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The following two factors significantly influence estimates of the maximum specific growth rate (�max) and
the lag-phase duration (�): (i) the technique used to monitor bacterial growth and (ii) the model fitted to
estimate parameters. In this study, nine strains of Listeria monocytogenes were monitored simultaneously by
optical density (OD) analysis and by viable count enumeration (VCE) analysis. Four usual growth models were
fitted to our data, and estimates of growth parameters were compared from one model to another and from one
monitoring technique to another. Our results show that growth parameter estimates depended on the model
used to fit data, whereas there were no systematic variations in the estimates of �max and � when the estimates
were based on OD data instead of VCE data. By studying the evolution of OD and VCE simultaneously, we
found that while log OD/VCE remained constant for some of our experiments, a visible linear increase occurred
during the lag phase for other experiments. We developed a global model that fits both OD and VCE data. This
model enabled us to detect for some of our strains an increase in OD during the lag phase. If not taken into
account, this phenomenon may lead to an underestimate of �.

The following two methods are commonly used to monitor
growth of bacteria: viable count enumeration (VCE) and ab-
sorbance measurement. Monitoring bacterial growth by VCE
is time-consuming and rather expensive, but it remains the
method of reference. Methods based on absorbance measure-
ments constitute a second family of methods based on the
direct proportionality between the optical density (OD) of a
liquid medium and the concentration of bacteria. OD tech-
niques are rapid, convenient, and inexpensive. However, many
drawbacks are inherent to these techniques. The main problem
encountered is the limited range of validity since the detection
threshold typically corresponds to a bacterial concentration
greater than 106 bacteria/ml (8).

From these two kinds of data, characteristic growth param-
eters, mainly the lag-phase duration (�) and the maximum
specific growth rate (�max), can be assessed. The use of math-
ematical growth models allows accurate and objective estima-
tion of these parameters. In the field of predictive microbiol-
ogy, numerous models have been developed. Mechanistic
models are especially interesting as they provide both a
method of estimating � and �max and a means of understand-
ing bacterial growth.

In fact, the following two potential sources of bias influence
estimation of growth parameters: the type of data (OD or
VCE) and the model used to fit data. Because of the high
detection threshold of OD techniques, the initial inoculum
must be large enough to allow reliable measurements, and the
question which has arisen is whether the estimates of �max at

high concentrations are not systematically lower than the ac-
tual �max because of possible end-of-growth inhibition. Never-
theless, this phenomenon seems to have no effect on the esti-
mates of �max (9). Hudson and Mott (14) fitted the modified
Gompertz equation to Pseudomonas fragi growth data sets and
obtained significantly lower � estimates from OD data than
from VCE data. According to these authors, the discrepancy
between � values measured by OD and VCE is due to an
increase in cell length during the lag phase. This problem was
solved by proposing a linear calibration function. With regard
to the �max, Hudson and Mott (14) found that estimates de-
rived from OD and VCE data were very similar, whereas
Dalgaard et al. (12) showed that OD-based estimates of �max

are systematically lower than VCE-based estimates and that
the discrepancy differs from one model to another. In fact, the
accuracy of estimates of �max and � closely depends on the
model chosen to fit data (11). In particular, several models
proved to be limited in terms of providing precise estimates of
growth parameters from absorbance data, whereas other mod-
els appeared to be quite relevant. Augustin et al. (1) pointed
out that reliable estimates of �max could be obtained by using
a calibration factor constant for Listeria monocytogenes strains.
On the other hand, these authors proposed an original method
that combines OD and VCE measurements for estimation of
�.

Overall, many authors have emphasized the important vari-
ability of growth parameter estimates (especially � estimates)
due to the method used to acquire growth data and to the
nature of the model used to fit the growth data.

The aim of the present study was to improve our knowledge
concerning the lag phase by acquiring precise OD and VCE
growth data simultaneously from the same bacterial culture.
We focused on the first stages of growth, namely, the lag phase
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and the beginning of exponential growth. Various models were
fitted to our data in order to obtain information on the quality
of fit and on the accuracy for estimating the growth parame-
ters. Particular attention was paid to finding out whether more
precise data might help us select an optimal model more easily.
In addition, a dynamic study of the evolution of the OD/VCE
ratio allowed us to draw attention to an exponential increase in
OD that happened during the lag phase for one-half of our
strains. If this phenomenon is not taken into account by mod-
eling, it may lead to underestimation of �. We propose a new
model that fits OD and VCE data globally, estimates a single
value for �max and �, and, if necessary, accounts for the expo-
nential increase in OD.

MATERIALS AND METHODS

Bacterial strains and growth experiments. Nine strains of L. monocytogenes
were studied. Table 1 provides a brief description of these strains.

Stock cultures were maintained at �196°C in brain heart infusion broth (bio-
Mérieux, Marcy l’Etoile, France) containing 10% glycerol. Prior to each exper-
iment, the isolate was grown for 20 h at 20°C in 15 ml of Trypticase soy broth
(bioMérieux). This first bacterial culture was diluted in 230 ml of Trypticase soy
broth in order to obtain an initial bacterial density of approximately 107 cells/ml.
The initial bacterial density was chosen carefully so that it was greater than the
OD detection threshold. After inoculation, the strains were grown for 8 h at an
incubation temperature of 20°C. The pre- and postincubation conditions were
purposely identical in order to reduce sources of variability.

Growth was monitored by obtaining turbidimetric measurements (BioPhotom-
eter 6131; Eppendorf) every 15 min. Concurrently, 100 �l of culture was re-
moved, diluted, and plated in duplicate for VCE.

In addition, in order to ascertain the infrastrain reproducibility of phenomena,
three randomly chosen strains (III 10126, III 10111, and IV 644) were monitored
twice. Duplicates of these strains, which we designated III 10126b, III 10111b,
and IV 644b, were treated in the same way as the other strains, and subsequent
analyses took these duplicates into account.

Individual fit of models with OD and VCE data. Four growth models were
fitted to our OD and VCE growth data. These models allowed us to describe the
lag phase independent of the rest of the growth kinetics (which is not possible
when empirical models, such as the Gompertz and the Logistic models, are
used). They also possess biologically interpretable parameters. Explicit equations
of these models are described below.

The simplest model is the exponential model. It describes only the exponential
phase and does not take into account any lag phase:

x�t� � x0e�maxt (1)

where x(t) is the bacterial density (in cells per milliliter) at time t (in hours), x0

is the initial bacterial density (in cells per milliliter), and �max is the exponential
growth rate (in hours�1).

The second model which we fitted is an exponential model with delay (ED

model), which has been described with different names by various authors (2, 10,
17). Curves obtained from this model show an abrupt transition between the lag
phase and the exponential phase:

x�t� � x0emax[0,�max�t � ��] (2)

The third model is the model proposed by Baranyi and Roberts (4). Within the
framework of our study we used this model without the inhibition function. This
model has three parameters:

x�t� � x0e���max (�1 � e��max � e�maxt) (3)

The fourth equation was proposed by Hills and Wright (13). An identical equa-
tion results from another model proposed by Baranyi (2, 3). Like the two
previous models, this model has three parameters:

x�t� � x0��maxe
��maxt

�1 � e�max� �
�maxe�maxt

�1 � e�max�

�max �
�max

� 1 � e�max�
� (4)

Global model fit with OD and VCE data. The model constructed for this study
is based on the assumption that there is direct proportionality between turbidi-
metric measurements obtained by OD (xOD) and VCE (xVCE): xOD(t) �
kxVCE(t).

As OD and VCE growth data were obtained simultaneously from the same
bacterial cultures we were able to fit a global model to both types of data. By
assuming that the proportional relationship described above was true, a simple
global model, called the partial model, was defined:

� xVCE�t� � f��,t�
xOD�t� � kxVCE�t� (5)

where f is a usual growth model function (equations 1 to 4), � is the vector of
growth parameters (x0, �, and �max), and k is the xOD(t)/xVCE(t) ratio.

From the partial model (equation 5), we decided to construct another more
complex model, which we called the full model. In this model we made the
assumption that the OD may increase during the lag phase. We also made the
assumption that biomass kinetics can be split into two distinct phases. The first
phase occurs during the lag phase and corresponds to an exponential increase in
the cell biomass of the nondividing cells. The second phase corresponds to an
exponential increase in the biomass due to the successive cell divisions that
happen after a delay �.

� xVCE�t� � f��,t�
xOD�t� � ke�1min�t��,0�xVCE�t� (6)

where �1 is the rate of increase in the cell OD during the lag phase.
The partial model (equation 5) is nested in the full model (equation 6) as it

corresponds to the peculiar case in which the rate of increase in the OD during
the lag phase (�1) is zero.

Fitting procedures and statistical methods. Stabilization of the variance of the
VCE and OD data was done by using the usual logarithmic transformation. Fits
of models to the log-transformed data were performed by nonlinear regression
by using the least-squares criterion. Estimates for parameters were obtained by
minimizing the residual sum of squares (RSS):

RSS � �
i�1

N

�yi � ŷi�
2

where N is the number of data points, yi is the observed value, and ŷi is the fitted
value.

Our new model was fitted globally to OD and VCE data. To do this, in each
data set we added a control variable describing the type of data (1 for OD and
2 for VCE). Nonlinear regression was computed with the NonLinearRegress
function of Mathematica (Wolfram Research) that uses the Levenberg-Mar-
quardt algorithm.

TABLE 1. Description of strains

Strain Descriptiona

III 10111.........L. monocytogenes, food isolate, CLIP 79252
III 10126.........L. monocytogenes Scott A, serotype 4b, CIP 103575
IV 136.............L. monocytogenes, blood culture isolate (CHLS)
IV 512.............L. monocytogenes, industry isolate
IV 576.............L. monocytogenes, meningitis isolate (CHLS)
IV 634.............L. monocytogenes, serotype 4b, clinical isolate (CHLS)
IV 644.............L. monocytogenes, food isolate, CLIP 79253
IV 646.............L. monocytogenes, blood culture isolate (CHLS)
IV 656.............L. monocytogenes, serotype 1/2a, clinical isolate

a CLIP, Listeria Collection of the Pasteur Institute; CIP, Institut Pasteur
Collection; CHLS, Lyon-Sud Hospital.
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The performance of the models was evaluated by using a comparison of root
mean square error (RMSE) (RMSE � �RSS/	n � p � 1
) between experimen-
tal and predicted data. Additional graphic analysis of residuals and Beale’s
confidence regions (7) were applied. We also studied the precision of parameter
estimates in terms of asymptotic marginal confidence intervals.

To decide which is the simplest nested model to fit data adequately, we used
an F test (6):

Fobs �
(n � pf)�RSSp � RSSf�

�pf � pp� �RSSf�

where n is the data set size, pf is the number of parameters of the full model, pp

is the number of parameters of the partial model, RSSf is the residual sum of
squares of the full model fit, and RSSp is the residual sum of squares of the
partial model fit. The observed F value must be compared with a theoretical F
value with �1 � pf � pp and �2 � n � pf degrees of freedom.

We compared the growth parameters and the RMSE obtained by fitting the
different models to OD and VCE data by carrying out analysis of variance tests
(� � 5%) for a randomized block design. Finally, we used a paired t test (� �
5%) to compare estimates of � and �max obtained from OD and VCE data.

All the statistical tests were performed by using R software routines (version
1.3.1) (15).

RESULTS

Individual fits of the exponential model and the ED model.
Fits of the exponential model and the ED model were carried
out for each growth data set. As the exponential model is
nested in the ED model, we were able to compare the fits of
the two models and to check whether the lag phase is justified
for VCE and OD data sets. For each data set, the ED model,
which takes into account the lag phase systematically, fits bet-
ter than the exponential model (P  5%). Therefore, a signif-
icant lag phase exists for OD- and VCE-based data sets.

Fits of the Baranyi, Hills, and ED models. The Baranyi,
Hills, and ED models were fitted to both the VCE and OD
growth data sets. All of these models proved to be effective in
modeling growth curves (Fig. 1 shows an example), and none
of them could be invalidated. RMSEs obtained from these fits
are presented in Table 2. An analysis of variance test for
randomized block design was carried out with the RMSE val-

ues. This test indicated that in terms of RMSE, there were no
significant differences among the fits of the three models for
VCE data (P � 0.39) and for OD data (P � 0.20). Conse-
quently, although the ED model fitted the best in 6 of the 12
cases for VCE data and in 5 of the 12 cases for OD data, none
of the models consistently produced the best fit to all the
growth curves. Analysis of the Beale 95% confidence regions
(Fig. 2 shows an example) revealed an important autocorrela-
tion between � and �max, especially for the Baranyi and Hills
models. The greatest precision in the estimates of x0, �, and
�max was obtained when the ED model was fitted.

Estimates of � were obtained by fitting the three growth
models. Figure 3 shows box plots of the estimates from OD and
VCE data. Furthermore, the results show that there were sig-
nificant differences in the estimates of � provided by the three
models for VCE data (P � 4 � 10�11) and for OD data (P �
3 � 10�7). As far as our data were concerned, we obtained
systematically higher estimates of � when the Baranyi model
was fitted, whereas the lowest estimate of this parameter was
obtained when the ED model was fitted. We presumed that the
bias might be all the more important since the � was short. In
addition, there were no significant differences between � esti-
mates obtained from OD and VCE data for the Baranyi model
(P � 0.50), the Hills model (P � 0.50), or the ED model (P �
0.51).

Similarly, growth rate estimates are shown in Fig. 4. The
results show that there were significant differences in growth
rate estimates among the three models for VCE data (P � 3 �
10�8) and for OD data (P � 4 � 10�8). While we found that
compared with the other models the Baranyi model tended to
systematically give higher estimates of �, we demonstrated that
it also gave higher estimates of �max. As for the lag, there were
no significant differences between the estimates obtained from
the two kinds of data for the Baranyi model (P � 0.69), the
Hills model (P � 0.66), and the ED model (P � 0.35).

When we compared globally the estimates of � based on OD
and VCE data, we found no significant differences. However,

TABLE 2. RMSE obtained after fitting of the Baranyi, Hills, and ED models

Strain

RMSE

VCE fits OD fits

Baranyi Hills ED Baranyi Hills ED

III 10111 0.056 0.052 0.051a 0.034 0.031 0.028a

III 10111b 0.039a 0.040 0.044 0.024a 0.025 0.028
III 10126 0.052 0.051a 0.054 0.030 0.027a 0.029
III 10126b 0.025a 0.025 0.032 0.046 0.045 0.045a

IV 136 0.052 0.050a 0.051 0.035 0.033a 0.037
IV 512 0.047 0.045 0.044a 0.038 0.031 0.026a

IV 576 0.054 0.052 0.052a 0.090 0.080 0.068a

IV 634 0.054 0.052 0.052a 0.074 0.068 0.064a

IV 644 0.094 0.091 0.085a 0.045a 0.045 0.056
IV 644b 0.059 0.056 0.043a 0.030 0.022a 0.031
IV 646 0.054a 0.054 0.057 0.031 0.030a 0.038
IV 656 0.048 0.048a 0.049 0.031 0.029a 0.029

Mean 0.053 0.051 0.047 0.042 0.039 0.040
SD 0.016 0.015 0.013 0.020 0.018 0.015

a Lower RMSE.
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individual comparisons sometimes revealed discrepancies be-
tween the estimates of � based on OD and VCE data. Hudson
and Mott (14) found that � estimates based on OD data were
systematically smaller than � estimates based on VCE data.
These authors explained their results by the existence of cell
inflation during the lag phase. In our study, we showed that
there was no systematic one-sided bias in estimates of � (Fig.
5).

Evolution of the OD/VCE ratio over time. The next step in
our study consisted of trying to understand why the variations

in the � estimates occur. We studied the evolution of the
logarithm of the OD/VCE ratio for the first phases of growth
(Fig. 6). We managed to get information concerning the vari-
ation in the OD per cell unit.

Our results show that the log OD/VCE values are particu-
larly constant around �8.9. However, in a few cases, we de-
tected a slight linear increase in log OD/VCE from a lower
value to roughly �8.9 (e.g., for strain IV 576, IV 634, or III
10126b). As the VCE value remained constant during the lag
phase, this increase in the ratio was substantially due to an

FIG. 2. Plots of 95% confidence regions for estimated growth parameters obtained by fitting the Baranyi, Hills, and ED models (strain IV
512).
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increase in the OD. Indeed, the cells for which we observed a
visible increase had a lower absorbance around zero time. The
increase in OD could be explained either by an increase in the
cell biovolume or by an increase in the cell refraction.

Global modeling of the increase in OD/VCE during the lag
phase. We fitted a global model (equations 5 and 6) for each
pair of OD and VCE data sets. The full model accounts for an
increase in the OD during the lag phase, whereas no increase
in the OD is modeled in the partial model. As previously
demonstrated, the ED model proved to have particularly good
statistical properties. As a result, we chose to model xVCE by
using the ED model (f function in equations 5 and 6). The
log-transformed global models used to fit our log-transformed
data can be expressed as described below.

The equations for the partial model are as follows:

� log[xVCE�t�] � y0 � �max[max(0,t � �)]

log[xOD�t�] � � � y0 � �max[max(0,t � �)]
(7)

where y0 and � are the decimal logarithms of x0 (initial VCE)
and k (the xOD/xVCE ratio), respectively.

The equations for the full model are as follows:

�
log[xVCE�t�] � y0 � �max[max(0,t � �)]

log[xOD�t�] � � � �1[min(0,t � �)] � y0

� �max[max(0,t � �)]
(8)

We fitted the partial model and the full model to our exper-

FIG. 3. Box plots of the estimates of � obtained by fitting the Baranyi, Hills, and ED models to VCE (a) and OD (b) data sets. The 25th, 50th,
and 75th percentiles and extreme values are shown.

FIG. 4. Box plots of the estimates of �max obtained by fitting the Baranyi, Hills, and ED models to VCE (a) and OD (b) data sets. The 25th,
50th, and 75th percentiles and extreme values are shown.
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imental data and compared the fits of the two nested models by
using an F test. The results showed that for 6 of 12 data sets the
full model fitted significantly better than the partial model
(Table 3).

By constructing and fitting our global model, we found that
the evolution of OD exhibits different patterns (Fig. 7). In
some cases, there is no increase in OD during the lag phase. In
other cases, one can detect an exponential increase in OD,
whose intensity varies according to the strain and according to
the experiment.

DISCUSSION

The aim of this study was to compare the estimates of �
obtained by fitting different classical growth models (Baranyi,
Hills, and ED models) to different kinds of data (OD and VCE
data). In terms of RMSE, we could not invalidate any model.
Indeed, none of the models fitted systematically better than the
others. However, our results show that there are rather impor-
tant differences among the estimates of � when different mod-
els are used to fit data. In particular, the Baranyi model gives
high estimates of � (on average 46% higher for OD data and
49% higher for VCE data than the Hills model and 80% higher
for OD and VCE data than the ED model). As a result, the
choice of the model fitted to estimate � appears to be crucial.
The technique used to monitor bacterial growth seems to be
less influential. Nevertheless, by analyzing strain growth curves

one by one with OD and VCE data, we found that sometimes
there is a large difference between � estimates based on the
two kinds of data. By simultaneously monitoring the evolution
of VCE and OD, we managed to find an increase in OD due
not to an increase in cell number but rather to an increase in
mean cell volume or to an increase in a mean cell refraction.

We showed that the increase was not systematic and that this
phenomenon occurred in only 50% of our experiments. It is
also worth noting that this phenomenon is not strain depen-
dent. Indeed, the same strain used twice in experiments may
not have the same growth pattern. Consequently, this growth
behavior seems not to be due to interstrain variability but
rather to an important population sensibility to growth and
pregrowth conditions. With regard to L. monocytogenes, we
found that the mean log OD/VCE value measured at the end
of the lag phase and during the exponential phase is constant,
whereas the first values measured at the beginning of the lag
phase tend to be lower for strains that show an increase in the
OD during the lag phase. Thus, by determining the initial
values of the OD/VCE ratio, one could predict whether an
increase in OD is likely. Additional data are necessary to
confirm these assumptions. However, we assume that predict-
ing this phenomenon is essential. When this phenomenon is
not taken into account, lower estimates of � may be obtained
with OD data than with VCE data, as we observed, for exam-
ple, with the Baranyi model (Fig. 8).

The increase in OD reflects what happens at the cell level. If

FIG. 5. Deviation in the estimates of � based on OD and VCE data obtained by fitting the Baranyi, Hills, and ED models. The � estimates
obtained from each model are circumscribed.
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it is due to an increase in mean cell volume, the data may
suggest that cells need to reach an appropriate volume prior to
initiating their first division (14). On the other hand, if the
increase in OD is due to an increase in mean cell refraction,

the data may suggest that cells need to accumulate intracellular
substances necessary for growth (5) and tend to absorb light
more intensively. In the latter case, dynamic study of the evo-
lution of the OD/VCE ratio can be related to a method which

FIG. 6. Plot of log OD/VCE against time for the 12 strains.

TABLE 3. Parameter estimates obtained by fitting the global model to the experimental data (simultaneously obtained OD and VCE data)
and P values obtained with the nested model F test

Strain y0 � (h) �I (h�1) �max (h�1) � RMSE F test P

III 10111 7.21 1.29 0 0.25 �8.93 0.039 0.248
III 10111b 7.31 1.06 0 0.34 �8.82 0.046 0.053
III 10126 7.32 1.4 0 0.33 �8.95 0.041 0.299
III 10126b 7.44 2.45 0.29 0.35 �8.97 0.045a 1 � 10�8

IV 136 7.46 1.63 0 0.36 �8.88 0.044 0.863
IV 512 7.36 1.53 0.11 0.39 �8.95 0.036a 0.034
IV 576 7.44 2.46 0.27 0.43 �9.06 0.072a 3 � 10�4

IV 634 7.45 2.14 0.48 0.44 �8.98 0.064a 4 � 10�8

IV 644 7.38 2.69 0 0.4 �8.9 0.069 0.716
IV 644b 7.25 2.64 0 0.34 �8.68 0.049 0.444
IV 646 7.33 1.88 0.12 0.34 �8.89 0.049a 0.044
IV 656 7.37 1.75 0.2 0.32 �8.9 0.043a 8 � 10�4

a The full model was used to fit data.
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allows us to monitor the evolution of the main internal mole-
cules (essentially DNA, RNA, and proteins). As previously
mentioned by authors working on the stochastic aspects of the
lag phase (3, 16), new approaches based on analysis of indi-
vidual cells (microscopy, flow cytometry, etc.) should help us
explain the phenomenon observed and, more generally, im-
prove our understanding of the lag phase.
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