derived from standard target and
background frequencies in a non-standard context, but leaves open the question of how to
construct an appropriate matrix.

For the comparison of proteins with biased compositions, it is possible to replicate the PAM
or BLOSUM procedure by constructing special sets of true alignments for such proteins, as
has been described for hydrophobic and transmembrane proteins [27,28]. From such alignment
sets, target and background frequencies may be extracted. Problems with this approach are that
it is laborious, that each new context requires a new curatorial effort, and that it is difficult to
apply consistently to the comparison of proteins with differing amino acid biases. Accordingly,
we have proposed a rationale for automatically transforming any standard matrix, constructed
using equation (1) with a unique valid q, into a matrix valid in a non-standard context, specified
by new background frequencies P→  and P→ ′ [20]. In short, we propose finding new target
frequencies Q that minimize the Kullback-Liebler distance from the standard q, i.e.
∑
ij
Qijln(Qij /qij), but subject to the consistency constraints of equations (2). In addition, one

may wish to constrain the relative entropy of the new substitution matrix to equal some constant
H:

∑
ij
Qijln

Qij
PiP j′

= H . (3)

Previously we have described a Newtonian procedure for this purpose [23]. Here, we have
implemented a modified procedure, with improved speed and stability, which we detail below.

Controlling Relative Entropy
If one adjusts a substitution matrix for compositional bias, why might one wish to constrain
its relative entropy, and how should one do so? We will study this question by analyzing the
performance of four modes of substitution matrix construction (Table 1). For these evaluations,
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we use the 143 homologous sequence pairs with validated alignments described in [20], which
we call the “biaspair143” data set; these pairs were chosen specially for evaluating substitution
matrix compositional adjustment and include various compositional biases.

Mode A is simply the standard BLOSUM-62 substitution matrix while modes B–D are versions
of BLOSUM-62 compositionally adjusted for each sequence pair (Table 1). In mode B, the
relative entropy of the matrix is left unconstrained. In mode C, the relative entropy is
constrained to equal a constant, here chosen as 0.44 nats. Finally, in mode D, the relative
entropy is constrained to equal that of the standard BLOSUM-62 matrix in the context of the
two sequences being compared. The rationale for constraining relative entropy, as in modes C
and D, is elaborated below. Note that for mode A, composition-based statistics are used to
rescale the matrix, as described in [29], so that it has the same ungapped scale parameter λ as
the matrices calculated by modes B–D. Therefore, the bit scores and E-values for alignments
computed by all four modes are accurate and comparable. Note also that modes B–D use
pseudocounts for defining P→  and P→ ′, as described in [20].

For the comparison of any particular pair of related sequences, it is best to use a matrix whose
relative entropy reflects the sequences' degree of evolutionary divergence [12,24]. However,
a database search generally entails comparing a query sequence to related sequences diverged
to varying extents. If a single matrix is to be employed, it is best to use one focused on
alignments near the limits of detectability. The BLOSUM-62 matrix [13], whose standard
rounded version has a relative entropy of 0.44 nats, has been found to be among the most
effective [18,19]. Matrices with much larger relative entropies are tuned to alignments so strong
that, using most reasonable scoring systems, they will likely be found in any case; those with
much smaller relative entropies are tuned to alignments so weak they will likely be missed in
any case.

When BLOSUM-62 is compositionally adjusted for a given pair of sequences, there is no
guarantee that its relative entropy will remain near 0.44 nats. If the relative entropy decreases,
then this is fortunate if the sequences compared are very distantly related, but unfortunate if
they are closely related. However, there is no theoretical reason or empirical evidence that,
when unconstrained, the relative entropy of a matrix compositionally adjusted for two related
sequences will tend to reflect their evolutionary divergence. Therefore, it would seem best on
average for the adjusted matrix to retain a relative entropy near 0.44 nats. This is the rationale
for employing mode C of compositional adjustment.

Because relative entropy is a key element in the effectiveness of substitution matrices, it can
be a confounding factor when trying to establish that compositional adjustment is of value per
se. Specifically, when in [20] we compared the performance of the standard BLOSUM-62
matrix to that of compositionally adjusted versions of BLOSUM-62, we faced the possible
objection that any observed improvement was due not to the compositional adjustment itself,
but rather to incidental changes in relative entropy. This criticism could be leveled at either
mode B or C, because when the standard BLOSUM-62 is used in a non-standard compositional
context, its implicit relative entropy changes as well. Mode D was designed to deal with this
issue. For any particular pair of sequences, with attendent amino acid compositions,
BLOSUM-62 will have a particular and calculable implicit set of target frequencies, and
therefore a particular and calculable implicit relative entropy H. By constraining the relative
entropy of the compositionally adjusted matrix to this H, one removes relative entropy as a
confounding factor when comparing the standard to a compositionally adjusted BLOSUM-62.

In [20] we used mode D for all compositional adjustments, and were therefore able to show
that such adjustment is fruitful per se. However, once this has been established, there is little
argument in favor of mode D, relative to modes B or C, as a general approach to sequence
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comparison. To study this issue more fully, we use modes A–D to analyze the biaspair143 data
set of related sequence pairs; a summary of the results is presented in Table 2. Composition-
based statistics [29] and compositional matrix adjustment yield accurate E-values, as shown
by the essentially identical score distributions of unrelated sequence pairs for modes A–D
[20]. Therefore, it is valid to compare score adjustment strategies using normalized bit scores
[24].

For the biaspair143 data set, the mean bit score of modes B and C exceeds that of mode A by
approximately 3 bits, whereas mode D yields an average improvement of only about 2 bits.
When considered on a case-by-case basis, and ignoring the magnitude of score changes, it is
true that mode D improves on mode A the most consistently. This can be understood by
recognizing that the relative entropy change implicit in mode A may on occasion be fortuitous.
When this is so, it may be a deciding factor in favor of mode A vis-a-vis either modes B or C,
but it will not help vis-a-vis mode D. Nevertheless, when one confines attention to only
substantial E-value changes, of greater than a factor of 10, i.e. score changes greater than 3.3
bits, the case-by-case advantage of mode D is vitiated. We therefore prefer modes B and C to
mode D.

Mode B is simpler than mode C both conceptually and algorithmically, and may be preferred
in some contexts. However, Table 2 suggests that mode C (with H = 0.44 nats) has a slight
advantage to mode B by the criteria of mean bit score, and case-by-case improvement vis-a-
vis mode A. For this reason, as well as for the theoretical considerations presented above, we
will base our further study of compositional adjustment in this paper on mode C.

Search Program Evaluation Protocol
Most of the biaspair143 comparisons include at least one sequence known to have considerable
compositional bias [20]. However, the comparisons that arise in general purpose protein
database similarity searches are likely on average to have much less bias. Accordingly, to
evaluate the utility of compositional adjustment for such searches, we employ two distinct data
sets constructed previously. The first is the expert-curated “aravind103” data set [29],
consisting of 103 query sequences, and associated true positive lists from a non-redundant
version of the yeast (S. cerevisiae) proteome. The second is the “astral40” data set [30,31],
based upon the SCOP [32,33] structure-based protein classification. Only those 3586 astral40
sequences related to at least one other sequence in the set were included as queries; all 4013
astral40 sequences served as the associated test database.

For assessing the accuracy of database search methods, the truncated receiver-operator
characteristic ROCn for n false positives [34] has become a popular measure. Here, we compare
all queries to their associated test databases, and then calculate ROCn curves and scores for
the pooled results, ordered by E-value [29]. Our application of composition-based statistics to
database searching requires some parameter tuning, so we use the smaller aravind103 set for
development, and the astral40 set for evaluation.

Although the compositional adjustment of a substitution matrix can be accomplished in a small
fraction of a second, comprehensive protein sequence databases now have hundreds of
thousands of sequences. It would slow down a search program unduly if such an adjustment
needed to be performed for each one. Accordingly, and in keeping with the heuristic nature of
BLAST and related programs, we adjust substitution matrices only as a final step. Specifically,
BLAST is executed using a standard matrix, and only alignments with a preliminary E-value
lower than a certain threshold, here set to 100, are passed on to a second step. In this step, the
score matrix is adjusted, the query and database sequences are re-aligned, and a final E-value
is calculated. This heuristic approach rarely alters which matching sequences appear in the
output, but it saves execution time. The same approach and much of the same code is used in
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BLAST when it calculates composition-based statistics [29]. Note that composition-based
statistics are applied only if the E-value of the initial alignment would not improve, but
compositional score matrix adjustment may decrease, as well as increase, the E-value.
Therefore score matrix adjustment must be invoked for alignments that initially appear far from
significant.

Criteria for Invoking Compositional Adjustment
When comparing standard BLOSUM-62 (mode A) to compositionally-adjusted BLOSUM-62
(mode C) on the aravind103 data set, our initial results were unpromising. However, we find
that several simple sequence properties, suggested by theoretical considerations, tend to
characterize those sequence pairs that profit from score adjustment. Experiment yields three
specific criteria for invoking compositional adjustment.

LENGTH RATIO
For related proteins of very different lengths, the longer may tend to contain domains, missing
from the shorter, sufficient to render compositional adjustment unreliable. We find that
compositional adjustment is on average preferred if the length ratio of the longer to the shorter
sequence is less than 3.0.

COMPOSITIONAL DISTANCE
If the amino acid compositions of two sequences are very similar, this may reflect a common
organismal or protein family bias. An appropriate, recently developed distance metric [35] for
two probability distributions r→  and s→  is given by

D2(r→, s→ ) = 1
2∑i

(riln
2ri

ri + si
+ siln

2si
ri + si

). (4)

Using this measure, we find that compositional adjustment is on average preferred for two
sequences if their compositions r→  and s→  have a distance D less than 0.16.

COMPOSITIONAL ANGLE
A common compositional bias in two sequences may be reflected in similar compositional drift
vis-a-vis a standard protein composition p→ . Given the metric of equation (4), we can use the
law of cosines to calculate the angle θ formed by the vectors from p→  to r→  and from p→  to s→ :

θ = cos−1 D
2(p→, r→) + D2(p→, s→) − D2(r→, s→ )

2D(p→, r→)D(p→, s→) . (5)

We find that compositional adjustment is on average preferred for two sequences whose
compositions make an angle with the standard composition of less than 70°. Note that in the
19-dimensional amino acid composition space, random departures from the standard
composition are likely to be nearly perpendicular, so that 70° in fact represents a strong
correlation. Angles substantially larger than 90° may be due to unrelated domains, and so do
not on average favor compositional adjustment.

The criteria we have described favoring compositional adjustment are by no means
independent. However, there is both a theoretical and an empirical basis for employing each
criterion individually, and we therefore invoke compositional adjustment for sequence pairs
that pass any of the three. We call this procedure conditional adjustment. In practice, for the
data sets we studied, the single criterion most likely to trigger compositional adjustment is that
of length ratio. For related sequence pairs from the aravind103 data set, approximately 69%
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pass the conditional adjustment test, and for related but non-identical pairs from the astral40
data set, approximately 98% do. To a large extent, the much greater percentage for astral40 is
due to the “processed” nature of SCOP [32,33]: because this database contains single domains
rather than complete proteins, related sequence pairs tend to be similar in length. Note that in
generating Table 2, we applied compositional adjustment universally rather than conditionally,
because the biaspair143 data set was constructed from organisms with known substantial
compositional biases.

In Figures 1a and 1b, we show ROCn curves for BLAST applied to the aravind103 and the
astral40 data sets. For each data set, curves are shown for BLOSUM-62 (BL62) and for
conditionally compositionally adjusted BLOSUM-62 (CA-BL62). For aravind103, the
ROC100 score is 0.521 ± 0.005 for BL62 and 0.530 ± 0.003 for CA-BL62, where standard
errors are calculated as described in [29]. For astral40, the ROC10,000 score is 0.1148 ± 0.0001
for BL62 and 0.1214 ± 0.0001 for CA-BL62. The different numbers of false positives allowed
for pooled search results reflect the relative sizes of the test sets. For the astral40 test set, the
difference in ROCn scores between CA-BL62 and BL62 is statistically significant. The greater
effectiveness of compositional adjustment in the astral40 context probably is partly due to the
processed nature of SCOP, discussed above.

Examination of Figure 1 suggests that for a given number of true positives, the conditional use
of compositional score matrix adjustment reduces the number of false positives by
approximately 50%; this corresponds to an average increase of about 1 bit in the score of true
but marginally significant alignments. The performance of compositional adjustment in this
test, while positive, is weaker than that described in Table 2. This is due to the intentional
selection, for the biaspair143 test set, of sequence pairs for which compositional adjustment is
particularly suited.

Implementation
We have added compositional substitution matrix adjustment as an option to NCBI's protein-
query, protein-database BLAST program, named blastpgp, available at http://
www.ncbi.nlm.nih.gov/BLAST/. By default, the program performs no compositional
adjustment, but the user may choose to invoke adjustment either universally or conditionally,
i.e. for just for those sequence pairs that pass one of the three criteria described above. (When
conditional adjustment is chosen and the three criteria fail for a specific match, composition-
based statistics [29] are applied to scale the matrix for that match.) In either case, substitution
matrices are actually adjusted only for those sequence pairs whose initial (non-adjusted) E-
values are no more than 10 times the E-value specified for reporting a result. Also, the relative
entropy of the adjusted matrix is always constrained to equal the relative entropy of the standard
matrix specified, in its implicit compositional context. For the standard BLOSUM-62 matrix,
this is 0.44 nats (mode C of Table 1).

Previously, we had described a multi-dimensional Newtonian method for calculating
compositionally adjusted matrices [23]. However, we have implemented a modified procedure,
to achieve greater stability and speed, especially in the worst case. Rather than expressing the
target frequencies sought in terms of Lagrange multipliers, and then solving for the multipliers
[23], we instead use the Newtonian method to solve for the target frequencies and Lagrange
multipliers simultaneously. A test of the new procedure on 1,000,000 pairs of compositions
derived from real proteins showed that it takes an average of 7 iterations to converge, with 15
iterations the maximum number observed. The new procedure is summarized in the Appendix.

Using a single 3.2 GHz Xeon processor (within a four processor pentium 4 PC, with 4GB of
RAM), we found that a single compositional adjustment of a standard substitution matrix
required on average slightly over one millisecond. In the context of a single BLAST search,
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hundreds of adjustments may need to be performed, depending upon the number of alignments
found with sufficiently low initial E-value. Also, some adjustments may add additional
overhead in the form of an extra pairwise local alignment. Using the aravind103 data set as
representative queries, we executed BLAST on the machine described above to search a frozen
non-redundant protein sequence database, with 1,242,768 sequences and 395,571,179 total
amino acids. From three runs, the median aggregate execution time was: 1107 seconds for
BLAST using mode A, 1164 seconds for conditionally invoked compositional score
adjustment, and 1179 seconds for universally invoked compositional score adjustment. In other
words, even invoking compositional adjustment universally, the new method on average adds
well under 10% to BLAST's running time.

Conclusion
Compositional score matrix adjustment was originally developed for the comparison of
sequences with strongly biased compositions, and in this context it may be useful to apply it
universally. Here, we have shown that compositional adjustment is useful also in the context
of general purpose protein database similarity searches. We have described several simple
criteria under which invoking adjustment is recommended, and shown that adding
compositional adjustment to the BLAST database search program yields improved retrieval
results at a nominal cost in execution time. Future work includes the extension of compositional
adjustment to position-specific database search programs such as PSI-BLAST [26], and the
investigation of whether compositional adjustment permits lighter use of low-complexity
filtering procedures such as SEG [36].
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Appendix
Our problem is to find a set of target frequencies Q that minimizes the Kullback-Leibler
distance from a standard q, while remaining consistent with a specified pair of background
compositions P→  and P→ ′. In addition, we seek to constrain the relative entropy H of the resulting
substitution matrix. We use Newton’s method to solve a nonlinear system of equations. This
system is composed of 39 linearly independent consistency constraints (2), the constraint (3)
that fixes the relative entropy, and a set of 400 equations specifying that the gradient of the
Lagrangian function is zero [23]. This yields a set of 440 equations in 440 variables.

Newton’s method involves solving a linear system at each iteration to generate a new iterate.
It is desirable to reduce the size of the linear system, but this goal should be balanced by the
goal of reducing the total number of iterates calculated [37]. In general, Newton’s method
behaves well on functions that are well-approximated by their derivatives. The relative entropy
constraint (3) and the Kullback-Leibler distance both involve terms of the form x ln x which
are well-approximated by their derivatives for most positive x, but are singular at x = 0.
Reducing the size of the system [23] in the presence of constraint (3) results in the introduction
of exponential terms that have singularities and are poorly approximated by their derivatives.
Therefore, to reduce the number of iterates required, we propose to solve the 440-equation
system directly.

Fortunately, the matrix of the system of linear equations contains few nonzero elements, and
these elements occur in a regular pattern. The matrix has the form

(D AT

A 0 ),
where D is positive definite and diagonal, A is rectangular, and AT is the transpose of A. One
may use block-elimination [38] to transform the matrix of the problem to the form

(D AT

0 − AD−1AT ),
Systems with this matrix may be solved by factoring AD−1 AT , a 40 × 40 symmetric positive-
definite matrix. It takes roughly half as many operations to factor AD−1 AT as it does to factor
the matrix described in [23]. The cost of applying the block-reductions and solving using the
block reduced system is less than the cost of evaluating the functions and derivatives in [23],
so the optimization method requires less time per iteration.

The only modification to Newton’s method required for this problem is explicitly enforcing
the positivity of the variables qij. To obtain a positive iterate, we decrease the magnitude of the
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displacement suggested by Newton’s method whenever necessary [39]. With this modification,
the optimization algorithm is robust and efficient in practice.
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Figure 1. ROCn curves for the aravind103 and astral40 data sets using standard BLOSUM-62 and
conditionally compositionally adjusted BLOSUM-62
The BLAST program [25,26,29] was used to compare the test query sets to the test databases,
with database sequences filtered of low-complexity segments using the SEG program [36] with
parameters (10, 1.8, 2.1). Search results were pooled and ranked by E-value, and ROCn curves
[29,34] were obtained by plotting true positives versus false positives for increasing E-values.
For each test set, local alignment scores [9] were calculated using BLOSUM-62 substitution
scores [13] and affine gap costs [40,41]. Composition-based statistics [29] were employed in
order to obtain accurate E-values. Specifically, for sufficiently high-scoring alignments, the
BLOSUM-62 substitution scores were scaled to have an ungapped λ [10] of 0.006352 in the
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context of the two sequences being compared, and were used in conjunction with scores of
-550-50k for a gap of length k. Gapped statistical parameters have been estimated for this
scoring system using random simulation [42], and scaling arguments [26,29]. Also, for each
test set, a second run was performed with conditionally compositionally adjusted BLOSUM-62
substitution scores, constrained to have a relative entropy of 0.44 nats in the context of the two
sequences being compared (mode C). (a) The aravind103 test set was compared to a yeast
protein sequence database that had been edited to remove extra copies of highly similar
sequences [29]. (b) A subset of 3586 sequences from the astral40 data set [30,31] was used as
queries against astral40; all self-comparisons were excluded.
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Table 1
Modes of compositional substitution matrix adjustment.

Mode Description

A The standard matrix with no compositional adjustment
B Relative entropy left unconstrained
C Relative entropy constrained to equal a constant value
D Relative entropy constrained to equal that of the standard matrix in the compositional context of the two sequences

being compared
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Table 2
Performance of substitution matrices on the related sequence pairs of the biaspair143 data set.

Mode Mean bit Score Percent of cases improved vis-a-
vis mode A

Percent of cases with E-value improved/
worsened by a factor > 10

A 59.8
B 62.7 81 40 / 2.1
C 62.9 86 41 / 2.1
D 61.9 88 26 / 1.4
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